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ABSTRACT We present a new method for online selection of the penalty parameter for the alternating
direction method of multipliers (ADMM) algorithm. ADMM is a widely used method for solving a range
of optimization problems, including those that arise in signal and image processing. In its standard form,
ADMM includes a scalar hyperparameter, known as the penalty parameter, which usually has to be tuned to
achieve satisfactory empirical convergence. In this work, we develop a framework for analyzing the ADMM
algorithm applied to a quadratic problem as an affine fixed point iteration. Using this framework, we develop
a new method for automatically tuning the penalty parameter by detecting when it has become too large or
small. We analyze this and several other methods with respect to their theoretical properties, i.e., robustness
to problem transformations, and empirical performance on several optimization problems. Our proposed
algorithm is based on a theoretical framework with clear, explicit assumptions and approximations, is
theoretically covariant/invariant to problem transformations, is simple to implement, and exhibits competitive
empirical performance.

INDEX TERMS Convex optimization, alternating direction method of multiplier (ADMM), adaptive
ADMM, penalty parameter, parameter selection.

I. INTRODUCTION
Proximal algorithms are widely used for solving a variety of
optimization problems in signal and image processing [1].
Of these, the alternating direction method of multipliers
(ADMM) [2], [3] is particularly widely used due to its flex-
ibility in addressing a wide range of problems. The ADMM
algorithm solves optimization problems of the form

arg min
x,z

f (x) + g(z) s.t. Ax + Bz = c, (1)

with variables1 x ∈ R
M , z ∈ R

N ; vector c ∈ R
P; matrices A ∈

R
P×M and B ∈ R

P×N ; convex functionals f : RM → R and
g : RN → R; and where arg min f denotes any minimizer of
f when the minimizer is not unique. (The notation used here

1We only consider real-valued variable here. Problems with complex-
valued variables may be expressed in this form by representing each variable
as a real-valued vector containing its real and imaginary parts, but direct
extension to complex-valued variables is also worthy of exploration [4].

is based on that of [5].) The ADMM iterates are

x(k+1) = arg min
x

f (x) + ρ

2

∥∥∥∥Ax + Bz(k) − c + y(k)

ρ

∥∥∥∥
2

(2)

z(k+1) = arg min
z

g(z) + ρ

2

∥∥∥∥Ax(k+1) + Bz − c + y(k)

ρ

∥∥∥∥
2

(3)

y(k+1) = y(k) + ρ
(

Ax(k+1) + Bz(k+1) − c
)

, (4)

where ρ ∈ R is a positive scalar known as the penalty pa-
rameter, ‖ · ‖ denotes the �2 norm, and y ∈ R

P, known as the
dual variable,2 plays the role of the Lagrange multiplier for
the constraint in (1). The iteration (2)–(4) can be shown to

2Note that, while it is common to introduce a scaled dual variable u =
ρ−1y (e.g., [5, §3.1.1]), we retain the unscaled form since it makes the ρ

dependency explicit and avoids the need for a rescaling of the dual vari-
able when ρ is modified during the iterations of the ADMM algorithm.
Appendix A describes how to use the proposed algorithm on the scaled form.
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converge to a solution of (1) under a variety of conditions (see,
e.g., [5, §3.2], [6], [7]).

In practice, the rate of convergence of ADMM algorithms is
strongly dependent on the penalty parameter. Unfortunately,
other than for a very specific set of problems [8], [9], [10,
Sec. 5], there are no analytic results providing the optimal
parameter choice. While a brute-force search for the best
parameter—running the ADMM algorithm may times with
different values of the parameter and keeping the best result—
is straightforward to implement, it is computationally expen-
sive and impractical for large-scale or real-time problems.
Another solution is to adjust the penalty parameter as the algo-
rithm is executed, sometimes called online penalty parameter
selection or adaptive ADMM. The ADMM iterates are the
same as those in (2)–(4), but all occurrences of ρ are replaced
with an iteration-dependent value ρ (k), and a ρ update step

ρ (k+1) = φ
((

ρ ( j), x( j+1), z( j+1), y( j+1))k
j=0

)
, (5)

is appended after the dual variable update. This update is de-
fined in terms of a function φ : R × R

M × R
N × R

P × · · · →
R that selects a new penalty parameter based on all current and
past penalty parameters, all current and past variables, and,
implicitly, the problem definition f , g, A, B, and c.

A. RELATED WORK
Several previous works address the problem of selecting
the ADMM penalty parameter. A computationally efficient
method has been proposed for brute-force evaluation over a
large set of penalty parameter values [11], but its efficacy has
only been explored for a very limited class of problems. Other
works [8], [9], [10] have considered penalty parameter selec-
tion for ADMM applied specifically to quadratic programs,
but these works involve explicit eigenvalue calculations that
do not efficiently scale to large problems. A heuristic method
for adapting the penalty parameter online [12] is widely
used, but is sensitive to problem scaling, and can perform
very poorly [13], as discussed in Section V. More recently,
the interpretation of ADMM as Douglas-Rachford splitting
(DRS) applied to the dual of (1) (see e.g. [14]) has been
used to translate new step-size selection methods for DRS
into penalty parameter selection methods for ADMM. The
approach of [15], [16], is based on Barzilai-Borwein spectral
step-size selection for DRS, while that of [17] is based on
minimization of an upper bound on the spectral radius of the
DRS iteration matrix. Both of these methods are discussed
further in Section IV. Finally, [18] uses the dynamical systems
approach developed in [19] to bound the convergence rate of
ADMM, and proposes to select a fixed penalty parameter in
advance to minimize this bound. This method involves techni-
cal assumptions that restrict which problems it can be used on,
is complex to implement (because computing the convergence
bound for each fixed penalty parameter involves searching
for a scalar parameter that makes a certain parametric matrix
inequality feasible), and, at least in the experiments in [18],

did not appear to provide accurate penalty parameter selection
for standard (unrelaxed) ADMM, which we study here.

Our work is particularly inspired by the analysis of
quadratic problems in [8], the concept of rearranging ADMM
into DRS from [15], the discussion of affine fixed points
in [19], the analysis of linear DRS updates in [17], and the
good empirical performance we observed when we imple-
mented the method of [17].

B. CONTRIBUTIONS AND OUTLINE
In this work, we propose a new mathematical framework and
associated method for ADMM penalty parameter selection.
This framework is distinct from previous work in that it fo-
cuses on determining whether the parameter is much too large
or small rather than attempting to directly optimize it. In
addition to motivating our method, our framework provides a
new, unified perspective on previous penalty parameter selec-
tion methods [12], [15], [17]. Our method has not previously
appeared in the literature, is simple to implement, and has
theoretical advantages over each of the earlier methods. Com-
putational experiments demonstrate that the proposed method
provides competitive performance in practice across a variety
of different problems.

The outline of the paper is as follows. The proposed
framework is developed in Section II, followed by deriva-
tion of the proposed penalty parameter selection method in
Section III. This framework is used to reinterpret the methods
of [12], [15], and [17] in Section IV. The final theoretical com-
ponent of the work is presented in Section V, with a discussion
of how each method responds to transformations applied to
the optimization problem, which is key to understanding the
limitations of some of the existing methods. Experimental
comparisons on several problems in are provided in Sec-
tion VI, and conclusions are drawn in Section VII.

II. PENALTY PARAMETER SELECTION FRAMEWORK
In this section, we present the new framework for ADMM
penalty parameter selection. The fundamental idea is to ap-
proximate the ADMM iterations locally (i.e., in the region of
the current x(k), z(k), and y(k)) as an affine fixed point iteration
y(k+1) = Hρy(k) + h for Hρ ∈ R

P×P and h ∈ R
P, where Hρ

depends on the penalty parameter ρ. The theory of affine
fixed point iteration then allows us to view penalty parameter
selection as selecting ρ to minimize the spectral radius of Hρ .

A. ITERATION ON y

We show that the ADMM iterations (2)–(4) can be expressed
as an iteration on y alone by recovering x and z from y at each
iteration. This result is known in the literature, e.g., [14], [15],
[17], but it is usually expressed as applying DRS to a dual
version of problem (1), while our derivation avoids this com-
plexity. We begin by using results from convex optimization
to rewrite the optimization problem on z (3) as a function of y.

According to the the first order optimality condition, the
gradient of a smooth function is 0 at its local minima [20,
Theorem 1.2.1]. For nonsmooth problems, a similar condition

VOLUME 5, 2024 403



MCCANN AND WOHLBERG: ROBUST AND SIMPLE ADMM PENALTY PARAMETER SELECTION

holds for the subgradient [20, Theorem 3.1.15]. The subgra-
dient with respect to z of the functional in (3) is

∂z

(
g(z) + ρ

2

∥∥∥∥Ax(k+1) + Bz − c + y(k)

ρ

∥∥∥∥
2)

= ∂zg(z) + ∇z
ρ

2

∥∥∥∥Ax(k+1) + Bz − c + y(k)

ρ

∥∥∥∥
2

= ∂zg(z) + ∇z
ρ

2

∥∥∥∥Bz −
(

−Ax(k+1) + c − y(k)

ρ

)∥∥∥∥
2

= ∂zg(z) + ρ

(
BT Bz − BT

(
−Ax(k+1)+c− y(k)

ρ

))

= ∂zg(z) + BT
(

y(k) + ρ
(

Ax(k+1) + Bz − c
))

. (6)

The optimality condition for (3) can therefore be written as [5,
§3.3]

0 ∈ ∂zg(z(k+1)) + BT

⎛
⎜⎜⎜⎝y(k) + ρ

(
Ax(k+1) + Bz(k+1) − c

)
︸ ︷︷ ︸

y(k+1)

⎞
⎟⎟⎟⎠

∈ ∂zg(z(k+1)) + BT y(k+1) . (7)

We interpret (7) as the optimality condition for a new opti-
mization problem on z (and for clarity shift the index from
k + 1 to k), which allows us to express z(k) as a function of
y(k),

z(k) = G
(

y(k)
)

G(w) = arg min
z

g(z) + (
BT w

)T
z , (8)

where w ∈ R
P. Note that (8) only holds for k ≥ 1 because of

the index shift.
Taking a similar approach for the x update (2), the subgra-

dient with respect to x is

∂x

(
f (x) + ρ

2

∥∥∥∥Ax + Bz(k) − c + y(k)

ρ

∥∥∥∥
2)

= ∂x f (x) + ∇x
ρ

2

∥∥∥∥Ax + Bz(k) − c + y(k)

ρ

∥∥∥∥
2

= ∂x f (x) + ∇x
ρ

2

∥∥∥∥Ax −
(

−Bz(k) + c − y(k)

ρ

)∥∥∥∥
2

= ∂x f (x) + ρ

(
AT Ax − AT

(
−Bz(k)+c− y(k)

ρ

))

= ∂x f (x) + AT
(

y(k) + ρ
(

Ax + Bz(k) − c
))

. (9)

The optimality condition for (2) can therefore be written as

0 ∈ ∂x f
(

x(k+1)
)

+ AT

⎛
⎜⎝yk + ρ(Ax(k+1) + Bz(k) − c)︸ ︷︷ ︸

ỹ(k+1)

⎞
⎟⎠

∈ ∂x f
(

x(k+1)
)

+ AT ỹ(k+1) , (10)

where we have introduced the notation ỹ to denote the in-
dicated not-quite-y quantity, which involves z(k) instead of
z(k+1). Note that (10) is distinct from the standard dual op-
timality condition for x (see (3.9) in [5]) because it holds for
all x(k) rather than just the solution x∗ and because it involves
ỹ rather than y. Interpreting (10) as the optimality condition
for a new optimization problem, we can obtain x(k) from ỹ(k)

by using an operation that we denote F ,

x(k) = F
(

ỹ(k)
)

F (w) = arg minx f (x) + (
AT w

)T
x ,

(11)
where w ∈ R

P.
With these definitions in place, we are prepared to rewrite

ADMM as an iteration on y(k) alone. By definition, we have

y(k+1) = y(k) + ρ
(

Ax(k+1) + Bz(k+1) − c
)

(12)

ỹ(k+1) = y(k) + ρ
(

Ax(k+1) + Bz(k) − c
)

. (13)

Making use of F (11) and G (8), we have

y(k) + ρBz(k) − ρc = ỹ(k+1) − ρAx(k+1)

= ỹ(k+1) − ρAF (ỹ(k+1))

= (I − ρAF )
(

ỹ(k+1)
)

, (14)

and therefore

y(k) + ρBG(y(k) ) − ρc = (I − ρAF )
(

ỹ(k+1)
)

. (15)

Similarly,

ỹ(k+1) − ρBz(k) = y(k+1) − ρBz(k+1)

= y(k+1) − ρBG
(

y(k+1)
)

= (I − ρBG)
(

y(k+1)
)

, (16)

and therefore

ỹ(k+1) − ρBG
(

y(k)
)

= (I − ρBG)
(

y(k+1)
)

. (17)

Finally, we express y(k+1) as a function of y(k) by solving (15)
for ỹ(k+1) and (17) for y(k+1),

ỹ(k+1) = (I − ρAF )−1
(

(I + ρBG)
(

y(k)
)

− ρc
)

y(k+1) = (I − ρBG)−1
(

ỹ(k+1) − ρBG
(

y(k)
))

, (18)

where M−1(x) for generic function M and vector x denotes a
vector y such that M(y) = x, which may not be unique. These
inverses exist whenever the ADMM iterations (2)–(4) are
well defined because, by the preceding arguments, ADMM
generates sequences {x(k)}, {z(k)}, and {y(k)} (and therefore
implicitly {ỹ(k)} via the definition in (13)) that satisfy (15) and
(17), which are the equations that the inverses in (18) solve.
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Note that while there appear to be two state variables, ỹ(k)

is a merely a notational convenience. The iteration can be
written without ỹ(k) by substituting the first line of (18) into
the second. Finally, it is worth noting that our derivation of
(18) represents a novel approach to demonstrating the mathe-
matical equivalence of ADMM and DRS.

B. AFFINE FIXED POINT ITERATION
We now analyze a quadratic problem, allowing us to express
ADMM as an affine fixed point iteration, which is a critical
component in the derivation of our penalty parameter selec-
tion rule. While ADMM is not typically used to solve such
quadratic problems, they will act as local approximations of
the actual problems of interest.

Consider problem (1) with quadratic f and g,

f (x) = 1

2
xT Qx + qT x g(z) = 1

2
zT Rz + rT z , (19)

where Q ∈ R
M×M , R ∈ R

N×N , q ∈ R
M , and r ∈ R

N . To make
f and g convex and ensure that the problem has a solution, we
assume Q and R are symmetric positive definite matrices. This
assumption further implies that they cannot have a nontrivial
null space (because, e.g., Qx = 0 implies xT Qx = 0) and are
therefore invertible.

Then, by definitions (11) and (8),

F (w) = −Q−1(AT w + q)

G(w) = −R−1(BT w + r) , (20)

Since F and G always appear in (18) as terms AF and BG
respectively, we introduce the notation

F = AQ−1AT
G = BR−1BT (21)

for the linear parts of AF and BG respectively, where we
use the blackboard bold notation to clearly differentiate the
matrices F and G from the closely-related functions F and G.

We can substitute the first line of (18) into the second and
rearrange to express ADMM as

y(k+1) = (I+ρG)−1
(

(I+ρF)−1(I−ρG)y(k)+ρGy(k)
)

+ h

= (I+ρG)−1
(

((I+ρF)−1(I−ρG)+ρG)y(k)
)

+ h

= (I+ρG)−1(I+ρF)−1
(

((I−ρG)+(I+ρF)ρG)y(k)
)

+ h

= (I+ρG)−1(I+ρF)−1(I+ρ2
FG)︸ ︷︷ ︸

Hρ

y(k) + h , (22)

where Hρ is a matrix that depends on ρ and h is a constant
vector that is unimportant for what follows. Note that ỹ does
not appear because it is only a notational convenience and can
be expressed in terms of y.

We now have ADMM expressed as the affine fixed point
iteration

y(k+1) = Hρy(k) + h . (23)

We define the fixed point, y∗, when it exists, by

y∗ = Hρy∗ + h . (24)

It is worth emphasizing that, while Hρ and h depend on ρ, y∗
does not. The fixed point y∗ is independent of ρ because the
iteration (23) is equivalent to ADMM applied to a quadratic
problem with a unique solution. Because ADMM converges
to a solution of this problem [6] and the solution is unique, it
cannot depend on ρ.

We can now relate the convergence rate of ADMM to the
spectral radius (the magnitude of the eigenvalue with the
largest magnitude) Define the error at iterate k by

ε(k) = y(k) − y∗ . (25)

From this definition, (23), and (24) we have

ε(k) = Hρ (y(k−1) + h) − (Hρy∗ + h) = Hρε(k−1) (26)

and so by induction,

ε(k) = Hρ
kε(0) . (27)

Denote the spectral radius of Hρ by r(Hρ ). Gelfand’s for-
mula [21, Theorem 8] states

r(Hρ ) ≤ ‖Hρ
k‖ 1

k and r(Hρ ) = lim
k→∞

‖Hρ
k‖ 1

k , (28)

which, as noted in [19, §2.2], implies that for any e > 0, there
is a k large enough that

‖ε(k)‖ ≤ (r(Hρ ) + e)k‖ε(0)‖ . (29)

The convergence rate of the fixed point is therefore deter-
mined by the spectral radius of Hρ . Note that this bound
implies that r(Hρ ) < 1 is sufficient for convergence of the
fixed point.

We now derive a further consequence of the affine fixed
point which we use in the next section. The expression for
the error (27) corresponds to a power iteration of Hρ . So,
assuming that the maximal eigenvalue of Hρ is real,3 as k
grows, ε(k) converges to a maximal eigenvector of Hρ [22,
§7.3.1], i.e.,

lim
k→∞

ε(k)T
Hρε(k)

ε(k)T
ε(k)

= r(Hρ ) (30)

and

lim
k→∞

Hρε(k) = r(Hρ )ε(k) . (31)

Therefore, for k sufficiently large and �k > 0,

y(k+�k) − y(k) =
(

y∗ + ε(k+�k)
)

−
(

y∗ + ε(k)
)

= ε(k+�k) − ε(k)

= Hρ
�kε(k) − ε(k)

≈
(

r(Hρ )�k − 1
)

ε(k) , (32)

3In general, Hρ may have complex eigenvalues and eigenvectors. In
Section III-B, we argue that when ρ is far from its optimal value, Hρ is
approximated by a matrix with real eigenvalues.
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where the last line follows from ε(k) approximately being
a maximal eigenvector of Hρ . This equation implies that
y(k+�k) − y(k) is colinear with ε(k) and is therefore also ap-
proximately a maximal eigenvector of Hρ .

Let vρ denote a maximal eigenvector of Hρ with corre-
sponding eigenvalue λρ . If |λρ | > 1 then (29) implies that the
error would grow with each iteration, so |λρ | must be smaller
than one for the fixed point iteration, and therefore ADMM,
to converge. In addition, we expect |λρ | to be close to one
because convergence of ADMM typically takes at least tens
of iterations, implying that |λρ | = r(Hρ ) in (29) is usually
not much smaller than unity.

III. PROPOSED PENALTY PARAMETER SELECTION
METHOD
With these results in place, we are prepared to derive our
penalty parameter selection method. Our approach is moti-
vated by the empirical result (see e.g. [12], [15], [18]) that
there is typically a single optimal penalty parameter for each
problem, with convergence degrading as ρ moves away from
this value. Here, we derive approximations that explain this
monotone behavior and use them to propose a rule for select-
ing a ρ that is not too far from the optimal value.

While the previous section represents a synthesis of results
from multiple sources, what follows is, to the best of our
knowledge, novel.

A. DEPENDENCE OF SPECTRAL RADIUS ON PENALTY
PARAMETER
In the previous section, we determined that, for a quadratic
problem, the optimal ρ is the one that minimizes the spectral
radius of the iteration matrix Hρ . Therefore, we would like
to know how the eigenvalues of Hρ depend on ρ. For small
quadratic problems, we can form Hρ explicitly and compute
these eigenvalues directly for a range of ρ values, but this
is impractical for larger problems. More importantly, though,
since our primary interest is in more general problems, we
would like to be able to determine this dependence using
variables and operators that are not specific to the quadratic
problem so that we can avoid having to explicitly fit quadratic
approximations. Unfortunately, the eigenvalues of Hρ vary
with ρ, and the spectral radius can change in a complex way,
as illustrated in Fig. 1. The same figure suggests that the spec-
tral radius depends much more simply on ρ as ρ moves away
from its optimal value: when ρ is too large, r(Hρ ) increases
monotonically with ρ; when ρ is too small, r(Hρ ) decreases
monotonically with ρ.

Recalling the definition of the affine iteration matrix Hρ

(22), we have that for maximal4 eigenvectorvρ with eigen-
value λρ (assumed to be real, as previously noted),

(I + ρG)−1(I + ρF)−1(I + ρ2
FG)vρ = λρvρ , (33)

4The following equations actually hold for any eigenvalue/vector pair, but
we are specifically concerned with their consequences for the maximal one.

FIGURE 1. Spectral radius of the affine iteration matrix for a sum of
quadratics problem (see Section VI-B for details). The spectral radius is a
complex function of ρ; however, its behavior becomes monotone as ρ

grows small or large relative to the location of the minimum.

FIGURE 2. Spectral radius of the affine iteration matrix for a sum of
quadratics problem (see Section VI-B for details) along with the
approximation (35) for two different ρ0 values. Each approximation shows
excellent agreement with the spectral radius in the area around ρ0,
marked with a colored dot.

and therefore by premultiplying by vT
ρ (I + ρF)(I + ρG) and

dividing,

λρ = vT
ρ (I + ρ2

FG)vρ

vT
ρ

(
I + ρ(G + F) + ρ2FG

)
vρ

. (34)

If we find the maximal eigenvector at a particular ρ = ρ0

and assume that it is not changing too much with ρ, we have
an approximation of the form

λρ,ρ0 = vT
ρ0

(I + ρ2
FG)vρ0

vT
ρ0

(
I + ρ(G + F) + ρ2FG

)
vρ0

(35)

which is a rational polynomial in ρ. We plot two of these
approximations in Fig. 2, which shows excellent agreement
between the approximations and the true spectral radius in the
area around ρ0.

B. PROPOSED PENALTY PARAMETER SELECTION METHOD
The core idea of our penalty parameter selection method,
which we call the spectral radius approximation (SRA)
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method, is that, when ρ gets either much larger or much
smaller than its optimal value, simple, monotone approxima-
tions for the relationship between λρ and ρ hold. We select
ρ so as to avoid the regimes in which these approximations
hold. To make this practical, the determination of when the
approximations hold should be made using quantities that can
be cheaply computed from the working variables of ADMM,
avoiding explicitly forming large matrices and computing
their eigenvalues. Of the terms vρ , Fvρ , Gvρ , and FGvρ that
play a role in the previous section, we only know how to
compute vρ and Gvρ in this way. We now derive efficient
estimates for these terms.

As discussed before, y(k+�k) − y(k) is approximately a
maximal eigenvalue of Hρ , so vρ ≈ y(k+�k) − y(k). If we set
�k = 1, we have

vρ ≈ y(k+1) − y(k) = ρ
(

Ax(k+1) + Bz(k+1) − c
)

, (36)

which has the benefit of not requiring the storage of past y
values. To compute Gvρ , we can substitute the expression
we just derived for vρ and use the definitions of G and G.
From (20) we have that

G(u) − G(w) = −R−1BT (u − w) (37)

for arbitrary vectors u and w, and therefore

Gvρ ≈ G

(
y(k+�k) − y(k)

)
= BR−1BT

(
y(k+�k) − y(k)

)
= −B

(
G
(

y(k+�k)
)

− G
(

y(k)
))

= −B
(

z(k+�k) − z(k)
)

. (38)

Again, it is convenient to use the most recent iterate,

ρGvρ ≈ −ρB
(

z(k+1) − z(k)
)

. (39)

Case 1: ρ0 small. In the case that ρ0 is small enough that
‖ρ0Gvρ0‖/‖vρ0‖ � 1, then in the neighborhood of ρ = ρ0,
it makes sense to approximate (I + ρG)vρ0 with vρ0 . We then
have5 (

I + ρ(G + F) + ρ2
FG

)
vρ0 (40)

= ((I + ρG) + ρF(I + ρG)) vρ0

≈ ((I + ρG) + ρF) vρ0

= (I + ρ(F + G)) vρ0 (41)

so that (
I + ρ2

FG
)
vρ0 ≈ vρ0 . (42)

Applying this approximation to (35) results in

λρ,ρ0 ≈ λsmall
ρ,ρ0

= vT
ρ0

vρ0

vT
ρ0

(I + ρ(G + F)) vρ0

, (43)

5While an additional ρGvρ0 term could be removed, we do not do so for
symmetry with the next approximation.

which is a decreasing function of ρ.6

Note that applying the same approximation to (33) shows
that λsmall

ρ,ρ0
is an eigenvalue of the matrix

I + ρ(G + F) , (44)

which is symmetric because F and G are symmetric. The
eigenvalue λsmall

ρ,ρ0
is therefore real, justifying the assumption

in Section II-B that Hρ has real eigenvalues.
Case 2: ρ0 large. In the case that ρ0 is large enough that

‖ρ0Gvρ0‖/‖vρ0‖ � 1, then in the neighborhood of ρ = ρ0,
it makes sense to approximate (I + ρG)vρ0 with ρGvρ0 . We
then have (

I + ρ(G + F) + ρ2
FG

)
vρ0

= (
(I + ρG) + ρF + ρ2

FG
)
vρ0

≈ (
ρG + ρF + ρ2

FG
)
vρ0

= (
ρ(G + F) + ρ2

FG
)
vρ0 , (45)

and therefore (
I + ρ2

FG
)
vρ0 ≈ ρ2

FGvρ0 . (46)

Applying this approximation to (35) results in

λρ,ρ0 ≈ λlarge
ρ,ρ0

= vT
ρ0

ρFGvρ0

vT
ρ0

((G + F) + ρFG) vρ0

, (47)

which is an increasing function of ρ.7

Note that applying the same approximation to (33) shows
that λ

large
ρ,ρ0 is an eigenvalue of the matrix

((G + F) + ρFG)−1ρFG . (50)

We have numerical evidence that this matrix has real eigen-
values when F and G are positive semidefinite, justifying the
assumption that Hρ has real eigenvalues made in Section II-B,
but we have not found a proof that this property holds.

Proposed method. The proposed method is based on avoid-
ing either of the previously mentioned cases, i.e., we want to
avoid either

‖vρ0‖ � ‖ρGvρ0‖ or ‖vρ0‖ � ‖ρGvρ0‖ . (51)

6By differentiating with respect to ρ, we know that (43) is a decreas-
ing function when vT

ρ0
vρ0 + vT

ρ0
ρ(G + F)vρ0 is positive. It is positive

because vT
ρ0

vρ0 = ‖vρ0 ‖2 ≥ 0 and F and G are positive semidefinite: We

have uT
Fu = uT AQ−1AT u = (AT u)T Q−1(AT u) ≥ 0 because Q is symmet-

ric positive definite by assumption, and therefore so is Q−1. A similar
argument holds for G.

7By differentiating with respect to ρ, we know that (47) is an increasing
function when vT

ρ0
FGvρ0 + vT

ρ0
ρ(G + F)vρ0 is positive. The term vT

ρ0
ρ(G +

F)vρ0 is nonnegative because F and G are positive semidefinite. The term
vT

ρ0
FGvρ0 is nonnegative because the eigenvector (33) implies that

((1 − λρ0 )I − ρλρ0 (G + F) + ρ2(1 − λρ0 )FG)vρ0 = 0 , (48)

and therefore in the ρ0 large case we are currently considering,

(−ρλρ0 (G + F) + ρ2(1 − λρ0 )FG)vρ0 ≈ 0 , (49)

which implies FGvρ0 is a positive scalar multiple of (G + F)vρ0 , so
vT

ρ0
ρ(G + F)vρ0 ≥ 0 implies vT

ρ0
FGvρ0 ≥ 0.
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Using the expressions we just derived, this is equivalent to
avoiding ∥∥y(k+1) − y(k)

∥∥ � ρ
∥∥B(z(k+1) − z(k) )

∥∥ (52)

or

ρ‖B(z(k+1) − z(k) )‖ � ‖y(k+1) − y(k)‖ . (53)

While there are several possible ways to avoid these cases, we
propose to simply select ρ so that the left and right sides of
these inequality are equal,∥∥y(k+1) − y(k)

∥∥ = ρ
∥∥B(z(k+1) − z(k) )

∥∥ , (54)

giving the rule

ρ
(k+1)
SRA =

∥∥y(k+1) − y(k)
∥∥∥∥B(z(k+1) − z(k) )
∥∥ . (55)

An empirical validation of this rule for the quadratic problem
described in Section VI-B is presented in Fig. 3.

It may be surprising that the proposed rule does not involve
x or A. We designed the rule in this way because, as we have
just shown, there is a way to express Gv in terms of z but there
is not (to our knowledge) a symmetrical way to efficiently
express Fv in terms of x, c.f. (8) and (11).

There are several details to consider when implementing a
complete penalty parameter selection method based on (55).
We postpone these implementation details until Section VI-A
and Algorithm 1.

C. APPLICATION TO NONQUADRATIC PROBLEMS
Our derivation of the rule (55) was based on analyzing
ADMM for a quadratic problem, but since it only involves
y, B, and z, it is possible, in a computational sense at least,
to apply it to any ADMM algorithm. But is it reasonable
to expect it to work well? The empirical results reported in
Section VI indicate that it does, and previous ADMM penalty
parameter selection methods [15], [17], which are also based
on analysis of a quadratic problem, also report good empirical
performance on general problems.

We believe that these algorithms generalize well be-
cause convex functions can be locally well-approximated by
quadratics. Over a few iterations—and especially when ρ is
not at its optimal value—the variables x and z do not change
rapidly as a function of k, and therefore ADMM on f and g
is similar to ADMM on a quadratic approximation of f and
g in the local region of x(k), z(k). As x and z change over
many iterations, the same argument can be made about the
new neighborhood. For example, the total variation problem
(121) is exactly quadratic in each region where the argument
of the �1 norm does not change signs. Such iterative, local ap-
proximations are widely used in optimization, e.g., in Newton
and quasi-Newton methods.

IV. NEW INTERPRETATIONS OF EXISTING PENALTY
PARAMETER SELECTION METHODS
We now interpret several state-of-the-art ADMM penalty pa-
rameter selection methods from the literature in terms of the

FIGURE 3. Spectral radius, the approximations (35), (43), and (47), and the
proposed ρ for four different ρ0’s. When ρ0 is far from ρ∗ (top two plots),
the approximations are accurate and ρSRA is close to ρ∗. When ρ0 is close
to ρ∗ (bottom two plots), our justification for the approximations no longer
holds, but ρSRA remains close to ρ∗

proposed framework. We emphasize that this unified perspec-
tive is distinct from the ones used to originally derive each
method.

A. RESIDUAL BALANCING METHOD
Residual balancing (RB) [12] is a straightforward and widely
used (see, e.g. [23], [24], [25], [26], [27], [28]) approach to
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ADMM penalty parameter selection. It is based on an attempt
to balance the norms of the primal and dual residuals at itera-
tion k, which are defined as [5, §3.3]

r(k) = Ax(k) + Bz(k) − c (56)

and

s(k) = ρAT B
(

z(k) − z(k−1)
)

(57)

respectively. Because both the primal and dual residual must
be zero for x(k), z(k), and y(k) to be optimal [5, §3.3], and
because increasing ρ tends to decrease the primal residual at
the expense of increasing the dual residual (and vice-versa for
a decrease in ρ) the idea is to balance their norms using ρ:

ρ (k+1) =

⎧⎪⎨
⎪⎩

τ incrρ (k) if ‖r(k+1)‖ > μ‖s(k+1)‖
ρ (k)/τ decr if ‖s(k+1)‖ > μ‖r(k+1)‖
ρ (k) otherwise ,

(58)

for constant τ incr, τ decr, μ ∈ R.
Translating into the language of our affine fixed point

framework and using the same arguments as in (36) and (38),

r(k+1) =
(

y(k+1) − y(k)
)

/ρ ≈ vρ/ρ (59)

and

s(k+1) ≈ −ρAT
Gvρ . (60)

We can therefore interpret residual balancing as comparing
‖vρ‖ with ρ2‖AT

Gvρ‖, whereas our method compares ‖vρ‖
with ρ‖Gvρ‖. The term ρ2‖AT

Gvρ‖ does not appear in
the eigenvector expression for the fixed point matrix Hρ ,
(33). However, we can view ρ2‖AT

Gvρ‖ as a rough approx-
imation of the term ρ2‖FGvρ‖ = ρ2‖AQ−1AT

Gvρ‖, with
equality when A and Q are orthogonal matrices. Taking this
perspective, comparing ‖vρ‖ to ρ2‖FGvρ‖ is an alternative
route to deriving the ρ small or ρ large approximations from
Section III-A, and residual balancing may therefore be viewed
as determining whether the ρ small or ρ large approximations
hold by approximating ρ2‖FGvρ‖.

Our method is distinct from residual balancing because it
uses a different approach to determining when ρ is too large
or too small. It turns out (see Section V) that the approxima-
tion used by residual balancing has a significant theoretical
disadvantage.

B. BARZILAI-BORWEIN SPECTRAL METHOD
The Barzilai-Borwein spectral (BBS) penalty parameter se-
lection method [15], [16] involves rewriting ADMM as DRS
applied to the dual of problem (1), rearranging DRS so that
it resembles gradient descent on two variables, applying the
Barzilai-Borwein method to choose the step sizes, and then
translating back into the ADMM problem to select the penalty
parameter ρ. We now interpret this method within our frame-
work and explain the differences with the proposed method in
detail.

Table 1 presents a list of symbol equivalences between [15]
and our formulation. We can show (see Appendix B) that the

TABLE 1. Translation Between the Notation Used Here and That of [15]
and [17]

expression of ADMM as DRS on the dual in [15] results in the
same iteration on y that we derived by working with optimality
conditions of the ADMM steps.

The key difference between the BBS method of [15] and
the proposed method lies in (16) in [15], which, translated to
our notation, becomes

AF (ỹ) = a f ỹ + c f BG(y) = agy + cg , (61)

where a f , ag ∈ R and c f , cg ∈ R
P. What does this assumption

say about f and g? If we assume f and g are quadratic as in
(19), we fulfil the conditions in (61) when AQ−1AT = a f I and
BR−1BT = agI. One simple way for this to hold is if AAT =
aAI, BBT = aBI, and Q and R are themselves scaled identities
(Q = aQI and R = aRI) and therefore

AQ−1AT = aQAAT = aQaAI = a f I (62)

and likewise for BR−1BT .
Given assumption (16) in [15], our fixed point analysis

provides a new route to derive the BBS selection rule of [15].
Following the quadratic analysis of Section II-B with the ad-
ditional assumption from [15], we have

F = a f I G = agI . (63)

It follows that

Hρ = 1 + ρ2a f ag

(1 + ρa f )(1 + ρag)
I , (64)

making it feasible to solve for the ρ that minimizes the leading
constant, which is also equal to the spectral norm of Hρ . We
have

λ(ρ) = 1 + ρ2a f ag

(1 + ρa f )(1 + ρag)
(65)

d

dρ
λ(ρ) = (a f + ag)(ρ2a f ag − 1)

(1 + ρa f )2(1 + ρag)2
, (66)

and therefore the minimum occurs when the numerator is
zero, at

ρ = (a f ag)−
1
2 , (67)

which agrees with [15, Proposition 1].
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What remains is to estimate a f and ag. The basic idea is
that if F is a scaled identity, then, for arbitrary w, we have

wT
Fw

wT w
= a f

wT Iw
wT w

= a f , (68)

which provides a way to compute a f by applying F to any
vector w. The challenge is computing this estimate from quan-
tities that are readily available during the ADMM iterations.
Recall that

AF (y) = −Fy + C BG(y) = −Gy + C , (69)

which means that

AF
(

ỹ(k)
)

− AF
(

ỹ(k−k0 )
)

= Ax(k) − Ax(k−k0 )

= −F

(
ỹ(k) − ỹ(k−k0 )

)
. (70)

Thus we can approximate a f using

a f ≈ −
〈
A�x(k),�ỹ(k)

〉〈
�ỹ(k),�ỹ(k)

〉 , (71)

where �ỹ(k) = ỹ(k) − ỹ(k−�k) and �x = x(k) − x(k−�k). This
agrees with the left side of (26) in [15] (note that (26) defines
α̂ = 1/α).

A different estimate of a f (the right side of (26) in [15])
may be obtained using (again for arbitrary w)

(Fw)T
Fw

wTFw
=

a2
f

a f

wT Iw
wT Iw

= a f , (72)

which leads to

a f ≈ −
〈
A�x(k), A�x(k)

〉〈
A�x(k),�ỹ(k)

〉 . (73)

Using the same approach for G gives

ag ≈ −
〈
B�z(k),�y(k)

〉〈
�y(k),�y(k)

〉 (74)

and

ag ≈ −
〈
B�z(k), B�z(k)

〉〈
B�z(k),�y(k)

〉 , (75)

which are the reciprocals of the expressions after (28) in [15].
Substituting our expressions for a f and ag into (67) gives

ρ
(k)
BBS =

√√√√ ∥∥�ỹ(k)
∥∥2 ∥∥�y(k)

∥∥2

〈A(�x(k) ),�ỹ(k)〉 〈B(�z(k) ),�y(k)〉 . (76)

In summary, within the framework developed in this paper,
one may view the BBS parameter selection method of [15]
as being based on the minimization of the spectral radius of
the linear fixed point iteration matrix Hρ defined in (22) by
making the additional assumption that F and G are (locally
in the region around y(k) and ỹ(k)) scaled identity matrices.
Under this assumption, the dependence of the spectral radius
of Hρ on ρ is simple and ρ may be selected to minimize the
spectral radius of Hρ . The eigenvalues of F and G may be

estimated by treating y(k+�k) − y(k) and ỹ(k+�k) − ỹ(k) as their
eigenvectors, which is sensible under the local scaled identity
assumption. This is a distinct view from that in [15], which
is based on selecting a BBS step for the DRS algorithm and
translating it into ADMM terms. We discuss further imple-
mentation details of this method in Section VI-A.

C. SPECTRAL RADIUS BOUND METHOD
The method of [17], which we refer to as the spectral radius
bound (SRB) method, was derived as a step size selection
method for DRS and then translated into the terminology of
ADMM. The main idea is to minimize an upper bound on the
spectral radius of the affine iteration matrix. We now discuss
the approach in detail.

Table 1 provides a list of symbol equivalences between [17]
and our formulation. It is clear by inspection that the fixed
point mapping Ht from (6) in [17] is the same as Hρ defined
in (22). Thus [17, Lemma 2.1] (translated into our notation)
states that, for eigenvector v with corresponding eigenvalue λ

of Hρ , and assuming λ �= 1, we have∣∣∣∣λ − 1

2

∣∣∣∣ ≤
√

1

4
− c

1 + 2c
≤ 1

2
, (77)

where

c = Re(〈Gv, v〉)

ρ−1‖v‖2 + ρ‖Gv‖2
. (78)

The SRB method uses the following heuristic to derive a way
to select ρ from this bound: To force λ close to 1/2, c/(1 +
2c) should be as large as possible and therefore c should be as
large as possible. For a fixed v, this can be achieved by setting
ρ = ‖v‖/‖Gv‖.

To arrive at an implementable penalty parameter selection
rule, it is heuristically assumed that v = y, i.e., that y is an
eigenvector of Hρ . Together with definition Gy = Bz this
assumption results in

ρ
(k)
SRB =

∥∥y(k)
∥∥∥∥Bz(k)
∥∥ . (79)

This is somewhat ad hoc because it is not argued why y
should be an eigenvector of Hρ , and because it ignores the
dependence of v on ρ.

Of the approaches considered here, the SRB method [17] is
the most conceptually similar to the proposed method. Both
involve analyzing the spectral radius of the affine fixed point
matrix that arises when ADMM is applied to a quadratic
problem (although [17] does this in a roundabout way by
instead analyzing the DRS algorithm and translating the re-
sults to ADMM). However, where [17] attempts to minimize
the spectral radius by minimizing a bound on it, we instead
approximate the spectral radius and avoid situations where ρ

is clearly too large or too small. Both of these approaches
involve comparing ‖v‖ with ρ‖Gv‖, but this ratio is arrived
at via different paths of reasoning. Finally, while the rules
for selecting ρ are similar, (c.f. (55) and (79)) the proposed
rule involves y(k+1) − y(k) rather than y(k) because we argue
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that this difference in y values should approximate a maximal
eigenvector of Hρ . As described in Section V-B, it turns out
that this difference results in a significant theoretical disad-
vantage for the SRB method.

V. PROBLEM TRANSFORMATIONS
The notion of problem transformations, originally identified
in [13], provides a useful theoretical tool for comparing
penalty parameter selection methods. The goal of this analysis
is to identify how arbitrary decisions made during problem
formulation, such as the choice of units for x and z, affect the
convergence of ADMM. A good penalty parameter selection
method should be covariant or invariant to these transforma-
tions in the sense that, if it selects the optimal parameter for
one problem, it should also select the corresponding optimal
parameter for a transformed version of that problem. Here,
we extend the scaling transform from [13] to include an addi-
tional degree of freedom in scaling, and include an additional
transform based on translation of problem variables, which, to
the best of our knowledge, has not previously been addressed
in the literature.

A. PROBLEM SCALING
Consider using ADMM to solve members of a family of opti-
mization problems of the form

arg min
x,z

α f (γ x) + αg(δz) s.t. βAγ x + βBδz = βc , (80)

where the family is parameterized by the scalars α, β, γ , and
δ. We will refer to the problem with α = β = γ = δ = 1 as
the unscaled problem, but it is important to emphasize that
there is nothing special about this choice: the primary point
of this analysis is that setting up a problem in ADMM form
involves implicit choices of unknown values for these scalars,
and not that it is useful to make explicit choices of these
scalars to convert from one problem form to an equivalent one.

Denoting the solution to the unscaled problem by x∗, z∗, the
solution to the problem with scaling α, β, γ , and δ is

x̄∗ = x∗/γ z̄∗ = z∗/δ , (81)

which may be verified by noting that α and β do not affect
the minimizers of (80) and that γ and δ simply rescale x and
z. If we denote a particular choice of initialization for the
unscaled problem as z(0), y(0), and ρ, how can we choose the
initialization for a scaled problem, z̄(0), ȳ(0), and ρ̄, so that
the sequences of variables generated by ADMM are properly
scaled, i.e., so that x̄(k) = x(k)/γ , and z̄(k) = z(k)/δ? The solu-
tion is provided by the initialization

z̄(0) = z(0)/δ ȳ(0) = αy(0)/β ρ̄ = αρ/β2 , (82)

which may be verified via induction on the ADMM itera-
tions [13, §III].

If we instead consider the adaptive version of ADMM
where ρ may change after every iteration, we require ρ̄ (k) =
αρ (k)/β2, which motivates the following definition.

Definition 5.1 (Scaling Covariant): An ADMM penalty pa-
rameter selection method, φ, is scaling covariant if

φ
((

αρ ( j)/β2, x( j+1)/γ , z( j+1)/δ, αy( j+1)/β
)k

j=0

)
= α

β2
φ
((

ρ ( j), x( j+1), z( j+1), y( j+1))k
j=0

)
. (83)

That is, if a method selects ρ (k) at iteration k of the unscaled
problem, it should select αρ (k)/β2 for each corresponding
scaled problem.

Parameter selection methods being scaling covariant is crit-
ical because problem scaling is unavoidable in practice. For
example, for an inverse problem in imaging, the f term in (1)
would typically represent a data fidelity functional involving
a system model and the measurement vector. Because the
measurement vector comes from the detector, its scaling is ar-
bitrary, e.g., the manufacturer has converted a voltage to some
physical units; we may convert again during preprocessing or
scale the values to a convenient range (e.g., from 16-bit integer
to floating point between zero and one). We also have freedom
to choose the units for x, e.g., one group may reconstruct in
g/cm3 and another in kg/m3, as long as each implements their
system model in a way that conforms to their choice of units
for x and the measurements. Finally, the units in which we
represent the error are arbitrary, e.g., sum of squares versus
mean of squares. A similar argument can be made for the g
term in (1), which would typically be the result of variable
splitting applied to a regularization functional, g(Ax). Again,
the units of x are arbitrary, as is the implementation of A (e.g.,
finite differences may be unscaled, divided by two, or divided
by the physical pixel spacing). The units for the output of g are
similarly arbitrary, but changing them affects the weighting
of the regularization term relative to the data fidelity. If the
relative weighting is assumed fixed, i.e., it is always properly
tuned, the scaling of the output of g is fixed (hence a single
scaling parameter, α, on f and g in (80) rather than one for
each). Finally, similar scaling arguments may be made for B
or c.

B. PROBLEM TRANSLATION
In addition to freedom in problem scaling, a problem state-
ment of the form (1) admits freedom in terms of variable
translation. Like scaling, these translations can be seen as a
consequence of choosing units for x and z, e.g., if x repre-
sents temperature, it may be represented in degrees Celsius or
Kelvin.

Consider the problem

arg min
x,z

f (x + x0) + g(z + z0)

s.t. Ax + Bz = c − Ax0 − Bz0 . (84)

We now show that with proper choice of initialization,
ADMM applied to the translated problem (84) results in a
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translated sequence of iterates (and solution) as compared
to the untranslated version. Let x̄(k), z̄(k), ȳ(k), and ρ̄ (k) de-
note ADMM variables for the translated problem, and define
c̄ = c − Ax0 − Bz0. Assume for purposes of induction that

z̄(k) = z(k) − z0 ȳ(k) = y(k) ρ̄ (k) = ρ (k) . (85)

We have

ρ̄ (k)

2

∥∥∥∥Ax + Bz̄(k) − c̄ + 1

ρ̄ (k)
ȳ(k)

∥∥∥∥2

= ρ (k)

2

∥∥∥∥Ax+B
(

z(k)−z0

)
−c+Ax0+Bz0+ 1

ρ (k)
y(k)

∥∥∥∥2

= ρ (k)

2

∥∥∥∥A(x + x0) + Bz(k) − c + 1

ρ (k)
y(k)

∥∥∥∥2

(86)

and therefore

x̄(k+1) = x(k+1) − x0 . (87)

A similar argument can be used to show that x̄(k) = x(k) − x0

implies that z̄(k+1) = z(k+1) − z0. Setting x̄(0) = x(0) − x0 and
z̄(0) = z(0) − z0 completes the induction. Finally, a change of
variables shows that if (x∗, z∗) is a solution to problem (1),
then (x∗ − x0, z∗ − z0) is a solution to the translated problem
(84). These relationships motivate the following definition.

Definition 5.2 (Translation Invariant): An ADMM penalty
parameter selection method, φ, is translation invariant if

φ
((

ρ ( j), x( j+1), z( j+1), y( j+1))k
j=0

)
= φ

((
ρ ( j), x( j+1) − x0, z( j+1) − z0, y( j+1))k

j=0

)
. (88)

That is, if a method selects ρ (k) at iteration k of the untrans-
lated problem, it should still select ρ (k) for each corresponding
translated problem.

C. EFFECTS OF PROBLEM TRANSFORMATIONS ON
PARAMETER SELECTION
Penalty parameter selection methods should be both scaling
covariant and translation invariant. If a method is not, then
even if it can select the optimal parameter for one scal-
ing/translation, it will select a suboptimal one for a different
scaling/translation. Stated differently, the resulting conver-
gence performance will be dependent on the arbitrary choices
made during problem specification. We now discuss how each
of the three exiting methods described in Section IV and the
proposed method from Section III perform under problem
transformation.

1) RESIDUAL BALANCING
As demonstrated in [13], the residual balancing method
(Section IV-A) is not scaling covariant. For residual balancing
as defined in (58) to satisfy the scaling covariance property
(83), we need the ratio of the norms of the primal and dual
residuals to be scaling invariant. Instead, we have

r̄(k) = βAγ x̄(k) + βBδz̄(k) − βc

= βAx(k) + βBz(k) − βc

= βr(k) (89)

and

s̄(k) = ρ̄ (k)β2γ δAT B
(

z̄(k) − z̄(k−1)
)

= ρ̄ (k)β2γ AT B
(

z(k) − z(k−1)
)

= αρ (k)γ AT B
(

z(k) − z(k−1)
)

= αγ s(k) . (90)

Because ‖r̄‖/‖s̄‖ �= ‖r‖/‖s‖, the choice of how to change ρ

from (58) depends on problem scaling.
The residual balancing method is translation invariant. We

have

r̄(k) = Ax̄(k) + Bz̄(k) − c̄

= A(x(k) − x0) + B
(

z(k) − z0

)
− c + Ax0 + Bz0

= Ax(k) + Bz(k) − c

= r(k) (91)

and

s̄(k) = −ρ̄ (k)AT B
(

z̄(k) − z̄(k−1)
)

= −ρ (k)AT B
(

z(k) − z(k−1)
)

= s(k) , (92)

which means that, if initialized correctly, residual balancing
will choose the same ρ (k) sequence no matter how a problem
is translated.

2) BARZILAI-BORWEIN SPECTRAL METHOD
The BBS method (Section IV-B) is scaling covariant because

ā(k)
f = −〈βAγ�x̄(k), βAγ�x̄(k)〉

〈βAγ�x̄(k),� ¯̃y(k)〉 (93)

= − β〈A�x(k), A�x(k)〉
〈A�x(k),�αỹ(k)/β〉 (94)

= β2

α
a(k)

f , (95)

and likewise

ā(k)
g = β2

α
a(k)

g . (96)

Therefore

ρ̄ (k) =
(

ā(k)
f ā(k)

g

)− 1
2 = α

β2
ρ (k) , (97)

which is the scaling required to make the scaled problem
converge in the same way as the standardized one.
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The BBS method is translation invariant because the ex-
pression for ρ only involves quantities that are differences
between variables at different iterations.

3) SPECTRAL RADIUS BOUND METHOD
The SRB method (Section IV-C) is scaling covariant because
it sets

ρ̄ (k) =
∥∥ȳ(k)

∥∥∥∥βBδz̄(k)
∥∥ =

∥∥αy(k)/β
∥∥∥∥βBz(k)
∥∥ = α

β2
ρ (k) , (98)

which is the scaling required to make the scaled problem
converge in the same way as the standardized one.

The SRB method is not translation invariant, because

ρ̄ (k) =
∥∥ȳ(k)

∥∥∥∥Bz̄(k)
∥∥ =

∥∥y(k)
∥∥∥∥B(z(k) − z0)

∥∥ �= ρ (k) . (99)

As a result, we expect that when the SRB method provides
good convergence on one problem, it may not provide good
convergence on a translated version of that problem.

4) PROPOSED METHOD
The proposed method (Section III) is scaling covariant be-
cause

ρ̄ (k)
∥∥βBδ

(
z̄(k+1) − z̄(k)

) ∥∥∥∥ȳ(k+1) − ȳ(k)
∥∥ =

α
β2 ρ (k)

∥∥βB
(
z(k+1) − z(k)

) ∥∥
α
β

∥∥y(k+1) − y(k)
∥∥

= ρ (k)
∥∥B

(
z(k+1) − z(k)

) ∥∥∥∥y(k+1) − y(k)
∥∥ .

(100)

As a result, any decision about how to change ρ based on this
ratio will be the same no matter the problem scaling.

The proposed ratio (Section III) is translation invariant,
because, like the BBS method, it only involves differences
between variables at different iterations.

VI. COMPUTATIONAL EXPERIMENTS
We now describe our experiments comparing the proposed
method to standard, non-adaptive ADMM and three state-of-
the-art adaptive ADMM approaches.

A. IMPLEMENTATION DETAILS FOR PARAMETER
SELECTION METHODS
So far, we have focused on describing how various methods
determine what the value of the penalty parameter ρ should
be, or whether it is currently too large or small. In some of
these cases there is more than one way of constructing a cor-
responding penalty parameter selection algorithm. Because a
comprehensive study of these options is well beyond the scope
of this paper, for each comparison method, we use the specific
algorithm recommended in the paper that proposed it. We now
briefly summarize these methods.

For the residual balancing (RB) method (Section IV-A),
we followed the algorithm described in (58) with τ incr = 2,
τ decr = 2, and μ = 10 as suggested by [5].

For the Barzilai-Borwein spectral (BBS) method
(Section IV-B), we followed the algorithm from [15,
Algorithm 1] and the code provided by the authors.8 This
algorithm involves computing a f and ag as described in
(68)–(75), combining those estimates, and using safeguarding
rules that attempt to discard the estimates when underlying
assumptions are not met. We used the recommended
safeguarding parameter εcor = 0.2 and update frequency
Tf = 2.

For the spectral radius bound (SRB) method
(Section IV-C), we followed the algorithm in [17], in which
the current ρ and ρSRB (79) are mixed with a decaying weight
on ρSRB. The result is also clipped so that it always falls
within a user-defined range. We used a weight decay schedule
of 2−k/100 and a range of [10−4, 104] as recommended
in [17].

For the proposed spectral radius approximation (SRA)
method, we considered several possible ways to turn the rule
(55) into a penalty parameter selection method. How often
should ρ be updated? Should ρ (k+1) be set to ρ

(k+1)
SRA , set to

some combination of ρ (k) and ρ
(k+1)
SRA , or simply be moved in

the direction of ρ
(k+1)
SRA ? Should the update based on ρ

(k+1)
SRA

take into account that it is expected to be less reliable when
‖ρGvρ0‖ ≈ ‖vρ0‖? Should we constrain ρ (k+1) to lie within
some interval determined by prior estimates? How should
the ρ

(k+1)
SRA = 0 and ρ

(k+1)
SRA = ∞ cases be handled? Since a

thorough exploration of these options would be a significant
undertaking, we have deferred it to future work, implementing
the simple approach in Algorithm 1. This algorithm sets ρ

based on the ratio (55) except when it is 0 or ∞, in which
case ρ is multiplied or divided by a fixed scalar (we used
τ incr = τ decr = 10). It also only makes adjustments every few
iterations (we used T = 5). The trade-off in the choice of T is
that a large T makes the approximations involved in deriving
the SRA rule more accurate (because they are asymptotic in
k), while a small T means ρ is updated more frequently, which
may accelerate convergence.

We also compared with not adapting the penalty parameter,
i.e., ρ (k) = ρ (0), which we refer to as the fixed method.

B. SUM OF QUADRATICS
Our first experiment considered the sum of quadratics prob-
lem

arg min
x,z

1

2
xT Qx + qT x + 1

2
zT Rz + rT z,

s.t. Ax + Bz = c , (101)

with variables x ∈ R
M and z ∈ R

N ; vectors q ∈ R
M , r ∈ R

N ,
and c ∈ R

P; and matricesQ ∈ R
M×M , R ∈ R

N×N , A ∈ R
P×M ,

and B ∈ R
P×N .

While one would not typically solve (101) using ADMM,
it represents an important reference experiment due to the
fundamental role of quadratic approximations in the proposed

8Available from https://github.com/nightldj/admm_release.
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Algorithm 1: Proposed ρ Selection Method.

framework (i.e., the approximations used to derive the frame-
work hold exactly in this case), and because the solution can
be computed to high precision (aiding in performance com-
parisons) via efficient problem-specific methods. The ADMM
iterations for the quadratic problem are

x(k+1) = −(Q + ρAT A)−1

(
q − ρAT

(
c − Bzk − y(k)

ρ

))
(102)

z(k+1) = −(R + ρBT B)−1

(
r − ρBT

(
c − Ax(k+1) − y(k)

ρ

))
(103)

y(k+1) = y(k) + ρ
(

Ax(k+1) + Bz(k+1) − c
)

. (104)

We can find the solution without using ADMM by rewriting
the problem as

arg min
w

1

2
wT

[
Q 0
0 R

]
w +

[
q

r

]T

w

s.t.
[
A B

]
w = c , (105)

where w = [
xT zT

]T
is the concatenation of the original

optimization variables. We now have a quadratic problem with
an affine constraint. Letting � denote an orthogonal basis for
the null space of

[
A B

]
and w0 denote any vector such that[

A B
]
w0 = c, we can instead solve for an optimal α∗ using

arg min
α

1

2
(�α + w0)T H (�α + w0) +

[
q

r

]T

(�α + w0)

= arg min
α

1

2
αT �T H�α +

(
�T

[
q

r

]
+ �T Hw0

)T

α ,

(106)

where

H =
[

Q 0
0 R

]
. (107)

The solution to the original problem is then given by[
x∗T z∗T ]T = �α∗ + w0. This approach can be imple-

mented efficiently9 when the number of dimensions is in the
hundreds.

We constructed an instance of problem (101) with M = 15,
N = 13, and P = 8; with q, r, A, B, and c generated with
random normal entries; and with and Q and R separately con-
structed from a product XT X , where X had random normal
entries to ensure they were symmetric and positive semidefi-
nite.

To validate our theoretical framework, we formed the affine
iteration matrix Hρ from (22) and computed its spectral radius
numerically for a range of ρ values. The results in Figs. 1
and 2 demonstrate that the spectral radius can change in a
complicated way and that the limiting behaviors developed in
Section III-A are remarkably accurate.

We applied each of the five methods described in
Section VI-A to this problem, with x(0) = 0, z(0) = 0, and
y(0) = 0, while varying ρ (0) logarithmically in the range 10−3

to 103 with 5 values per decade. We then repeated this ex-
periment on a scaled version of (101) with α = 103 and a
translated version with the translation z0 chosen as a Gaussian
random vector with standard deviation 10.

For this experiment, we quantified the performance of each
method by computing the relative residual between x(k) and
x∗ at k = 50. (Whether convergence of the variables or con-
vergence of the functional is more meaningful is application
dependent. In developing these experiments, we did not ob-
serve this choice to affect trends in the results.)

Results are shown in Fig. 4. The results for a fixed penalty
parameter show relative convergence varying by several or-
ders of magnitude. As expected, if the optimal ρ is selected
in advance and not adapted online, it leads to excellent con-
vergence. Each of the penalty parameter selection methods
mitigates this effect to some degree, improving convergence
across different initializations of the penalty parameter. The
residual balancing method is better than a fixed parameter
for the basic quadratic problem and the translated version,
but its performance is poor on the scaled problem, which is
in line with the analysis of Section V showing that it is not
scaling covariant. SRB performs well on the basic and scaled
problem, but poorly on the translated one, also in line with
Section V, which shows that it is not translation invariant.
Both BBS and the proposed method are scaling covariant and

9For example, in Python, by using scipy.linalg.null_space and
scipy.linalg.solve.
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FIGURE 4. ADMM penalty parameter methods evaluated in terms of
convergence on sum of quadratics problems. The RB method is not scaling
covariant and the SRB method is not translation invariant.

translation invariant, but the proposed method is empirically
superior, resulting in better convergence for a wide range of
parameter initializations, which is presumably because the
proposed method uses a more general quadratic approxima-
tion (see Section IV-B).

C. BASIS PURSUIT DENOISING
Basis pursuit denoising (BPDN) [29], which finds a sparse
representation of a signal or image in a fixed dictionary, is
formulated as

arg min
x

1

2
‖Dx − d‖2

2 + w‖x‖1︸ ︷︷ ︸
J (x)

, (108)

with dictionary matrix D ∈ R
K×M , variable x ∈ R

M , fixed
vector d ∈ R

K , scalar parameter w ≥ 0, and where ‖ · ‖2 de-
notes the �2 norm, ‖ · ‖1 denotes the �1 norm, and J : RM →
R is the functional we aim to minimize. It can be expressed
in the form of an ADMM problem (1) via variable splitting,
resulting in

arg min
x,z

1

2
‖Dx − d‖2

2 + w‖z‖1 s.t. x − z = 0 , (109)

which corresponds to

A = I B = −I c = 0 (110)

in (1). The ADMM iterations are

x(k+1) = (DT D + ρI)−1
(

DT d + ρ

(
z(k) − y(k)

ρ

))
(111)

z(k+1) = Sw/ρ

(
x(k+1) + y(k)

ρ

)
(112)

y(k+1) = y(k) + ρ
(

x(k+1) − z(k+1)
)

, (113)

where S denotes the proximal operator of the �1 norm, also
referred to as the soft thresholding operator [5, §4.4.3].

For our experiment, we used BPDN to solve the regression
problem involving a diabetes dataset10 that was addressed
in [30] and that was also one of the example problems con-
sidered in [15] (although using the closely-related elastic net
problem rather than BPDN). The dimension of the data d was
K = 442 and the dimension of the sparse code x was M = 10.
We solved the x-update via LU factorization. We quantified
performance by comparing the value of the objective func-
tional at iteration 50, J (x(50)), to the minimal functional value
obtained by any method when run for 100 total iterations,
which we denote J∗. Results are shown in Fig. 5(a) and dis-
cussed in Section VI-H.

D. ROBUST PCA
Robust principal component analysis (robust PCA) [31] is a
matrix decomposition technique based on solving the opti-
mization problem

arg min
X ,Z

‖X‖∗ + w‖Z‖1︸ ︷︷ ︸
J (X ,Z)

s.t. X + Z = D , (114)

where ‖ · ‖∗ denotes the nuclear norm, D is the matrix to be
decomposed, X is the low-rank component of the data, and Z
is the sparse component of the data. The problem is already
posed in standard ADMM form, with

A = I B = I C = D (115)

in (1) (where the vector variables x, z, and c should be replaced
with corresponding matrix variables X , Z, and C in this case).
The ADMM iterations are

X (k+1) = T1/ρ

(
D − Z(k) − Y (k)

ρ

)
(116)

10Available from https://hastie.su.domains/Papers/LARS/.
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FIGURE 5. ADMM penalty parameter method evaluation. Better methods give a lower relative residual across a wider range ρ(0)s.

Z(k+1) = Sw/ρ

(
D − X (k+1) − Y (k)

ρ

)
(117)

Y (k+1) = Y (k) + ρ
(

D − X (k+1) − Z(k+1)
)

, (118)

where T is the scaled proximal operator of the nuclear
norm [32].

Our experiment addressed the video background/
foreground separation problem, which is one of the
many applications of this technique, using the Lankershim
Boulevard traffic camera dataset.11 To quantify performance,
we found a feasible Z by subtracting X from D, computed the
value of the objective functional, J (X (50), D − X (50)), and
compared it to the best such value attained by any method
after 100 iterations, J∗. Results are shown in Fig. 5(b) and
discussed in Section VI-H.

11Available from https://data.transportation.gov/Automobiles/Next-
Generation-Simulation-NGSIM-Program-Lankershi/uv3e-y54k.

E. TV DENOISING
Total variation (TV) denoising can be expressed as the opti-
mization problem

arg min
x

1

2
‖x − d‖2

2 + w

∥∥∥∥
√

(G0x)2 + (G1x)2

∥∥∥∥
1︸ ︷︷ ︸

J (x)

, (119)

where G0 and G1 are gradient operators along the first and
second axis of the image x. The ADMM solution to this
problem [33] involves the variable splitting

z =
(

z0

z1

)
=
(

G0

G1

)
x = Gx , (120)

resulting in the ADMM problem

arg min
x,z

1

2
‖x − d‖2

2 + w

∥∥∥∥√z2
0 + z2

1

∥∥∥∥
1

s.t. z = Gx , (121)

which corresponds to

A = G B = −I c = 0 (122)
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TABLE 2. Run Time, Mean ± Standard Deviation [S]

in (1).
The ADMM iterations are

x(k+1) = (ρGT G + I)−1
(

d + ρGT
(

z(k) − y(k)

ρ

))
(123)

z(k+1) = Rw/ρ

(
Gx(k+1) + y(k)

ρ

)
(124)

y(k+1) = y(k) + ρ
(

Gx(k+1) − z(k+1)
)

, (125)

where R is the block soft-thresholding operator [34, §6.5.1],
applied as in [35].

Our test problem consisted of application of TV de-
noising to a Siemens star phantom (generated using the
xdesign package [36]) with Gaussian white noise. Perfor-
mance was again quantified in terms of the relative residual
J (x(50) − J∗)/J∗. Results are shown in Fig. 5(c) and discussed
in Section VI-H.

F. �1-TV DENOISING
The �1 total variation (TV) denoising problem can be ex-
pressed as

arg min
x

1

2
‖x − d‖1 + w

∥∥∥∥
√

(G0x)2 + (G1x)2

∥∥∥∥
1︸ ︷︷ ︸

J (x)

, (126)

where G0 and G1 are defined as above. The ADMM solution
to this problem [37, §2.4.4] involves the variable splitting

z = Gx + c , (127)

where

z =
⎛
⎝z0

z1

z2

⎞
⎠ G =

⎛
⎝G0

G1

I

⎞
⎠ c =

⎛
⎝ 0

0
−d

⎞
⎠ , (128)

resulting in the ADMM problem

arg min
x,z

1

2
‖z2‖1 + w

∥∥∥∥√z2
0 + z2

1

∥∥∥∥
1

s.t. z = Gx + c , (129)

which corresponds to

A = G B = −I (130)

in (1) (with c taking the same role here as in (1)).
The ADMM iterations are

x(k+1) = (GT G)+GT
(

z(k) + c − y(k)

ρ

)
(131)

(
z0

z1

)(k+1)

= Rw/ρ

((
G0

G1

)
x(k+1) + y(k)

ρ

)
(132)

z(k+1)
2 = S1/ρ

(
x(k+1) − d + y(k)

ρ

)
(133)

y(k+1) = y(k) + ρ
(

Gx(k+1) − z(k+1) − c
)

, (134)

where ·+ denotes the matrix pseudoinverse.
Our test problem consisted of application of �1-TV denois-

ing to a Siemens star phantom (generated using the xdesign
package [36]) with impulse noise. Performance was again
quantified in terms of the relative residual J (x(50) − J∗)/J∗.
Results are shown in Fig. 5(d) and discussed in Section VI-H.

G. RUN TIMES
We compared the run time of the proposed method to the fixed
method (i.e., standard ADMM). Because the proposed method
does not involve expensive computations, we did not expect to
see a large impact on run time. The results in Table 2 confirm
this, with the average (taken over ρ0) run time for the proposed
method always within 10% of that of standard ADMM.

H. SUMMARY
Our results are consistent with prior empirical observa-
tions that penalty parameter selection has a large impact on
convergence. They also show that the performance of se-
lection methods varies between optimization problems. For
some problems (basis pursuit denoising, Fig. 5(a)), all the
adaptive methods performed well; on others (robust PCA,
Fig. 5(b), scaled or translated quadratics, Fig. 4, and �1 de-
noising, Fig. 5(d)) there was more than a 10 times difference
in relative residual between the best-performing methods and
the worst. The proposed method provided consistently good
performance across all experiments. The SRB method also
performed well, except in the translated quadratics problem,
in which it was the worst performer, which is consistent with
our theoretical analysis of translation invariance. The BBS and
residual balancing methods usually improved performance
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TABLE 3. Relative Residual At k = 50 With ρ(0) = 1.0

TABLE 4. Median Relative Residual At k = 50

over using a fixed parameter, but both methods had problems
where they did not offer much benefit (robust PCA and �1-TV
denoising for BBS; scaled quadratics for residual balancing).

To provide another perspective on these results, we col-
lected the performance of the methods with ρ (0) = 1.0 in
Table 3. These numbers represent performance in the scenario
where the user wants to devote no effort to tuning ρ. These
results show that, while no method provides the lowest relative
residual across all problems, the proposed method is often
the best (5 of 7 problems) and is always within an order of
magnitude of the best. Every other method performs poorly
for at least one problem, not providing a relative residual
within one order of magnitude of the best other method.

As a different way of measuring robustness, we com-
puted the median residual across a wide range of ρ (0) values
(10−3 to 103) in Table 4. This approach simulates typical
performance when solving a range of problems, each with
a potentially different optimal ρ (0). The proposed method is
again the best in 5 of 7 problems and is always within an order
of magnitude of the best.

VII. CONCLUSION
In this work, we developed a new method for ADMM parame-
ter selection. This method is based on a theoretical framework
that analyses the convergence of ADMM, when applied to a
quadratic problem, as an affine fixed point algorithm. While
elements of this model are present in prior works (e.g. [17]),
we took a fundamentally new approach to exploiting it for

ADMM parameter selection by approximating the spectral
radius of the iteration matrix for extreme values of the penalty
parameter, rather than attempting to estimate or bound its
complex behavior across the full range of penalty parame-
ters. Based on this framework, we derived a new adaptive
penalty parameter selection algorithm that we refer to as
the spectral radius approximation (SRA) method. While our
mathematical framework was developed for quadratic prob-
lems, the resulting algorithm does not make explicit use of
the quadratic structure and can therefore be applied to any
ADMM problem, which we view as a making an implicit
iterative local quadratic approximation. The SRA method is
simple to implement and enjoys theoretical advantages over
all prior methods: it is scaling covariant, while residual bal-
ancing [12] is not; it is translation invariant, while the spectral
radius bound method of [17] is not; and it uses a more general
model of the optimization problem than the Barzilai-Borwein
spectral method of [15]. This framework also allowed us to
present new interpretations of prior methods that provide use-
ful insights into their relative advantages and disadvantages.
Finally, our proposed method exhibits empirical performance
that is competitive with—and often superior to—state-of-the-
art comparison methods.

APPENDIX A
SCALED FORM ADMM
It is often convenient to write ADMM in a scaled form
by making the substitution u = ρ−1y [5, §3.1.1]. Adaptive
ADMM in the scaled form can be written as

x(k+1) = arg min
x

f (x) + ρ (k)

2

∥∥∥Ax + Bz(k) − c + u(k)
∥∥∥2

(135)

z(k+1) = arg min
z

g(z) + ρ (k)

2

∥∥∥Ax(k+1) + Bz − c + u(k)
∥∥∥2

(136)

ρ (k+1) = φ
((

ρ ( j), x( j+1), z( j+1), u( j))k
j=0

)
(137)

u(k+1) = ρ (k)

ρ (k+1)

(
u(k) +

(
Ax(k+1) + Bz(k+1) − c

))
, (138)

where we have made the rescaling of the dual variable when
ρ changes explicit in (138). The proposed method may be ap-
plied in this scaled form by using Algorithm 2 for the function
φ in (137).

APPENDIX B
EQUIVALENCE OF SECTION II-A TO DRS ON THE DUAL
The equivalent version of our F (11) and G (8) follow from
(11) in [15]

Ax(k+1) − c ∈ ∂Ĥ (−ỹ(k+1))

⇒ ∂Ĥ
(
−ỹ(k+1)

)
= AF

(
ỹ(k+1)

)
− c (139)
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Algorithm 2: Proposed ρ Selection Method (Scaled Dual
Variable Version).

and

Bz(k+1) ∈ ∂Ĝ
(
−y(k+1)

)
⇒ ∂Ĝ

(
−y(k+1)

)
= BG

(
y(k+1)

)
. (140)

Translating the first DRS step ((12) in [15]) gives

−ỹ(k+1) = −y(k) − ρ
(

AF
(

ỹ(k+1)
)

− c + BG
(

y(k)
))

ỹ(k+1) = y(k) + ρ
(

AF
(

ỹ(k+1)
)

− c + BG
(

y(k)
))

ỹ(k+1) − ρAF
(

ỹ(k+1)
)

= y(k) + ρBG
(

y(k)
)

− ρc

ỹ(k+1) = (I − ρAF )+
(

y(k) + ρBG(y(k) ) − ρc
)

,

(141)

which matches the first line of (18). Translating the second
DRS step ((13) in [15]) gives

−y(k+1) = −y(k) − ρ
(

AF
(

ỹ(k+1)
)

− c + BG
(

y(k+1)
))

y(k+1) = y(k) + ρ
(

AF
(

ỹ(k+1)
)

− c + BG
(

y(k+1)
))

y(k+1) − ρBG
(

y(k+1)
)

= y(k) + ρAF
(

ỹ(k+1)
)

− ρc

y(k+1) = (I − ρBG)+
(

y(k) + ρAF
(

ỹ(k+1)
)

− ρc
)

.

(142)

We then use the derivation involving ỹ to express ρAF (ỹ) in
terms of ỹ and y:

ρAF
(

ỹ(k+1)
)

= ỹ(k+1) − y(k) − ρBG
(

y(k)
)

+ ρc (143)

and therefore

y(k+1) = (I − ρBG)+
(

ỹ(k+1) − ρBG
(

y(k)
))

, (144)

which matches the second line of (18). Thus we have shown
that the expression of ADMM as DRS on the dual in [15]
results in the same iteration on y that we derived by working
with optimality conditions of the ADMM steps.
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