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ABSTRACT Ptychography is an imaging technique that captures multiple overlapping snapshots of a sample, illu-
minated coherently by a moving localized probe. The image recovery from ptychographic data is generally achieved
via an iterative algorithm that solves a nonlinear phase retrieval problem derived from measured diffraction patterns.
However, these iterative approaches have high computational cost. In this paper, we introduce PtychoDV, a novel deep
model-based network designed for efficient, high-quality ptychographic image reconstruction. PtychoDV comprises a
vision transformer that generates an initial image from the set of raw measurements, taking into consideration their mutual
correlations. This is followed by a deep unrolling network that refines the initial image using learnable convolutional
priors and the ptychography measurement model. Experimental results on simulated data demonstrate that PtychoDV is
capable of outperforming existing deep learning methods for this problem, and significantly reduces computational cost
compared to iterative methodologies, while maintaining competitive performance.

INDEX TERMS Ptychography, deep unrolling, vision transformer, deep learning, and image reconstruction.

I. INTRODUCTION
Ptychography is an essential imaging technique applied in fields such
as materials science, biology, and nanotechnology, due to its ability
to provide high-resolution images of samples [1]. In ptychographic
imaging, a localized coherent scanning probe is moved across a sam-
ple while recording a set of far-field diffraction patterns by measuring
the intensity of the diffracted waves. The probe is positioned such
that each illuminated area has considerable overlap with neighboring
regions, providing redundant information that can be used to compu-
tationally retrieve the relative phase of recorded intensity data within
the Fraunhofer diffraction plane. An estimate of the complex image
representing the refractive index and thickness of the object can be
obtained from the ptychographic measurements by solving a phase-
retrieval optimization problem. A variety of iterative algorithms have
been proposed to solve this problem, the main concepts including
batch improvement [2], [3], [4] and stochastic or preconditioned
gradient approaches [5], [6], [7], [8], [9]. Although these methods

have demonstrated satisfactory performance, they suffer from high
computational cost due to their iterative nature.

Deep learning (DL) has attracted attention for ptychography due
to its potential to reduce the computational cost of ptychographic
image reconstruction [10], [11]. Existing techniques depend on con-
volutional neural network (CNN) architectures that directly map
measurements to ground truth image patches. Despite being faster
than iterative alternatives, CNN-based methods have yet to deliver
results comparable with those of iterative methods. This is pre-
sumably because exiting CNNs process individual ptychographic
measurements in isolation, thereby preventing the exploitation of the
ptychographic measurement model, such as the redundant informa-
tion from overlapping illuminated regions. On the other hand, deep
model-based architectures (DMBA) have shown improved perfor-
mance over generic CNNs by exploiting the measurement model of
imaging problems [12], [13], [14], [15]. A widely-used example of
DMBA is the deep unrolling network (DU) that interprets iterative
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algorithms as a neural network by stacking iterations into layers
and then training it end-to-end. Although DU has shown promising
results in many imaging problems, to the best of our knowledge,
its potential in the context of ptychographic image reconstruction
remains unexplored.

In this paper, we bridge this gap by proposing a novel deep
unrolling network for ptychographic image reconstruction based
on vision transformer (PtychoDV) that leverages the measurement
model to improve DL performance while maintaining low compu-
tational cost. Our key contributions in this work are summarized
as follows:
� PtychoDV consists of a vision transformer (ViT) [16] followed

by a DU network. ViT employs self-attention mechanisms that
learn the interdependencies between measurements and then
reconstructs the entire set of data, providing an initial image
for DU. This is essential due to the non-convex and nonlinear
nature of ptychography, which makes it nontrivial to direct
estimation of an initial image from raw data. DU then refines
the initial image by alternating between imposing CNN priors
and applying the update rule of Wirtinger flow [8] based on the
measurement model.

� We tested PtychoDV on simulated data, demonstrating that it
(a) achieved state-of-the-art performance compared with DL
baselines, (b) obtained competitive results compared with it-
erative approaches, with substantially reduced computational
cost, and (c) has potential for the sparse sampling setup and
providing a suitable initialization for iterative methods, even
when the probe in testing differs from that in training.

II. RELATED WORK
In this section, we introduce the notions and related works required
to define PtychoDV. We also discuss iterative algorithms and deep
learning approaches for ptychographic image reconstruction.

A. PROBLEM FORMULATION
Ptychographic image reconstruction is usually formulated as an in-
verse problem that recovers an unknown image x ∈ C

n from a set of
measurements {yi ∈ R

m}N
i characterized by nonlinear systems

y2
i ∼ Pois(|FPDix|2) , (1)

where P ∈ C
m×m is the complex probe illumination, F ∈ C

m×m rep-
resents the Fourier transform, Pois(·) denotes a Poisson distribution
that models the detector response, and | · | is an elementwise absolute
value operator. In this study, we assume the probe is known and only
estimates the image. In (1), Di ∈ {0, 1}m×n indicates an operator that
extracts one patch from x, determined by the ith probe location dur-
ing imaging, and N is the total number of probe locations. Note that
we do not consider subpixel illumination shifts For ease of notation
in our discussion, we also define xi = Dix as a patch of ground truth
corresponding to the ith probe location, DT

i ∈ C
n×m as the adjoint

operator of Di that transforms a patch into an image by zero-filling
the surplus regions. A common way to solve this inverse problem is
to formulate it as an optimization problem

x∗ = arg min
x

{
N∑

i=1

fi(xi )

}
, (2)

where

fi(xi ) = 1

2σ 2
i

∥∥yi − |FPxi|
∥∥2

, (3)

represents a cost function enforcing data consistency between xi and
yi. This choice of cost function can be derived as an approximation
of the maximum likelihood (ML) cost function for a Poisson noise
model [9].

B. ITERATIVE METHODS
A variety of numerical iterative algorithms have been proposed for
solving (2) [2], [3], [4], [5], [6], [7], [8], [9]. Many of these methods
concurrently update the image patches {̂xi} and the combine these
patches into an estimate image [2], [3], [4], aiming to overcome the
computational challenges posed by the substantial volume of data.
For example, SHARP [2] relies on alternating projections between
constraints in the Fourier domain and image domain. projected multi-
agent consensus equilibrium (PMACE) [3], [4] solves ptychography
problem (2) by finding an equilibrium point x∗ that satisfies the
equation [F1(x1), . . ., FN (xN )]T = [x̄1, . . ., x̄N ]T , where

Fi(xi ) = arg min
v

{
fi(v) + 1

2σ 2
‖FPv − FPxi‖

}
, (4)

is derived as a proximal map for fi(xi ), and

x̄i = Di�
−1

N∑
i=1

DT
i |P|κxi , (5)

appropriately averages the estimated patches associated with the
same scan locations. In (5), � = ∑N

i=1 DT
i |P|κ , and κ denotes a

probe exponent parameter. Another class of algorithms use stochastic
or preconditioned gradient methods to directly refine the estimated
image [5], [6], [7], [8], [9]. For instance, Wirtinger flow (WF) [8]
and accelerated WF (AWF) [9] use gradient descent to minimize the
non-differentiable objective in (2) by defining a generalized gradient
based on the notion of Wirtinger derivatives (see also Sec. VI in
[8]). While these methods can provide satisfactory performance, they
suffer from high computational cost due to the iterative refinement
nature.

C. DEEP LEARNING APPROACHES
Deep learning has gained popularity in the broader context of imag-
ing inverse problems due to its excellent performance (see recent
reviews in [14], [17], [18]). A widely-used DL approach is to train
a CNN to learn a mapping from the measurements to the desired
reconstruction [19], [20]. Several DL methods based on CNNs have
been proposed for ptychographic image reconstruction [10], [11],
[21], [22]. PtychoNet [10] and PtychoNN [11] involve training an
end-to-end DL model by sequentially mapping measurements yi

to corresponding ground truth xi. In testing, one can derive re-
constructed images using the raw measurements as inputs to the
pre-trained model. These methods can achieve fast reconstruction,
but at the expense of performance. We posit that this is due to
CNNs processing individual ptychographic measurements, which
fundamentally prevents them from exploiting information from the
measurement model, such as the redundancy from the overlapping
measured diffraction patterns. In this study, we propose to tackle
these issues by leveraging two recent approaches: vision transformer
(ViT) and deep model-based architecture (DMBAs), detailed discus-
sions of which follow.

ViTs represents a significant shift in computer vision, moving
from convolutional architectures to a transformer-based approach
(see e.g. recent reviews [23], [24]). The central concept behind ViT
is treating image patches as data sequences, and then employing
self-attention mechanisms to compute attention scores among all
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TABLE 1. Quantitative Evaluation of Several Methods With Format of A ± B(c) on Testing Noisy Measurements, Where A, B and c Denote Mean of
Normalized Root Mean-Square-Error (NRMSE), Standard Deviation of NRMSE, and Testing Time (Seconds Per Image), Respectively.

FIGURE 1. Illustration of the pipeline of PtychoDV that consists of two main components: (a) a vision transformer module that reconstructs an initial
image from raw measurements by taking into account the interdependencies of the measurements, and (b) a DU network that refines the initial image
using the measurement forwards and CNN priors. See (8) for the iterative update of the physical consistency module.

patch pairs, gauging their reciprocal influence. This approach allows
each patch to consider all others in its context, efficiently capturing
long-range dependencies and complex interrelationships, irrespec-
tive of spatial distance. Recent studies have applied ViT in many
imaging inverse problems (see Sec. 3.6 in [24]). In ptychography,
it is straightforward to apply ViT by considering measurements as
a sequence so that their interdependencies can be learned. Despite
that, our empirical results in Tables 1 and 3 show that, while ViT
can perform better than CNNs, the performance of ViT is inferior
to that of iterative approaches. A recent abstract investigated the
use of transformers for ptychography [25]. Nonetheless, our work
distinguishes itself from [25] in two key aspects: (a) our analysis of
the algorithm and numerical validation is more extensive, and (b) we
improve ViT by integrating DU into our proposed pipeline.

DMBAs represent a family of DL algorithms that sconnect mea-
surement models and deep neural networks for solving imaging
inverse problems (see also reviews in [14], [15]). Examples of
DMBAs include plug-and-play (PnP) [12], [26], regularization by
denoiser (RED) [13], deep unrolling (DU) [27], [28], [29], [30], [31],
[32], [33], [34], and deep equilibrium models (DEQ) [35], [36], [37].
PnP and RED represent classes of iterative algorithms that leverage
pre-trained denoisers as imaging priors. A recent study has extended
this idea to ptychographic image reconstruction [38]. However, its
iterative nature inherently results in a high computational cost. DU
has recently gained significant popularity due to its excellent per-
formance and low computational cost. The key idea of DU is to (a)
implement a finite number of iterations of an image reconstruction
algorithm as layers of a network, (b) represent the regularization
within the iterative algorithm as a trainable CNN, and (c) train

the resulting network end-to-end. Many recent studies have shown
the potential of DU in various imaging inverse problems, including
compressed sensing MRI [27], [28], [29], [30], sparse view CT [31],
[32], [33], and phase retrieval [34]. A recent study has explored DU
in the context of ptychography [39], but it lacks a trainable network
for providing dedicated initial images. Different DU architectures
can be obtained by using different iterative algorithms. As will be
discussed in the next section, our main contribution is to propose a
deep unrolling network based on the WF algorithm to significantly
improve the deep learning method performance in ptychographic
image reconstruction.

III. PROPOSED METHOD: PTYCHODV
As illustrated in Fig. 1, PtychoDV consists of two neural networks:
(a) a vision transformer gθ that estimates initial results from the
raw measurements, and (b) a DU network that iteratively refines
the initial results. We rely on supervised learning to jointly optimize
these two neural networks.

A. VISION TRANSFORMER
The vision transformer gθ in PtychoDV takes as input a set of raw
measurements yi and reconstructs image patches x̂i = gθ (yi ). Specif-
ically, the raw measurements are transformed into measurement
latent vectors in parallel by a multi-layer perceptron (MLP). The
Cartesian coordinates of the corresponding sampling position c are
mapped to coordinate latent vectors with the same dimension as the
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measurement latent vectors using Fourier positional encoding [40]
followed by a MLP

MLP

⎛⎝sin(20πc), cos
(
20πc

)
. . . sin

⎛⎝2L f π︸︷︷︸
ksin

c

⎞⎠ , cos

⎛⎝2L f π︸︷︷︸
kcos

c

⎞⎠⎞⎠ ,

(6)
where sin(·) and cos(·) are element-wise operators. The measure-
ment feature vectors and the coordinate feature vectors are concate-
nated and then iteratively processed by attention modules, which
consist of layer normalization, multi-head self-attention (MHSA)
modules, and MLPs. The output feature vectors from the last atten-
tion module are transformed into reconstructed patches with the same
dimensions as the raw measurements using a output MLP. Further
technical details of ViT can be found in [16]. The key differences
compared to the original VIT [16] include a different positional
embedding derived from the sampling position of ptychography and
a modified output layer that transforms the final feature maps of
the transformer into patches with dimensions matching those of the
raw measurements.

The main innovation behind the use of ViT in gθ is considering the
measurements related to the same ground truth as a sequence. The
motivation behind this is to allow the model to capture long-range
dependencies and complex relationships among the measurement
patches, especially those that overlap, reflecting the imaging nature
of ptychography. On the other hand, existing DL methods, such as
PtychoNet [10], reconstruct the measurements in parallel, without
taking into account dependencies among measurements.

We then convert the reconstructed patches into an image x̂ by the
following steps: (a) we initialize x̂ as an all-zero image and create
counters for each pixel location; (b) we add each reconstructed patch
to the corresponding sampling region in x̂ and increase the counters
in that area by one; and (c) We perform element-wise division of x̂
by the counter at all locations where the counter has non-zero value.

B. DEEP UNROLLING NETWORK
The DU network in PtychoDV is obtained by interrupting the
iteration of the proximal gradient PnP framework [26] which con-
sists of K iterations of gradient descent each followed by neural
network refinement

x̂ k+1 = hϕ

(̂
x k − WF(̂x k )

) ∀k = 0, . . . K − 1 , (7)

where hϕ denotes a CNN with trainable parameter ϕ ∈ R
m, x̂k+1 is

the output of the kth layer of DU, and x̂0 = x̂. Here, WF(·) represents
a Wirtinger flow gradient update of the objective in (2)

WF
(̂
x k

) = γ

N∑
i

DT
i PHFH

(
mi

(̂
x k

) − yi

mi (̂x k )

|mi (̂x k )|
)

, (8)

where

mi (̂x k ) = FPDîx k , (9)

(·)H is the conjugate transpose, and γ represents a step size of
max(

∑N
i=1 DT

i |P|2). The WF gradient descent allows DU to exploit
the information from the physical model of ptychography by fitting
the intermediate estimation to the raw measured data. hϕ further
refines the estimation by imposing a prior information learned from
the external dataset.

C. LOSS FUNCTION
We trained gθ and hϕ jointly in an end-to-end manner by minimizing
the loss function

�loss = �image(ϕ) + λ �patch(θ) , (10)

where λ is a trade-off parameter. The purpose of (10) is to promote
high-quality reconstruction in both the image-wise and patch-wise
manners. Specifically, �image is formulated to penalize the differ-
ence between the final estimation of DU and the corresponding
ground truth

�image = ∥∥̂x K − x
∥∥2

, (11)

and �patch seeks to minimize the discrepancy between estimated
patches of ViT and the corresponding ground truth patches

�patch =
N∑

i=1

‖̂xi − xi‖2 . (12)

IV. NUMERICAL VALIDATION
This section presents the setup and results of our numerical valida-
tion on PtychoDV. We discuss our dataset, the implementation of
PtychoDV, our comparison method, and our evaluation metrics.

A. EXPERIMENTAL SETUP
1) DATASET
We simulated a dataset consisting of ground truth complex-valued
images (i.e., x in (1)) and ground truth complex-valued probes (i.e.,
P in (1)). Ground truth images were 400 × 400 pixels and had as-
signed density and thickness to model a multi-layer Copper-Tungsten
composite material. Simulated probes were 256 × 256 pixels with a
photon energy of 8.8 keV. We simulated 60,000, 100, and 100 ground
truth samples for training, validation, and testing, respectively. We
simulated two types of probes, which we shall refer to as probe A and
probe B. We used probe A to generate datasets for training and test-
ing, while probe B was used only for testing, in order to evaluate the
generalization of the pre-trained model on measurements simulated
using an unseen probe. Probe B was assumed to be unknown in this
experiment, while probe A was known. Different sampling patterns
(i.e., Di in (1)) were simulated, denoted as N :L, where the probe
locations form an

√
N × √

N grid with grid spacing equal to L pixels.
We experimented with N :L values of 256:5, 121:8, 64:11, 25:19, and
16:27. The smaller the value of N , the sparser the sampling pattern.
The training dataset involves different sampling patterns. Fig. 2 il-
lustrates a sample of ground truth images, 256:5 sampling patterns,
and the simulated ground truth probes. We followed [4] to use rp, the
peak photon rate, to scale the mean of a Poisson distribution to obtain
noisy simulated measurements

ŷ2
i ∼ Pois

( |FPxi|2
max(|FPxi|2)

× rp

)
. (13)

As rp increases, the signal-to-noise ratio also increases. Assuming
a photon detector with 14-bit dynamic range, we take rp = 105 for
our simulated noisy diffraction patterns. Fig. 2 illustrates a sample
of ground truth images, two stimulated ground truth probes, and
sampling pattern of 256:5.

2) IMPLEMENTATION
We experimented with several values of λ in (10). The best empirical
results were obtained when λ = 1. We set the number of DU iteration
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FIGURE 2. (a) Magnitude of a ground truth image illustrating a sampling
pattern of 256:5. (b) Two simulated ground truth probes (top row:
magnitude, bottom row: phase). Probe A was used to simulate
measurements for training and testing, while probe B was exclusively for
testing the pre-trained models.

of PtychoDV to K = 3, which is the maximum number achievable
under the memory constraints of our workstation. We set Lf in (6)
to 10. We used the Adam [42] optimizer with learning rate 10−5

and mini-batch size 1, training for 30 epochs. We performed all
experiments on a host equipped with an AMD Ryzen Threadripper
3960X Processor and an NVIDIA GeForce RTX 3090 GPU. The
training time of PtychoDV on this host was around 120 hours. Our
PtychoDV implementation is publicly available1.

3) EVALUATION
We followed [4] in using normalized root-mean-square error
(NRMSE) to evaluate the quality of reconstructed images. Because
that the measured data is not sensitive to a constant phase shift in the
full transmittance image, we have taken into account this phase shift
while calculating the NRMSE between the reconstructed complex
image x̂ and the ground truth image x. Specifically, the NRMSE is
calculated elementwise as follows:

NRMSE(x̂, x) = |x̂ − eiθ x|
|x| (14)

where θ ∈ [0, 2π ) is chosen to minimize the numerator.

4) COMPARISON
We compared PtychoDV with several baseline approaches, including
PtychoNet [10], Unet, ViT, PMACE [4] and AWF [9]. PtychoNet
is a DL method that uses a CNN to map individual measurements
directly to the corresponding ground truth image patch. We imple-
mented PtychoNet, Unet, and ViT. For PMACE and AWF, we used
the official implementations from the PMACE repository2. We set
the total number of iterations of PMACE and AWF to 100. We fol-
lowed [4] to estimate the initial images for PMACE and AWF. Unet
and ViT is similar to PtychoNet, but having more complex neural
network architectures.

In order to determine the impact of different elements in our
configuration, we conducted a component analysis with various
versions of PtychoDV, termed as ViT+Unet, ViT+GD, ViT+1DU,
Initializer+DU and PtychoNet+DU. ViT+Unet replaces the DU with
Unet, thereby removing the integration of the measurement models in
the resulting network architecture. ViT+GD excludes the CNN priors
in DU, whereas ViT+1DU reduces the number of DU iterations to

1 https://github.com/wjgancn/PtychoDV
2 https://github.com/cabouman/ptycho_pmace

one. PtychoNet+DU substitutes ViT with PtychoNet as the CNN
used for computing the initial images. Initializer+DU substitutes
ViT with a handcrafted initialization approach (refer to equation (24)
in [4]). The trainable components of Initializer+DU constitute a pure
deep unrolling architecture.

In addition, we tested the use of the PtychoDV reconstructions
as initialization for PMACE. We conducted experiments on both
probe A and probe B. The resulting methods are as follows: (a)
PtychoDV-A tests PtychoDV on testing data stimulated using probe
A; (b) PMACE-A tests PMACE on testing data stimulated using
probe A; (c) PMACE-A-10 is a variant of PMACE-A with total
number of iterations being 10; (d) PMACE-A-10 w/ PtychoDV is
similar to PMACE-A-10 but use PtychoDV to estimate the initial
image; (e) PtychoDV-B tests PtychoDV on testing data stimulated
using probe B; (f) PMACE-B tests PMACE on testing data stimulated
using probe B; (g) PMACE-B w/ PtychoDV is similar to PMACE-B
but use PtychoDV to estimate the initial image. Since probe B was
assumed to be unknown, PMACE in (f) and (g) was implemented to
jointly estimate the image and the probe. We used probe A as the
initial probe when jointly estimating probe B.

B. RESULTS
Table 1 provides a quantitative evaluation and testing time for Pty-
choDV, baseline approaches, and methods with different components
during testing of noisy cases with all sampling patterns. As displayed
in Table 1, ViT can achieve lower average NRMSE values than Unet
and PtychoNet, both of which are CNN-based, but it still performs
suboptimally when compared to iterative methods. When comparing
PtychoDV with ViT+Unet and ViT+GD, it is evident from Table 1
that DU and hϕ are essential components of PtychoDV for achieving
superior imaging quality. The results from ViT+1DU indicate the
potential for improving PtychoDV by increasing the number of DU
iterations. Table 1 shows that, when comparing with Initializer+DU
and PtychoNet+DU, PtychoDV can gain superior performnace, high-
lighting the importance of using ViT to compute the initial image.
While both ViT and DU serve as necessary components within Pty-
choDV, Table 1 indicates that incorporating DU leads to higher SNR
improvements than incorporating ViT. To conlude, Table 1 demon-
strates that PtychoDV can achieve performance that is competitive
with, and even superior to (in the sparse sampling pattern), PMACE,
the state-of-the-art iterative method. Finally, while PtychoDV is the
most time-consuming method among DL baselines, it still has sig-
nificantly less computational cost than iterative methods across all
sampling patterns.

Fig. 3 provides visual results of PtychoDV and baseline methods
on noisy cases with sparse 64:11 sampling patterns. Fig. 3 shows
that end-to-end neural networks, which directly map measurements
to ground truth image patches, tend to reconstruct images with blurry
details, whereas PtychoDV provides less noisy and sharper images.
This figure also highlights that AWF and PMACE, the two com-
monly used iterative algorithms, reconstruct noisy images with a
higher NRMSE than PtychoDV in the sparse 64:11 sampling pattern.
Fig. 4 provides visual results of PtychoDV compared to ablated
methods on testing noisy cases with the sampling patterns of 64:11.
This figure illustrates that PtychoDV can quantitatively and qualita-
tively outperform several ablated variants.

Table 2 provide a quantitative evaluation and testing time for Pty-
choDV and PMACE on noisy testing data, simulated with different
probes and different sampling patterns. These tables demonstrate
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FIGURE 3. Visual results of PtychoDV and other baseline methods on noisy testing data with sampling pattern of 64:11. The magnitude and the phase of
the reconstructed images are shown in the top and the bottom row, respectively. NRMSE values are included in the right bottom of each image. This
figure highlights superior performance of PtychoDV on sparse sampling pattern. Note that PtychoDV can reconstruct images that are consistent with
ground truth, whereas the results from the other baseline exhibit noise and blurry artifacts.

FIGURE 4. Visual results of PtychoDV and its variants on noisy testing data with sampling pattern of 64:11. The magnitude and the phase of the
reconstructed images are shown in the top and the bottom row, respectively. NRMSE values of each method is labeled in the right bottom of each image.
This figure shows that PtychoDV can gain superior performance over its ablated methods.

TABLE 2. Quantitative Evaluation of Several Methods With Format of A ± B(c) on Testing Noisy Measurements, Where A, B and c Denote Mean of
Normalized Root Mean-Square-Error (NRMSE), Standard Deviation of NRMSE, and Testing Time (Seconds Per Image), Respectively.

that, when tested on a known probe A, PMACE initialized by Pty-
choDV can achieve performance competitive with generic PMACE,
but with significantly fewer iterations and lower computational cost.
The tables also indicate that, when tested on an unknown probe B,
PMACE initialized by PtychoDV can achieve superior performance
compared to PMACE on the joint estimation of image and probe.

V. DISCUSSION AND CONCLUSION
This paper presents PtychoDV, a new DL method for ptychographic
image reconstruction. The key idea behind PtychoDV is a deep

unrolling architecture that systematically integrates trainable neu-
ral network priors and measurement operators of the ptychography.
Moreover, we employ a vision transformer to estimate initial images
from raw measurements, which allows capturing long-range depen-
dencies in the data effectively.

The major benefits of PtychoDV include its remarkable perfor-
mance improvements, both quantitatively and qualitatively, com-
pared to existing deep learning methods. Furthermore, PtychoDV
achieves competitive performance against existing iterative algo-
rithms, but with a substantially lower computational cost. Moreover,
in sparse sampling setup, PtychoDV outperforms iterative methods.
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TABLE 3. Quantitative Evaluation of Several Methods With Format of A ± B(c) on Testing noise-Free Measurements, Where A, B and c Denote Mean of
Normalized Root Mean-Square-Error (NRMSE), Standard Deviation of NRMSE, and Testing Time (Seconds Per Image), Respectively

TABLE 4. Quantitative Evaluation of Several Methods With Format of A ± B(c) on Testing noise-Free Measurements, Where A, B and c Denote Mean of
Normalized Root Mean-Square-Error (NRMSE), Standard Deviation of NRMSE, and Testing Time (Seconds Per Image), Respectively

The results of PtychoDV show its potential for applications that
require real-time reconstruction or fast sampling.

Another important application of PtychoDV is to provide a reli-
able initialization for existing iterative algorithms. This initialization
approach leads to a reduction in the total number of iterations without
sacrificing performance. Even in cases where the probe is unknown,
iterative algorithms can still benefit from PtychoDV’s initialization,
regardless of whether the testing probe differs from the training one.

A key feature of PtychoDV is its ability to incorporate and ex-
change information from all measurements patches simultaneously
in the reconstruction. This exchange is technically facilitated through
the WF update as described in (8) and the attention module in
ViT. Note that the effectiveness of this exchange is also contin-
gent on the overlap probe ratio. Experimental results show that
a higher overlap ratio (e.g., sampling pattern of 256 : 5) leads to
improved performance, indicating enhanced exchange efficiency.
In contrast, existing approaches without such deliberate exchange
(e.g., PtychoNet) achieve similar performance across different
sampling patterns.

The experiments in this study were entirely simulation-based,
primarily due to the large number of training pairs and high-quality
references required for the proposed method. It is impractical to
source such a dataset from real-world samples. Our future direction
includes testing PtychoDV on real data and training PtychoDV with-
out high-quality ground truth using self-supervised learning [30].

APPENDIX
This appendix reports experimental results for noise-free cases. We
synthesized noise-free measurements as y2

i =|FPxi|2. The other ex-
perimental setups are identical to those described in Section IV-A.

FIGURE 5. Visual results of PMACE tested on noise-free data generated
using different probe and different initialization. The magnitude and the
phase of the reconstructed images are shown in the top and the bottom
row, respectively. NRMSE values of each method is labeled in the right
bottom of each image. This figure shows that PMACE with a small number
of iterations can achieve better performance by using PtychoDV
initialization than that without it. This figure also highlights that PtychoDV
could also be used to compute initialization even when the testing probe
is different from the probe used in training.

TABLE 5. GPU Memory Usage (GB) for PtychoDV and DL Baseline Methods
During Both Training and Inference.
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TABLE 6. Quantitative Evaluation of PtychoDV and Baseline Methods With Format of A ± B on a New Noisy Testing Dataset Generated From Probe C,
Where A and B Denote Mean of Normalized Root Mean-Square-Error (NRMSE) and Standard Deviation of NRMSE, Respectively.

TABLE 7. Quantitative Comparison Between the Proposed Loss Function and Its Constituent Parts With Format of A ± B on Testing Noisy Measurements,
Where A and B Denote Mean of Normalized Root Mean-Square-Error (NRMSE) and Standard Deviation of NRMSE, Respectively.

FIGURE 6. (a) Illustration of reconstructed results obtained by PMACE with
and without PtychoDV providing initialization. Experiments were
conducted on a new testing dataset generated from a new probe C with a
sampling pattern of 64 : 11. (b) Illustrations of the training probe A and the
new testing probe C. Probe A is used for generating the training dataset,
while probe C is exclusively for testing. Note that probe A is symmetrical,
whereas probe C is asymmetrical.

Table 3 summarizes the same type of quantitative evaluation and test-
ing time as Table 1, but on noise-free testing data, corroborating the
same conclusions drawn from Table 1. Table 4 provide a quantitative
evaluation and testing time for PtychoDV and PMACE on noise-free
testing data, stimulated with different probes and different sampling
patterns. Fig. 5 shows visual results of PMACE on noise-free data
with and without initialization generated by PtychoDV. This figure
demonstrates that PMACE initialized by PtychoDV can provide re-
sults more consistent with the ground truth than those without it.

Table 5 shows memory usage of PtychoDV and other base-
line methods, demonstrating that ViT-based methods exhibit lower
memory complexity. We attribute this to the smaller dimensions of
1D latent features in ViT compared to the 2D feature maps in CNN.

We also validated PtychoDV on testing dataset generated from
an asymmetry probe C. This new probe C is more dissimilar to
probe A compared to probe B. We tested the application of Pty-
choDV for providing a reliable initialization for PMACE on this new
dataset. Table 6 and Fig. 6 show quantitative and visual results on
new testing dataset, respectively. Both Table 6 and Fig. 6 demon-
strate that PtychoDV can provide a reliable initialization for PMACE
even when the testing dataset is generated using a more dissimilar
asymmetry probe.

FIGURE 7. Visual results of PtychoDV and other baseline methods on noisy
testing data with sampling pattern of 64 : 11. The magnitude and the
phase of the reconstructed images are shown in the top and the bottom
row, respectively. NRMSE values are included in the right bottom of each
image. This figure demonstrates that PtychoDV can provide reconstructions
that are more consistent with the ground truth, as highlighted by image
features indicated by the red arrow.

We performed experiments comparing the proposed loss function
and its constituent parts. We summarized the quantitative results in
Table 7. Table 7 shows that the proposed loss function can provide
superior performance over its constituent variants.

Fig. 7 illustrates the reconstructed images of PtychoNet+DU, Ini-
tilizer+DU and PtychoDV. Fig. 7 shows that PtychoDV can provide
reconstructions that are more consistent with the ground truth, as
highlighted by image features indicated by the red arrow.
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