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ABSTRACT Images captured through glass are usually contaminated by reflections, and the removal of
them from images is a challenging task. Since the primary concern on photos is face, the face images
with reflections annoy viewers severely. In this article, we propose a face reflection removal network using
multispectral fusion of color (RGB) and near infrared (NIR) images, called FRRN. Due to the different
spectral wavelengths of visible light [380 nm, 780 nm] and near infrared [780 nm, 2526 nm], NIR cameras are
not sensitive to the visible light and thus NIR images are less corrupted by reflections. NIR images preserve
structure information well and can guide the restoration process from reflections on the RGB images. Thus,
we adopt multispectual fusion of RGB and NIR images for reflection removal from a face image. FRRN
consists of one encoder model (contextual encoder model (CEM)) and two decoder models (NIR inference
decoder model (NIDM) and image inference decoder model (IIDM)). CEM captures features from shallow
to deep layers on the scene information while suppressing the sparse reflection component. NIDM infers NIR
image to facilitate multi-scale guidance for reflection removal, while IIDM estimates the transmission layer
with the guidance of NIDM. Besides, we present the reflection confidence generation module (RCGM) based
on Laplacian convolution and channel attention-based residual block (CARB) to represent the reflection
confidence in a region for reflection removal. To train FRRN, we construct a large-scale training dataset with
face image and reflection layer (RGB and NIR images) and its corresponding test dataset using JAI AD-130
GE camera. Various experiments demonstrate that FRRN outperforms state-of-the-art methods for reflection
removal in terms of visual quality and quantitative measurements.

INDEX TERMS Convolutional neural networks, deep learning, reflection removal, multispectral fusion, near
infrared.

I. INTRODUCTION
Reflections from glass significantly degrade the image quality
by obstructing, deforming and blurring the scene [1]. Since
face is the primary concern in images, face images are fre-
quently captured by various imaging devices in our daily
life with a high quality requirement. When face images are
captured through glass, they are inevitably contaminated by
reflections. Different from general objects or scenes, faces
contain the specific priors awarded by humans. A slight
reflection distortion may significantly annoy human visual
perception [2]. Moreover, the reflections affect the perfor-
mance of many computer vision tasks such as face recognition
and visual surveillance by the lost or distorted facial features.
The degradation caused by reflection is different from the

degradation caused by blur due to the combination of two
different scenes. Thus, it is difficult to restore image quality
by sharpening based method [3], [4], [5]. Therefore, it is
required to remove reflections and enhance the quality of face
images. In general, reflection in an image can be formulated
as follows [6], [7], [8]:

I = αB + βR (1)

where α and β are the mixing coefficients, and I, B, and R are
the reflection-contaminated RGB image, transmission layer,
and reflection layer, respectively. Since B and R are estimated
from I, the reflection removal is an ill-posed problem that has
many or even infinite solutions.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/VOLUME 5, 2024 383

https://orcid.org/0009-0000-1046-5141
https://orcid.org/0000-0003-0299-7206


LAN ET AL.: FACE REFLECTION REMOVAL NETWORK USING MULTISPECTRAL FUSION OF RGB AND NIR IMAGES

FIGURE 1. Face reflection removal results by Face Reflection Removal
Network (FRRN). Left to right: Input RGB images contaminated by
reflection, input NIR images, the reflection removal results by FRRN, and
the ground truth. Obvious reflections in the input RGB images are less
visible in the input NIR images. Thus, NIR images contain more structure
information, which can be used to guide the RGB image restoration
process.

Up to the present, many deep learning approaches to re-
flection removal have been proposed by researchers and have
achieved outstanding performance [6], [7], [9], [10]. However,
most of them are designed to solve reflections from general
scenes which are relatively weak. Thus, for face images with
strong reflections, they remain artifacts in face images after
reflection removal. With the popularity of near-infrared (NIR)
cameras, non-professional users (e.g. for smartphone users,
Huawei P30 Pro and Honor Magic2 deploy such lenses) have
more access to take NIR images. Due to the different spectral
wavelengths of visible light and NIR, i.e. [380 nm, 780 nm]
and [780 nm, 2526 nm], NIR images are more robust to the
reflection than RGB images in the scene [11]. That is, the
reflection of NIR light is weaker than that of visible light on
most object surfaces, and thus the image degradation caused
by the reflection can be reduced in NIR images. Moreover,
in low light condition, the NIR camera has a high sensitivity
to the NIR spectral band, which effectively captures the NIR
radiance of the target object and generates better textures than
the visible light camera. An example is illustrated in Fig. 1,
which presents the reflection-suppression property of NIR
imaging without color.

In this article, we propose a face reflection removal net-
work using multi-spectral fusion of RGB and NIR images,
called FRRN. To deal with the face reflection removal prob-
lem, we exploit the feature discrepancy between NIR and
RGB images caused by the different sensitivity to reflection.
Fig. 1 shows two face reflection removal results by FRRN.
The input RGB images are contaminated by reflection, while
the input NIR images contain little reflection because the PC
monitor only emits visible light. NIR images contain accu-
rate structure information of the scene, thus they can guide
the RGB image restoration process. Thus, the obvious reflec-
tions in the input RGB images are successfully removed by
FRRN. Moreover, we generate a reflection confidence map
based on Laplacian convolution and channel attention-based
residual block (CARB) to represent the reflection degree in a
region. FRRN consists of four main components: 1) Context
encoder module (CEM) to extract features from shallow to
deep layers suppressing sparse reflection residuals, 2) NIR

inference decoder module (NIDM) to exploit reflection-
suppressed information from NIR images, 3) Image inference
decoder module (IIDM) to distinguish the transmission layer
for the reflection layer with the guidance of NID, and 4)
Reflection confidence generation module (RCGM) to obtain
the reflection confidence map C, which indicates the intensity
of reflection in I. Experimental results show that FRRN suc-
cessfully removes reflections in face images and outperforms
state-of-the-art methods in both visual quality and quantitative
measurements. Fig. 2 illustrates the whole architecture of the
proposed FRRN.

Our major contributions are summarized as follows:
� We propose a face reflection removal network using

multi-spectral fusion of RGB and NIR images, called
FRRN. Since NIR images are more robust to the reflec-
tion with clearer textures than RGB images in the scene,
we adopt the multi-spectral fusion of RGB and NIR
images for reflection removal in reflection-contaminated
image. To our knowledge, this is the first work of apply-
ing multi-spectral fusion to the face reflection removal.

� We generate a reflection confidence map based on Lapla-
cian convolution and channel attention-based residual
block (CARB), named the reflection confidence gener-
ation module (RCGM). Laplacian convolution extracts
the edges caused by strong reflection and represents the
reflection confidence in a region. CARB retains feature
channels of importance. The reflection confidence map
helps FRRN to extract features in the reflection layer
while recovering the high-quality transmission layer.

� We build a network architecture for FRRN that con-
sists of one context encoder module (CEM) branch and
two decoder branches (NIR inference decoder module
(NIDM) branch and image inference decoder module
(IIDM) branch). CEM extracts multi-scale and multi-
spectral features from the input RGB image, NIR image
and reflection confidence map to suppress sparse re-
flection residuals. NIDM captures reflection-suppressed
information through NIR inference, while IIDM branch
distinguishes the transmission layer from the reflection
layer with the guidance of NIDM.

� We generate a real dataset for training and testing
that contains both transmission and reflection layers of
RGB and NIR images. We use JAI AD-130 GE cam-
era to simultaneously capture RGB and NIR image
pairs consisting of transmission and reflection layers. We
synthesize 10,000 images for training and 300 images
for testing. Moreover, we generate 40 real images for
testing.

II. RELATED WORK
A. REFLECTION REMOVAL
Traditional Methods: Due to the ill-posed nature of the re-
flection removal problem, traditional methods have employed
image priors to contain the special property of the transmis-
sion and reflection layers. Li et al. [12] and Nikolas et al. [13]
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FIGURE 2. Whole architecture of the proposed FRRN. FRRN contains four main components: 1) Context encoder module (CEM) to extract features from
shallow to deep layers suppressing sparse reflection residuals, 2) NIR inference decoder module (NIDM) to capture reflection-suppressed information in
the NIR inference process, 3) Image inference decoder module (IIDM) to distinguish the transmission layer from the reflection layer with the guidance of
NIDM, and 4) Reflection confidence generation module (RCGM) to obtain the reflection confidence map.

made use of the different blur levels of the transmission and
reflection layers. Levin et al. [14] leveraged the sparsity prior
of gradients when decomposing an image into reflection and
transmission layer. However, they relied on manual labels for
the transmission and reflection edges, which were quite labor-
intensive and might fail in textured regions. Shih et al. [15]
used Gaussian mixture model (GMM) patch prior to remove
reflections causing ghosting effects. The handcrafted priors
adopted by them were based on the relationship between the
transmission and reflection layers. However, different blur
levels [12], [16] were not suitable for the general scenes,
especially when they were weakly observed. Some methods
used a set of images taken from different viewpoints to remove
reflections [17], [18]. Xue et al. [18] exploited motion cues
between the transmission and reflection layers from multiple
viewpoints and assumed the glass was closer to the camera.
The projected motion of the two layers were different due to
the parallax. The motion of each layer could be represented
by parametric models, such as translative motion [19], affine
transformation and homography [18]. It was also beneficial
to separate the gradients of the original image into reflection
and transmission gradients. The separation provided gradient-
domain constraints to facilitate the layer separation in single
image reflection removal (SIRR) [20]. Detecting reflection
dominated regions in an image was achieved by depth-of-field
analysis [16], [21].

Through the combination of the motion and traditional
cues, the non-learning based methods using the multiple im-
ages as the input can show more reliable results when the input
data are appropriately prepared. However, the requirement for
special facilities of capturing limits such methods for practical

use, especially for mobile devices or images downloaded from
the Internet.

Deep Learning Based Methods: Recently, deep learning
has achieved outstanding performance in both high-level and
low-level vision tasks. Its outstanding ability of feature ex-
traction provides promising solutions to reflection removal.
Deep learning based methods are data-driven and try to learn
task-specific features to solve the SIRR problem in the feature
space [1]. Fan et al. [6] proposed a deep neural network,
named CEIL-Net, to first regress an edge map and then
reconstruct the transmission layer based on it. Paramanand
et al. [22] proposed a two-stage deep learning approach to
learn edge features for reflections using light field data. Zhang
et al. [8] first utilized a generative model to better learn a
mapping from I to the clean images. Yang et al. [23] proposed
a bidirectional network (BDN), also a two-stage network,
that the reflection layer in the first stage was used as auxil-
iary information to guide reconstruction of the transmission
layer in the second stage. Li et al. [9] proposed a recurrent
network based on LSTM [24] units (IBCLN) to refine the
predicted reflection and transmission layers iteratively. Chang
et al. [25] used pairs of flash and no-flash images to remove
reflection. Hong et al. [11] proposed a two-stream NIR image
guided reflection removal network to introduce NIR images
into the reflection removal pipeline. Face reflection removal
has also been studied in [26]. In the data-driven approach, the
dataset construction is critical to the success of deep learning-
based reflection removal methods. To this end, Jin et al. [27]
proposed multiple data generation models. Wen et al. [28]
proposed SynNet to generate images with reflections beyond
linearity. Wei et al. [29] introduced an alignment-invariant
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loss to utilize misaligned images as the real-world training
dataset. In recent years, Kim et al. [30] proposed a physics-
based rendering method to render images with reflections, and
considered the reflection and refraction of light in glasses to
obtain realistic rendering results. Existing methods are mostly
designed for general scenes, but face image reflection removal
needs to recover face details more precisely. When strong
reflection contains in face images, they cannot effectively
remove them and might cause blur of the face details.

B. NEAR-INFRARED IMAGING
Due to the low power consumption and low interference prop-
erties compared to RGB images, near-infrared (NIR) images
are increasingly used in machine vision tasks. NIR imag-
ing methods can be divided into two categories: active NIR
imaging and passive NIR imaging. The active NIR imag-
ing systems use an actively emitted light source such as a
laser or infrared LED to illuminate the target and obtain an
image. They can control the intensity and direction of the
light, thereby reducing or suppressing the reflection of the
target itself. Active NIR imaging has been widely applied to
3D sensing devices such as Kinect V1 and V2 for geometry
refinement [31] and robot navigation [32]. Sun et al. [33] used
shape and edge information contained in depth images from
Kinect V2 to guide reflection removal which has limited capa-
bility of recovering transmission details due to the texture-less
appearance of depth images. However, the passive NIR imag-
ing systems rely on its own radiation of the target that does
not require additional light sources and cannot control the
reflection degree of the target [34], [35], [36]. In this work,
we capture the paired RGB and NIR images simultaneously
by JAI AD-130 GE camera (passive RGB and NIR imaging)
to contain rich textures due to the reflection-suppression prop-
erty as shown in Fig. 1.

III. PROPOSED METHOD
A. DATA PREPARATION
Real-world image datasets play an important role in studying
physics-based computer vision tasks [37], [38]. Although the
reflection removal problem has been studied for more than
decades, publicly available datasets are rather limited. How-
ever, the data-driven methods need a large-scale dataset to
learn the reflection property in images. Since the previous
work has mainly focused on arbitrary scenes, the transmission
image B can be obtained from generic image datasets (e.g.,
PASCAL [39] or COCO [40]). Existing benchmark reflection
removal datasets (e.g., SIR2[41]) were constructed in this
way, thus they are not suitable for our face reflection removal
task due to their scenery diversity. Although there are many
face image datasets (e.g., CELEBA [42] and CASIA webface
dataset [43]), they are also not suitable for our task since they
mostly consider a fixed facial pose and contain only RGB
images. Thus, we construct a large-scale face image dataset
for training and its corresponding evaluation dataset using
JAI AD-130 GE camera. As shown in Fig. 3, JAI AD-130

FIGURE 3. Top: JAI AD-130 GE camera and its graphical user inferface
(GUI). Bottom: Image capturing process using JAI AD-130 GE camera.

GE camera is a 2-CCD multispectral prism camera that si-
multaneously captures two images with different spectra in a
single camera: one visible color image from 400–700 nm and
one near infrared (NIR) image from 750–900 nm. It adopts
2 pieces of Sony 1/3 in ICX447 CCD sensor: Bayer color
CCD and NIR black/white CCD. Through the prism spec-
troscopic technology, it can project the coaxial light incident
from the same lens to two CCD sensors, thus RGB and NIR
images from two CCDs have a completely consistent viewing
angle. Thus, it does not need calibration. However, if RGB
and NIR images are not registered, [44], [45], [46] can be
used to identify the edges of reflection regions. Under the
full resolution of 1296 × 966, the frame rate of each CCD
can reach 31fps. Thus, we use this camera to capture the face
reflection-contaminated RGB image I, reflection layer R and
their corresponding NIR images N. The reflection images are
taken by putting a black piece of article behind the glass while
moving the camera and the glass around, which is similar
to [18], [41] as shown in Fig. 3. The camera is configured
with varying exposure parameters and aperture sizes under a
fully manual mode to capture images in different scenes. We
provide some samples in Fig. 4, and our dataset has two major
characteristics:

Diversity: For face transmission layers, we collect 800
RGB and NIR image pairs of about 80 people in different
illumination conditions and scenes (both indoor and outdoor).
For reflection layers, we take them at different illumination
conditions to include both strong and weak reflections, and
adjust the focal lengths randomly to create different blur levels
of reflection. Moreover, the reflection layers are taken from a
great diversity of both indoor and outdoor scenes, e.g., streets,
parks, and inside office buildings.

Scale: The whole dataset contains 800 image pairs (about
80 people) for face transmission layer and 1000 image pairs
for reflection layers. Moreover, we collect 40 pairs of real
reflection images with their corresponding ground truth for
visual quality comparison. The resolution of the real reflection
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FIGURE 4. Samples of the reflection layer (first row), face transmission layer (second row) in the dataset, and their synthetic images (third row). We
provide pairs of RGB and NIR images with diverse illumination conditions, focal lengths, and scenes.

images is 1296 × 966. We put a glass in front of the person
to capture reflection-contaminated images. Then, we removed
the glass to acquire the ground truth of real images.

It is difficult to obtain large quantities of real reflection
images with the corresponding ground truth. Thus, we use
(1) to generate dataset for training and testing. Our synthetic
image I is generated by adding the reflection layer to the face
transmission layer with different weighting factors. To ensure
a sufficient amount of data, α and β are randomly sampled
from 0.6 to 1 and 0.3 to 0.6, respectively. We construct 10,000
(10 K) image pairs for training and 300 image pairs for test-
ing. We further augment the synthetic images with rotation
and flipping as dataset pre-processing. The synthetic images
cover more reflections in the real world, resulting in enhancing
reflection removal and robustness of FRRN.

B. NETWORK ARCHITECTURE
Given a reflection-contaminated RGB image I, we aim to
recover the face transmission layer B under the guidance of
NIR image N. To accomplish this, we develop a multi-scale
learning convolutional neural network which consists of four
modules to process I and N simultaneously and to recover the
B progressively as shown in Fig. 2. We concatnate two source
images of I and N into FRRN to simultaneously produce re-
stored images B∗ and N∗. We formulate the whole estimation
process as follows:

(B∗, N∗) = F (I, N, θ ) (2)

where F presents the network to be trained with parameters
θ , and B∗, N∗ are the estimated clear RGB transmission layer
and clear NIR layer, respectively.

Reflection Confidence Generation Module: Compared with
RGB images, NIR images are less corrupted by reflections.
The information covered by reflection in RGB images can
be provided by the corresponding NIR images, but for some
special reflections the NIR images are even more affected

FIGURE 5. NIR images with the corresponding reflection confidence maps
obtained by RCGM. Compared with NIR images, strong reflections in the
reflection confidence maps are preserved well while the face edges are
almost disappeared.

than RGB images. Thus, we introduce a reflection confidence
generation module (RCGM) based on Laplacian operator to
estimate the single channel reflection confidence map C from
the input reflection-contaminated RGB image I. As shown in
Fig. 5, NIR images are also severely corrupted by reflections
in some situations. However, in reflection confidence maps,
the reflection area is almost completely preserved, but the
face edges are almost disappeared. Based on this observation,
we use reflection confidence map to facilitate the reflection
detection.

Contextual Encoder Module: We concatenate the
reflection-contaminated RGB image I, NIR image N and
a reflection confidence map C as input of the contextual
encoder module (CEM). The three input images have the
same spatial resolution. Here, I is 3-channel image, while
N and C are the 1-channel image. Thus, the input of the
CEM encoder has total 5 channels. Inspired by the perceptual
loss [47], we adopt the pretrained VGG-16 network [48] for
feature extraction as shown in Fig. 2. Since the input of CEM
has total 5 channels, we first use two convolutional layers
and one Maxpooling layer to extract initial features from the
input images. Then, the other layers of CEM are completed
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FIGURE 6. Network architecture of the reflection confidence generation
module. We use convolution with Laplacian kernel to calculate Laplacian
edges and channel attention based residual block (CARB) to get efficient
multi-channel Laplacian features.

by the pretrained VGG-16 network. VGG16 adopts several
consecutive 3 × 3 convolution kernels instead of larger ones.
For a given receptive field, multi-layer nonlinear layers can
increase the network depth to ensure that more complex
features are learned, and the cost is relatively small (less
parameters), and the 3 × 3 convolution kernel is conducive
to better maintaining the image features. VGG-16 has 3
fully connected layers, which consumes a lot of computing
resources. After compromise, we replace the last fully
connected layer with a 3 × 3 convolutional layer to reduce the
calculation and make it adapt to the reflection removal task.
After layer-by-layer learning in CEM, the weak reflections in
the input images are initially suppressed, which is helpful for
the subsequent network.

NIR Inference Decoder Module: The NIR inference de-
coder module (NIDM) takes the LR features extracted by
CEM to exploit the reflection-suppressed context information
in the transmission layer and provide multi-scale guidance for
the entire recovery process. NIDM is composed of convolu-
tional layer and transposed convolutional layers with stride 2,
and the final layer is an activation layer with sigmoid function.
To make full use of the image details and avoid the gradient
vanishing problem, the features from CEM are connected to
its corresponding layers in NIDM with the same spatial reso-
lution.

Image Inference Decoder Module: The image inference de-
coder module (IIDM) is utilized to extract high-level semantic
transmission features, and facilitate the face transmission re-
covery under the guidence of NIDM. The input of IIDM is the
same as the input of NIDM, which is the features extracted
by CEM. Inspired by CRRN [7], we use feature extraction
layer-A/B layers from Inception-ResNet-v2 [49] as shown in
Fig. 7, which consists of several parallel convolutional layers
with different kernel size to extract rich features. Convolu-
tional layers between NIDM and IIDM to map the features
with reflections into the feature space with relatively fewer
reflections. Similar to NIDM, the feature maps from CEM
are concatenated to its corresponding layers in IIDM with
the same spatial resolution to conserve the distinct details and
avoid the gradient vanishing problem.

FIGURE 7. Network structures of the feature extraction layers A and B. We
use several parallel convolutional layers with different kernel size to
extract rich features.

TABLE 1. Quantitative Measurements Among FRRN and Three
State-of-The-Art Methods (RAGN [50], IBCLN [9], CORRN [51]) in Terms of
PSNR, SSIM, Model Size (MS) and Runtime (RT)

As shown in Fig. 6, RCGM uses convolution with Lapla-
cian kernel to calculate Laplacian edges. We downsample the
input reflection-contaminated RGB image I to 1

2 , 1
4 , 1

8 of the
original size for multi-scale Laplacian feature learning. Then,
we utilize a kernel with weights initialized to be a 3 × 3 Lapla-
cian kernel, denoted by kL = [0,−1, 0;−1, 4,−1; 0,−1, 0],
to extract Laplacian edge information from multi-scale im-
ages. After multi-scale upsampling, the Laplacian edge fea-
tures are recovered to the original size. CARB focuses on
more important features, and the final convolutional layer is
used to obtain C for the reflection removal of FRRN.

C. LOSS FUNCTION
Pixel-level Loss: For the image reflection removal, the pixel-
level loss is essential to recover the transmission layer B∗.
In this work, we use a L1 loss to measure the pixel-level
similarity between the predicted B∗ and its ground truth B as
follows:

L1 = |B, B∗|1 (3)

Composition Loss: RCGM generates a reflection confidence
map C to facilitate the reflection removal, and the quality of
the confidence map largely affects the recovery results of the
subsequent network. Thus, we use the composition loss for
RCGM to guide the training of confidence prediction. Since
C contains lots of information about the edges caused by
strong reflection, (1 − C) can be denoted as the weight of
transmission (the value in C has been normalized). In (1) and
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FIGURE 8. Visual quality comparison among FRRN and three state-of-the-art methods (RAGN [50], IBCLN [9], CORRN [51]) on the synthetic dataset. FRRN
successfully recovers the facial details in the regions occluded by reflections that are closest to the ground truth even in extremely harsh conditions.

composition loss can be formulated as follows:

I∗ = (1 − C) ◦ B∗ + R∗

LC = LMSE
(
I, I∗) (4)

where ◦ is an element-wise production operation; I∗ is the
synthesized reflection-contaminated RGB image from the es-
timated transmission layer B∗ and the reflection layer R∗,
respectively. LMSE indicates the mean squared error, and R∗
is obtained by (I − B∗)

Structural Similarity Loss: To generate the results satisfy-
ing with the human perception, we adopt SSIM loss [52] to
measure the similarity between predicted B∗ and N∗ with their
corresponding ground truth. SSIM measures the similarity of
structure, contrast and luminance between two images. We use
B∗ and B as an example for formulated as follows:

SSIM
(
B, B∗) = (2μBμB∗ + C1) (2σBB∗ + C2)(

μ2
B + μ2

B∗ + C1
) (

σ 2
B + σ 2

B∗ + C2
) (5)

where μB and μB∗ are the means of B (transmission ground
truth) and B∗ (estimated transmission layer), σB and σB∗ are
the variance of B and B∗, σBB∗ is the corresponding covari-
ance. Since a higher SSIM represents better performance, we
use LSSIM to minimize the prediction cost as follows:

LSSIM = 1 − SSIM (6)

Gradient Aware Loss: The main difference between the im-
ages with and without reflections can be found from their
gradient level statistics, especially in the case of strong reflec-
tions. To improve the removal quality, we introduce a gradient
aware loss function LQ to preserve gradient information in the
predicted B∗ and N∗. Based on the output transmission layer
B∗ and the transmission ground truth B, we use Sobel edge
operator to yield the edge strength gi and the orientation δi at
each pixel i. The relative strength GBB∗

i and orientation value
�BB∗

i between B∗ and B are defined as follows:

GBB∗
i =

⎧⎪⎨
⎪⎩

gB∗
i

gB
i

, if gB
i > gB∗

i

gB
i

gB∗
i

, if gB
i ≤ gB∗

i

�BB∗
i = 1 −

∣∣δB
i − δB∗

i

∣∣
π/2

(7)

In the training stage, we use Sigmoid function f (x, y) as
smooth approximation, and rewrite (7) as follows:

GBB∗
i ≈ f

(
gB∗

i , gB
i

)
× gB

i

gB∗
i

+
(

1 − f
(

gB∗
i , gB

i

))
× gB∗

i

gB
i

�BB∗
i = 1 −

∣∣δB
i − δB∗

i

∣∣
π/2

(8)
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FIGURE 9. Visual quality comparison among FRRN and three state-of-the-art methods (RAGN [50], IBCLN [9], CORRN [51]) on the real dataset. FRRN
successfully recovers the facial details in the regions occluded by reflections that are closest to the ground truth even in extremely harsh conditions.

The edge information preservation is then defined as:

QBB∗
i = GBB∗

i × �BB∗
i (9)

Since higher QBB∗
i represents better performance, we use LQ

to minimize the prediction cost as follows:

LQ
(
B, B∗) = 1 − QBB∗

i (10)

The loss function for the transmission layer is:

LB = L1(B, B∗) + LSSIM(B, B∗) + LQ(B, B∗) (11)

the loss function for NIR layer is :

LN = LSSIM(N, N∗) + LQ(N, N∗) (12)

Thus, the total loss is as follows:

Ltotal = LC(I, I∗) + LB + LN (13)

IV. EXPERIMENTAL RESULTS
We implement FRRN using PyTorch framework. For training,
CEM is based on a pretrained VGG16 model [48], which is
connected with RCGM, NIDM and IIDM. The entire network
is fine-tuned end-to-end, which grants the four sub-networks
more opportunities to cooperate accordingly. We synthesize
10,000 image quads of the input reflection RGB/NIR and the
ground truth RGB/NIR for training and 300 quads for test,
and 40 quads of real reflection images for visual compari-
son. During the training process, all images are resized to

512 × 384 (height H and width W are divisible by 25) and
randomly flipped. The initial learning rate is 1 × 10−4, which
is decayed by factor 0.8 at every two epoch. We optimize the
objective function by Adam optimizer. The batch size and the
number of epochs are 2 and 50, respectively. The training and
test of FRRN are performed on a PC with a NVIDIA 1080ti
GPU with 11 GB memory. To evaluate the performance of
FRRN, we perform comparison of FRRN with state-of-the-art
reflection removal methods on the dataset captured by us. We
first use all image quads to evaluate both quantitative mea-
surements and visual quality. We then conduct experiments
to compare the influence of the different loss functions to the
final performances with the generalization ability. Finally, we
perform ablation experiments on loss function and NID to
verify their effectiveness of loss functions on the performance.

A. QUANTITATIVE MEASUREMENTS
We quantitatively compare FRRN with RAGN [50],
CORRN [51] and IBCLN [9] on datasets in terms of Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM), and provide the results in Table 1. The numbers
represent average performance for all 300 image quads. It can
be observed that FRRN achieves the best performance in both
PSNR and SSIM among them. The SSIM results indicate that
FRRN preserves better structural information in faces than the
others, while the PSNR results indicate that FRRN achieves
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the best reconstruction in faces whose appearance is closest
to the ground truth. The smallest standard deviation (SD)
indicates that FRRN achieves the most stable performance in
the whole test dataset. We also measure average runtime of
them in Table 1, which shows that FRRN balances model size
and runtime in the face reflection removal. The results verify
that FRRN achieves outstanding performance in various real-
world scenes.

B. VISUAL COMPARISON
Fig. 8 shows the reflection removal results for different meth-
ods on highly reflection-contaminated images. These images
are from the datasets that we have synthesized. They contain
large area of reflections with strong highlights so that the
reflections can not be removed well by other methods. In con-
trast, FRRN removes most annoying reflections while keeping
high-frequency details in the transmission layer. Thus, FRRN
generates nearly the same results as the ground truth even in
highly reflection-contaminated images. Moreover, we evalu-
ate their performance on real test images with reflections in
Fig. 9. The real dataset contains 40 reflection-contaminated
RGB images with its corresponding ground truth and NIR
images. We put a glass in front of the person to capture
reflection-contaminated images and then remove the glass to
acquire the ground truth of real images. As shown in the fig-
ure, FRRN successfully removes most reflections in images,
and produces nearly the same results as the ground truth. Since
the reflection confidence map provides accurate edges in the
reflection layer, it helps FRRN distinguish between face trans-
mission layer and reflection layer. Moreover, the loss function
accelerates the network convergence thanks to the help of NIR
image during training.

C. ABLATION STUDY
To verify the effectiveness of the loss function and the con-
tribution of NIDM and NIR image to IIDM, we conduct
several ablation studies by re-training FRRN and testing on
the synthetic test dataset. Table 2 shows the ablation study
results. FRRN without LC performs the worse among them,
which means the reflection confidence map can effectively
provide reflection information to help the network distin-
guish between the reflection and the face, especially in the
regions with strong reflections. LSSIM and LQ are helpful
for recovering the details of B∗ and N∗. Without the NIDM
branch, the IIDM branch cannot effectively recover details in
the transmission layer. If we remove the input NIR image

and the NIDM branch, then FRRN is similar to the single
image reflection removal network. It is difficult to estimate
the accurate background layer and reflection layer from a
reflection-contaminated RGB image by FRRN. Through the
ablation studies, it can be seen that FRRN effectively uses
the information of NIR image to remove the reflection and
restore an accurate transmission layer. At the same time, the
loss function based on reflection confidence generation helps
FRRN to preserve more details of the face image.

V. CONCLUSION
We have proposed FRRN for face reflection removal based on
the fusion of RGB and NIR images. Based on the observa-
tions that NIR images captured by NIR sensors are robust to
reflections, we have built a multi-spectral CNN that consists
of CEM, NIDM, IIDM and RCGM. CEM extracts multi-scale
features from shallow to deep layers gradually in RGB nd NIR
images while suppressing the sparse reflection component.
NIDM exploits reflection-suppressed information from NIR
images, while IIDM estimates face transmission layer with
the guidance of NIDM features. RCGM generates a reflection
confidence map to measure the reflection-dominance degree
in a region. Moreover, we have used composition loss and
gradient aware loss to facilitate reflection removal restoring
details in the transmission layer. Various experiments on both
synthetic and real images verify that NIR images are suc-
cessfully used for reflection removal and FRRN outperforms
state-of-the-art methods in terms of visual quality and quanti-
tative measurements.

In the future work, we will consider more practical cases of
reflections for FRRN contained in natural scenes to generate
natural-looking results.
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