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ABSTRACT It is a popular hypothesis in neuroscience that ganglion cells in the retina are activated by selectively
detecting visual features in an observed scene. While ganglion cell firings can be predicted via data-trained deep neural
nets, the networks remain indecipherable, thus providing little understanding of the cells’ underlying operations. To
extract knowledge from the cell firings, in this paper we learn an interpretable graph-based classifier from data to predict
the firings of ganglion cells in response to visual stimuli. Specifically, we learn a positive semi-definite (PSD) metric
matrix M � 0 that defines Mahalanobis distances between graph nodes (visual events) endowed with pre-computed
feature vectors; the computed inter-node distances lead to edge weights and a combinatorial graph that is amenable to
binary classification. Mathematically, we define the objective of metric matrix M optimization using a graph adaptation
of large margin nearest neighbor (LMNN), which is rewritten as a semi-definite programming (SDP) problem. We solve
it efficiently via a fast approximation called Gershgorin disc perfect alignment (GDPA) linearization. The learned metric
matrix M provides interpretability: important features are identified along M’s diagonal, and their mutual relationships
are inferred from off-diagonal terms. Our fast metric learning framework can be applied to other biological systems with
pre-chosen features that require interpretation.

INDEX TERMS Graph signal processing, interpretability, metric learning, retinal ganglion cell encoding, semi-definite
programing.

I. INTRODUCTION
The retina is a thin layer of nerve tissue at the back of the vertebrate
eye, which receives images and transmits them as electric pulses
through the optic nerve to the brain. It consists of several layers of
cells: from photoreceptors which detect light and primary colors, to
ganglion cells with long axons stemming from the optic nerve [1].
As such, the retina is an important example of biochemical and
neurological signalling, both detecting and preprocessing biological
signals before transmitting them to the brain’s visual cortex.

In the analysis of retinal signals, one hypothesis conjectures that
each ganglion cell type computes one or more specific features of
the visual scene through a dedicated neural circuit, which connects it
to the photoreceptors [2]. This implies that the brain’s downstream
regions do not receive a general representation of the image, but
instead receive a highly processed set of extracted features. For
instance, some types of ganglion cells were found responding to

features such as motion in a specific direction, texture motion, and
anticipation of a periodic stimulus [2]. Thus, it is natural to consider
whether those features can be extracted from the firing patterns.

State-of-the-art cell firing prediction algorithms employ deep
learning, such as Convolutional Neural Networks (CNN) [3], [4],
[5] and Recurrent Neural Networks (RNN) [6]. While deep learn-
ing models predict well, they are inherently uninterpretable “black
boxes” and fail to reveal biological information about what exactly
trigger cell firings. In response, the main contribution of this paper is
to extract knowledge from the cell firings by learning an interpretable
graph-based binary classifier from data. Specifically, we learn a
positive semi-definite (PSD) metric matrix M � 0 that defines Maha-
lanobis distances between graph nodes (visual events) endowed with
pre-computed feature vectors. The computed node-to-node distances
lead to edge weights and a finite graph that is amenable to clustering
and binary classification.
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Mathematically, unlike the previous graph Laplacian regularizer
(GLR) [7] used in metric learning [8], we adapt the large margin
nearest neighbor (LMNN) method [9] into our graph setting as
an objective function, and formulate a semi-definite programming
(SDP) problem [10] to optimize M. We efficiently solve it via an
adoption of a fast approximation called Gershgorin disc perfect
alignment (GDPA) linearization [11]. The learned M provides a level
of interpretability: features crucial to classification can be identified
immediately along M’s diagonal, while their mutual relationships
can be directly inferred from off-diagonal terms.

The employed features in this paper are localized spatially, and
one set (3D-SIFT) has clear interpretation in terms of local image
gradients. This can enable the estimation of a ganglion cell’s re-
ceptive field [12] and type [2] based on the features to which it is
most sensitive. This estimation is inferred directly from the natural
stimulus data without the need for random noise stimulus data [13] or
more complex experiments. More generally, our fast metric learning
framework is applicable to other biological systems with pre-chosen
features that require interpretation.

We organize the paper as follows. In Section II, we review previ-
ous attempts at understanding the retina’s visual code. We discuss
the shortcomings of these works and establish the need for inter-
pretability. In Section III, we describe our proposed model along
with the training and validation processes. We delineate how the
Mahalanobis distance metric can be trained by minimizing the GLR,
then we discuss GLR’s limitations. Section IV manifests the main
contribution of this paper: adapting LMNN to the graph setting as
a new training objective called graph-based large margin nearest
neighbour (GLMNN) and approximating the solution using GDPA
linearization for faster computation. Experimental results and con-
clusion are presented in Sections V and VI, respectively.

II. THE VISUAL CODE OF THE RETINA
The retina is a complex network of diverse cells intricately connected
to each other in smaller local circuits. These circuits may have
various roles, from basic enhancements to the eye’s visual input to
extracting sophisticated visual features [2]. Many works investigate
the cellular circuits of the retina and their role in extracting specific
features from the eye’s visual input [14], [15], [16], [17]. Although
these investigations provide thorough insight into the retina’s struc-
ture and function, their development is slow and difficult. Another
standard approach is the Linear-nonlinear (LN) model [18] which
combines a linear spatiotemporal filter with a single static nonlinear-
ity. These models have been used to describe the retinal responses
to artificial stimuli; however, they fail to generalize to natural stim-
uli [19].

Deep learning models significantly outperform traditional ap-
proaches in predicting retinal responses both to artificial and natural
stimuli as demonstrated in [3], [4], [5], [6]. However, as discussed
in [5], the opaqueness of these models makes it difficult to gain
insight into the retinal cells’ collective or individual behavior. A
systematic approach to shed light on the trained deep learning mod-
els is proposed in [5] using dimensionality reduction and modern
attribution methods.

The approach in [5] falls under a category of interpretability tech-
niques called “post-hoc” methods [20]. These methods attempt to
interpret a black-box model after it is designed and trained. Another
category is the creation of intrinsically more transparent AI mod-
els, including our approach: we employ interpretable components to

FIGURE 1. Comparison between graph-based classifiers for a complete
graph and a sparse graph using the GLR objective, as function of training
dataset size, in (a) prediction accuracy and (b) runtime.

build a more comprehensible classification system, while maintain-
ing competitive prediction accuracy with state-of-the-art methods.

To draw a parallel between our approach and [5], we can compare
the attribution scores presented in [5] to the diagonal entries of our
computed metric matrix M∗ in our method, which can be further
used for feature selection. However, there is no equivalence to the
non-diagonal entries of M∗ in [5]—the relationship between features
themselves are left unexplored. Moreover, our model provides an
intuitive map of all datapoints; the distance of a newly introduced
datapoint to known datapoints can be easily inferred and understood.

III. GRAPH METRIC LEARNING AND GLR OPTIMIZATION
We first discuss metric learning on graphs and juxtapose our model
with previously developed approaches. Then, we describe the dataset
used in our experiment. Lastly, the training and validation processes
are described. We show how GLR can serve as the training objective,
albeit with limitations.

A. METRIC LEARNING ON GRAPHS
Distance metric learning—computation of feature distance between
two items endowed with feature vectors—is a popular machine
learning sub-topic, encompassing different notions of distance and
corresponding algorithms, such as supervised global/local metric
learning, unsupervised methods, SVN methods and kernel meth-
ods [8]. Notably, for binary classification authors in [9] optimized
the Mahalanobis distance, defined as

di, j �
(
fi − f j

)�
M

(
fi − f j

)
, (1)

where M is the PSD metric matrix, and fi, f j are the feature vec-
tors of data points i, j, respectively. This distance is optimized by
minimizing the large margin nearest neighbors (LMNN) objective
given data. In a nutshell, via metric matrix M, LMNN minimizes the
distances between same-label pairs while maximizing the distances
between different-label pairs, but no further than a large margin.

Our metric matrix optimization objective is similar to one in [9] in
that it defines Mahalanobis distance as the chosen metric for same-
/ different-label pairs. However, we adapt the LMNN objective to
our constructed graph model instead of a multi-dimensional space.
Specifically, in our model datapoints are nodes of a connected graph,
and the node labels collectively constitute a graph signal on the un-
derlying graph kernel [21], [22]. We call our newly adapted objective
Graph-based Large Margin Nearest Neighbor (GLMNN).

One key advantage of using a graph in the metric learning context
is that we can control the complexity of the training process by strate-
gically choosing sparse connections between nodes. For instance,
Fig. 1 compares the accuracy and runtime of the model in two cases:
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FIGURE 2. Ganglion cells’ spikes through time in response to a movie.

when all graph edges are present, and when the maximum degree of
nodes is fixed at a constant number. Refer to Section V-A for more
information about how the sparse edges are selected. We observe
that runtime can be greatly reduced while prediction accuracy is
maintained. Each edge in the graph corresponds with one term in the
optimization objective. As a result, by strategically removing edges
from the graph, we can simplify the objective without significantly
degrading performance.

In [23] and [24], the authors trained PSD metric matrix M by
minimizing the Mahalanobis distance to restore noisy graph signals
and classify entries with binary labels, respectively. The training
objective is a quantity called Graph Laplacian Regularizer (GLR) [7]
instead of LMNN. However, for binary classification GLR does not
efficiently utilize all available information in the training data; we
elaborate this point in the sequel. Lastly, [11] proposed the Ger-
shgorin Disc Perfect Alignment (GDPA) linearization technique to
reduce the complexity of optimizing a matrix variable with a PSD
cone constraint. A faster version of GDPA is also used in [24].
We employ GDPA linearization to speed up the minimization of
GLMNN during training.

B. THE DATA
We use the experimental data from [25], where individual ganglion
cells’ spikes are recorded through time while a naturalistic movie
was being played in front of an extracted salamander’s retina (see
Fig. 2). The movie has 1141 frames, each of size 120 × 200 pixels.
Each frame was displayed for 1/60 seconds. The time axis was
separated into bins of 1/60 seconds synced with the frames. Each
row of the figure shows a specific cell’s spikes, where dots represent
spikes. The spike signals are binary because a ganglion cell can either
fire or stay silent at a given moment; hence, a binary number can
describe its state. The brain receives numerous binary signals from
many ganglion cells and analyzes all signals together in the process
of visual perception. The responses of 113 cells to 297 repeated
playbacks of the same movie were recorded. As a result, the whole
dataset is stored as two tensors: one tensor describing the stimulus
shaped as 1141 × 120 × 200, and one describing the cell responses
shaped as 113 × 297 × 1141.

Individual cells fire in only about 3% of the time bins. To create
more balance between firings and idleness, we distinguish the “all-
silent” state, when no neuron is firing, from any other state when at
least one neuron is active. The “all-silent” state frequently appears in
retinal recordings, and it is well known in the literature [26]. Hence,
we group all ganglion cells so that a time bin’s label in the group
response is 1 (black) if any ganglion cell in a group spikes during that
bin, and −1 (white) otherwise. Labels are denoted by yi ∈ {−1, 1}
for i ∈ {1, . . . , 1141}. Thus, the group response tensor is shaped as
1 × 297 × 1141.

Further, we consider a batch of U frames immediately preceding
the time bin’s own frame to predict the label. The number of frames
in a batch depends on the utilized feature extraction algorithm. In

FIGURE 3. Training (blue) and validation (red) nodes in the similarity
graph.

our experiments, we used batches of U = 32 and U = 42 frames.
Features for each batch are extracted using methods such as pre-
trained CNNs’ filters or hand-crafted feature sets like SIFT [27]. The
resulting K features extracted from each batch i are denoted by vector
fi ∈ RK . In summary, our dataset consists of (fi, yi ) pairs describing
a feature vector extracted from a frame batch and its corresponding
label. A single (fi, yi ) pair is called a datapoint.

C. GRAPH CONSTRUCTION & GLR OPTIMIZATION
First, we split the data into training and validation sets. Datapoints
are selected randomly for the sets while ensuring that both sets
consist of half 1-labeled datapoints and half −1-labeled datapoints.
We then construct a similarity graph Gt with N nodes representing
N labeled training datapoints, each with a binary label yi and a
feature vector fi. We define the weight wi, j of an edge connect-
ing nodes i and j using an exponential kernel and Mahalanobis
distance:

wi, j = exp
(−di, j

)
, (2)

where di, j is defined in (1) which depends on M ∈ RK×K . M is a
metric matrix learned through a training process. Moreover, M � 0 is
PSD to ensure di, j ≥ 0. The edge set {wi, j} connecting N nodes thus
defines an adjacency matrix Wt ∈ RN×N that specifies graph Gt . The
training graph is illustrated in Fig. 3 with blue nodes and edges. The
red nodes represent the validation datapoints, which are added to the
graph after training. The goal of training is to find an optimal metric
matrix M such that edges connecting two same-label nodes have
noticeably higher weights than edges between opposing-label nodes.
If successful, same-label nodes would form local-neighborhood clus-
ters as illustrated, and thus the constructed graph becomes amenable
to classification.

Let the training objective Q(M) be the GLR (as in [23]) on known
label signal yt ∈ {−1, 1}N plus a trace term to ensure that edge
weights do not all tend to zero:

min
M�0

Q(M) = y�
t Lt (M)yt + μ tr(M) (3)

where Lt � diag(Wt 1) − Wt is the graph Laplacian matrix, μ > 0
is a chosen parameter, 1 is an all-one vector of suitable length, and
diag(v) returns a diagonal matrix with diagonal terms v. Note that
Laplacian Lt (by extension graph Gt ) is a function of M, since M
defines distances di, j , which in turn determines edge weights wi, j

and Wt . The trace term upper bounds the eigenvalues of M which,
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in turn, ensures that the distance between two finite feature vectors
remains finite.

We can expand the objective Q(M) in (3) and substitute the def-
inition of Mahalanobis distance from (1) to arrive at a more clear
formulation,

min
M�0

∑
(i, j)∈E

exp
(
− (

fi − f j

)�
M

(
fi − f j

))
︸ ︷︷ ︸

wi, j

(
yi − y j

)2 + μ tr (M) (4)

where the summation is the connected node-pair expansion of
GLR [7] y�L(M)y, and y ∈ {−1, 1}N is the aforementioned known
label signal. (We drop the subscript t in the sequel for notational
convenience.) When yi = y j—i.e., nodes i and j have the same
labels—each term wi, j (yi − y j )2 = 0 regardless of the value of wi, j .
However, to properly train the metric matrix M, the knowledge that
same-label pairs should be close in feature distance can be useful;
specifically, di, j = (fi − f j )�M(fi − f j ) ≥ 0 for same-label pair (i, j)
should be small.

D. ESTIMATING LABELS FROM GRAPH
After training, we are left with a similarity graph and an optimized
metric matrix. To estimate missing labels, we represent each one
of M validation visual events by an additional node (red nodes in
Fig. 3). We connect each validation node to training nodes, making
sure that at least one training node from each label is connected.
Then, we minimize the GLR of this expanded graph G of N + M
nodes:

min
yv

y�Ly, (5)

where L ∈ R(N+M )×(N+M ) is the expanded graph’s Laplacian, and y =
[y�

t y�
v ]� consists of both training and validation labels.

After minimization, we hard-threshold the entries of y∗
v to obtain

final visual event label predictions:

(ŷv )i =
{

1 if (y∗
v )i > 0

−1 o.w.
. (6)

If (ŷv )i = 1, then we predict a spike will occur, while if (ŷv )i = −1,
then we predict a spike will not occur.

IV. GLMNN OPTIMIZATION AND GDPA APPROXIMATION
We present a new training objective—a graph adaptation of
LMNN—and reformulate the problem as a semi-definite program
(SDP). Then, we solve the posed SDP efficiently via GDPA lineariza-
tion [11].

A. GRAPH-BASED LARGE MARGIN NEAREST NEIGHBOR
OBJECTIVE
As previously discussed, when GLR is used as the training objec-
tive, same-label node pairs are not used to optimize metric matrix
M. However, enforcing large edge weights (small Mahalanobis dis-
tances) between same-label node pairs can inform a better similarity
graph. This motivates an alternative training objective.

For binary classification, we propose a new objective called
graph-based large margin nearest neighbor (GLMNN) focusing on
same- and opposing-label pair distances:

min
M�0

∑
(i, j)∈E |yi=y j

di, j (M)

+ ρ
∑

(i, j),(i,l )∈E |yi=y j=−yl

[
di, j (M) + γ − di,l (M)

]
+ (7)

where di, j (M) = (fi − f j )�M(fi − f j ), γ > 0 is a parameter, and
[a]+ returns a if a ≥ 0 and 0 otherwise. The first sum is an aggregate
of distances di, j (M) between same-label node pairs connected by
edges (i, j) ∈ E . The second sum means that each distance di,l (M)
between opposing-label pair (i, l ) would be penalized only if it is
within γ of a same-label pair distance di, j (M). Though the idea of
trading off same- and opposing-label pair distances originates from
LMNN [9], GLMNN adapts LMNN into a graph context, where
same- / opposing-label pairs (i, j) are specified as graph nodes i
and j connected by edges E in a graph G. An intentionally sparsely
constructed graph G would thus lead to lower complexity when
computing objective (7) due to fewer edges in E .

Towards efficient optimization, we first rewrite the objective (7) as
follows. First, we rewrite each distance term di, j (M) in the two sums
as

di, j (M) = (
fi − f j

)�
M

(
fi − f j

)
= tr

((
fi − f j

)�
M

(
fi − f j

))

= tr
(

M
(
fi − f j

) (
fi − f j

)�)

= tr
(
MFi, j

)
(8)

where Fi, j � (fi − f j )(fi − f j )�. Second, to linearize the non-
negativity function [a]+, we define non-negative auxiliary variable
δi, j,l that is an upper bound on di, j (M) + γ − di,l (M). Hence, min-
imizing δi, j,l is equivalent to minimizing [di, j (M) + γ − di,l (M)]+.
The optimization (7) can now be rewritten as

min
{δi, j,l },M�0

∑
(i, j)∈E |yi=y j

tr
(
MFi, j

) + ρ
∑

(i, j),(i,l )∈E |yi=y j=−yl

δi, j,l

s.t. δi, j,l ≥ tr
(
MFi, j

) + γ − tr
(
MFi,l

)
δi, j,l ≥ 0 (9)

where the variables are {δi, j,l} and M. The problem is a semi-definite
programming (SDP) problem with linear objective and linear con-
straints plus a PSD cone constraint M � 0 [10].

While SDP problems can be solved in polynomial time using an
off-the-shelf SDP solver, the worst-case complexity O(K3) is still
high. Next, we adopt a fast approximation algorithm that addresses
convex optimization problems with a PSD cone constraint called
GDPA linearization [11].

B. GDPA LINEARIZATION ALGORITHM
1) REPLACING PSD CONE CONSTRAINT
The basic idea of GDPA linearization is to replace the PSD cone
constraint with a set of linear constraints per iteration, so that to-
gether with the linear objective and other linear constraints, the SDP
problem simplifies to a linear program (LP), solvable using a state-
of-the-art LP solver1 per iteration. GDPA linearization is based on a
well-known linear algebra theorem called the Gershgorin Circle The-
orem (GCT) [29], a version of which states that each real eigenvalue
λ of a real symmetric matrix M resides inside at least one Gershgorin
disc �i corresponding to row i, with center ci � Mi,i and radius
ri �

∑
j �=i |Mi, j |, i.e., ∃i, s.t. ci − ri ≤ λ ≤ ci + ri. The corollary is

that the smallest eigenvalue λmin is lower-bounded by the smallest

1A representative state-of-the-art general LP solver is [28], which has
complexity O(K2.055).
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disc left-end λ−
min, i.e.,

λ−
min(M) � min

i
Mi,i −

∑
j �=i

|Mi, j | ≤ λmin(M). (10)

Thus, to ensure M � 0, one can enforce linear constraints λ−
min(M) ≥

0, i.e., all disc left-ends are at least zero.
However, because the lower bound λ−

min(M) ≤ λmin(M) is often
loose, enforcing λ−

min(M) ≥ 0 directly would mean we are overly
restricting the search space, not allowing feasible solutions M′ where
λ−

min(M′) < 0 ≤ λmin(M′).
Knowing that a similarity transform SMS−1 of M shares the same

set of eigenvalues (assuming S is invertible), we first replace con-
straint λ−

min(M) ≥ 0 with λ−
min(SMS−1) ≥ 0. Assuming a diagonal S,

the N disc left-end constraints are

Mi,i −
∑
j| j �=i

∣∣∣∣ siMi, j

s j

∣∣∣∣ ≥ 0, ∀i. (11)

Second, we can select diagonal S so that the lower-bound gap can
be eliminated for a given M, i.e., λ−

min(SMS−1) = λmin(SMS−1) =
λmin(M), as follows. First, we recall that a recent linear algebra the-
orem called Gershgorin Disc Perfect Alignment (GDPA) [11] states
that λ−

min(SMS−1) = λmin(M) for a diagonal S if
1) si = 1/vi, ∀i and v is the first eigenvector of M, and
2) M is a Laplacian matrix to a balanced signed graph.
By the Cartwright-Harary Theorem (CHT) [30], a signed graph

(i.e., a graph with both positive and negative edges) is balanced if and
only if nodes can be colored into two colors (e.g., blue and red), such
that positive / negative edges connect nodes of the same / different
colors. Given GDPA, we can design a fast approximation algorithm
to (9) as follows.

2) ALGORITHM DESIGN
Assume that at iteration τ − 1, a feasible solution Mτ � 0 to (9) has
been computed, where Mτ is a Laplacian to a balanced signed graph
Gs, i.e., nodes in Gs can be assigned colors blue and red, so that edges
connecting same- / different-color pairs (i, j) have positive / nega-
tive weights wi, j (denoted by −Mτ

i, j , since by definition Laplacian

Mτ � Dτ − Wτ + diag(Wτ )). We first compute first eigenvector v
for Mτ using a fast extreme eigenvector computation algorithm such
as LOBPCG [31], using which we define si = 1/vi, ∀i. Linear con-
straints (11) that ensure solution M � 0 are now well defined.

At iteration τ , we optimize diagonal terms {Ml,l}∀l plus one row
/ column i of M at a time: for each row / column i, we optimize
{Mi, j, Mj,i}∀ j �=i twice, each time assuming node i is colored either
red or blue. The assumed color implies positive / negative signs for
Mi, j’s and Mj,i’s to maintain graph balance to other colored nodes
j �= i, which we can enforce using additional linear constraints in a
LP. To illustrate, denote the set of all blue nodes of Gs at iteration
τ by Nb,τ and the set of all red nodes of Gs at iteration τ by Nr,τ .
Then, if it is assumed that i ∈ Nb,τ , the following linear constraints
are imposed, {

Mi, j = Mj,i ≤ 0 if j ∈ Nb,τ

Mi, j = Mj,i ≥ 0 if j ∈ Nr,τ

}
(12)

Conversely, if it is assumed that i ∈ Nr,τ , the following linear con-
straints are enforced instead,{

Mi, j = Mj,i ≤ 0 if j ∈ Nr,τ

Mi, j = Mj,i ≥ 0 if j ∈ Nb,τ

}
(13)

We select the smaller of the two objective values corresponding
to the two assumed colors as the color for node i. We optimize all
rows / columns i in this manner in turn till convergence, resulting
in optimal solution Mτ+1 for iteration τ . A new first eigenvector v
for obtained solution Mτ+1 is computed again using LOBPCG, and
{si} for linear constraints (11) for the next iteration are defined. The
algorithm continues till solution Mτ converges.

V. EXPERIMENTS
A. EXPERIMENT SETUP
We first extracted visual features from a target fish movie [25]
using three methods. The first is the output of the first layer of
a pre-trained CNN called “slowfast-r50” [32], [33]. The second is
the output of the second layer of another pre-trained CNN called
“SOE-Net” [34], [35]. The Slowfast network was trained on an action
recognition task in videos while SOE-Net was developed for simul-
taneous audio-video texture analysis. The third is a 3D version of
the well-known scale-invariant feature transform (SIFT) [36], [37].
The Slowfast and 3D-SIFT algorithms both use batches of 32 frames
while SOE-Net uses batches of 42 frames. In addition, we used SIFT
features extracted from the MNIST dataset [38], consisted of images
of handwritten digits from 0 to 9 and their labels. Since the neuron
dataset contains binary labels (−1 and +1), we separated only two
digits of the MNIST set (0 and 1) to better match our target dataset.

We compared our algorithm against five representative state-of-
the-art classification schemes: CNN as implemented in [3], [4], [5],
RNN similar to [6], XGBoost [39] (a Python implementation of
gradient boosting decision trees (GBDT) [40]), logistic regression
(LR) [41], and K nearest neighbors (kNN) [42]. All algorithms were
trained on the same features.

After feature extraction, we connected the training and validation
nodes as follows. For each set, we randomly selected half of the
nodes from the 1-labeled bins and the other half from −1-labeled
nodes; this ensured that the data sets were evenly distributed between
1 and −1 labels. Edges between two training nodes or two valida-
tion nodes were constructed based on their temporal proximity; for
example, to connect a node corresponding to time interval t to five
other nodes, we chose nodes corresponding to time intervals closest
to t , three of them before t and two after t . Edges between a training
node and a validation node were selected with a similar strategy;
the only difference was that we ensured half the connected nodes
were labeled 1 and half are labeled −1. The maximum number of
edges between two training nodes was set at parameter Dt , between
two validation nodes was set at Dv , and between a training and a
validation node was set at Dvt . Thus, the maximum degree of a
training node was Dt + Dvt , and the maximum degree of a validation
node was Dv + 2Dvt .

After constructing a graph connecting all training and validation
nodes, the metric matrix was optimized on the graph as described in
Section IV. We tested three metric matrix optimization algorithms.
The first was the GLR objective (3) optimized via gradient descent.
The second was the GLMNN objective (9) optimized via an off-
the-shelf SDP solver called SeDuMi [43]. The third optimized the
same GLMNN objective (9) via our proposed GDPA linearization
algorithm described in Section IV-B. To randomize our experiments,
we repeated each experiment with Pt different training sets and Pv

different validation sets, meaning that each point in the following
plots is the average result of Pt Pv trials. The values of Pt and Pv are
reported on the y-axis of each plot.
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FIGURE 4. Performance of GLR minimization with three different feature
extraction algorithms.

FIGURE 5. Validation accuracy of GLR compared to the state-of-the-art:
XGBoost [39], convolutional neural network (CNN) [3], [4], [5], recurrent
neural network (RNN) [6], K-Nearest neighbors (KNN) [42], and logistic
regression (LR) [41].

B. EXPERIMENT RESULTS
An important advantage of a graph-based classifier is the use of
computed similarity edges connecting validation nodes based on
available per-node features to estimate their labels, instead of com-
puting labels for each validation node individually. This property
is important for semi-supervised learning, where the training set
is small compared to the test set. We focus on this setting in our
experiments.

1) INTERPRETABILITY VS. PERFORMANCE IN FEATURES
The validation accuracy obtained by minimizing the GLR objective
(3) are shown in Fig. 4. Each curve illustrates the performance
using one of the three feature extraction algorithms described in
Section V-A, all extracted from the fish movie [25]. We observe that
Slowfast and SOE-Net achieved a higher accuracy than 3D-SIFT;
however, they are less interpretable since their filters are optimized
in a purely data-driven manner without clear interpretation. This
illustrates one tradeoff between interpretability and performance.

2) PREDICTION ACCURACY
The prediction accuracy of our graph-based classifier is analyzed
jointly by Figs. 5 and 6. We compared GLR against four other
methods in Fig. 5. We observe that GLR’s performance is on par with
the benchmarks. This shows that a graph-based classifier inherently
suffers no performance disadvantage against its competitors.

As discussed in Section IV, GLMNN utilizes features of same-
label pairs to further optimize the metric matrix M. However,
minimizing GLMNN using an off-the-shelf SDP solver such as Se-
DuMi is time-consuming. Thus, we tested SeDuMi only for smaller

FIGURE 6. Validation accuracy of GLMNN vs. GLR.

FIGURE 7. Comparison between obtained validation accuracies by SDP
and GDPA.

FIGURE 8. Number of times a linear program was run during GDPA
optimization.

datasets than in Fig. 5. A comparison is made between GLMNN
minimization using SeDuMi and GLR in Fig. 6. We see that GLMNN
noticeably outperformed GLR in classification performance. Further,
we observe that the difference between GLMNN and GLR decreased
as the training set became larger. One explanation is that the extra in-
formation (i.e., distances between same-label pairs) used in GLMNN
is more critical for smaller sets where the training data does not
provide sufficient information.

3) SPEED
To speed up GLMNN optimization, GDPA linearization algorithm
was used. The effectiveness of GDPA is illustrated in Figs. 7
and 8. Fig. 7 compares the obtained accuracy by GLMNN minimiza-
tion with an SDP solver and GDPA linearization. We observe that,
though GDPA provided only approximate solutions, its performance
was reasonably close to an SDP solver as shown in Fig. 7.

On the other hand, GDPA greatly reduces algorithm runtime for
large datasets. A general SDP solver has time complexity O(K3).
GDPA approximates SDP via a number of iterative linear programs.
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FIGURE 9. Optimized metric matrix for various training sets. Red dots
show entries with larger values than 30% of the maximum.

FIGURE 10. Diagonal elements of an optimized metric matrix.

Each linear program requires roughly O(K2) to compute. As ob-
served in Fig. 8, the number of required linear programs in GDPA
till convergence stays roughly constant. Thus, GDPA reduces time
complexity to O(K2). The precision of the GDPA algorithm is con-
trolled by the definition of convergence.

4) INTERPRETABILITY
The optimized metric matrix M∗ enables a level of interpretability
by depicting the relevance of features to the classification. Diagonal
elements of M∗ show the singular contribution of each feature to the
distance, while off-diagonal elements show the relevance of features
to each other. It is observed in our experiments that M∗ tends to
have a few large elements, while all the other elements are small.
This means that only a few features contribute substantially to the
classification task, which provides a way for feature selection.

Fig. 9 shows visualizations of two example metric matrices in our
method for different training sets. All entries larger than 30% of the
maximum entry are marked by a red dot. Since the training sets are
randomly constructed, different combinations of training nodes lead
to different optimized metric matrices. We observe that only a few
entries (features) along the diagonal contributed substantially to label
prediction.

These dominant features can be extracted and visualized. For
example, Fig. 10 shows the diagonal entries of an optimized metric
matrix using 3D-SIFT features extracted from the fish movie. We
can separate the dominant features via thresholding. The red line in
Fig. 10 shows an example of a threshold set at 50% of the maximum
entry. How these relevant features are correlated to each other are
encoded in off-diagonal terms.

The interpretability of the features themselves varies among dif-
ferent algorithms. For example, 3D-SIFT is more interpretable than
CNN-based features like Slowfast and SOE-Net. Each element of
the feature vector obtained by 3D-SIFT unambiguously corresponds
to the gradients of a specific area of the frame batch in a specific

FIGURE 11. 3D-SIFT keypoints on the fish movie frames.

FIGURE 12. Subregions around the 3D-SIFT keypoint and the icosahedron
whose vertices correspond to histogram bins created in each
subregion.

FIGURE 13. (a) Each element of a 3D-SIFT histogram corresponds to one
of the 12 vertices of a regular icosahedron. (b) Locations of the most
dominant features relative to the keypoint for 3D-SIFT.

direction. This area is determined by the 3D-SIFT keypoint and the
location of each element relative to the keypoint.

There may be any number of 3D-SIFT keypoints found in a frame
batch. Nevertheless, all feature vectors should have the same length
in our model; therefore, we need to select a fixed number of key-
points in each frame batch and disregard the others. Many keypoint
selection strategies can be adopted. One example, which is employed
in our experiments, is selecting the keypoint closest to the center of
the frame batch. To illustrate, Fig. 11 shows the selected 3D-SIFT
keypoint on several frame batches from the fish movie. Selecting the
most central keypoint is a rudimentary provision to cover the largest
possible area by the keypoint’s descriptor.

The keypoint descriptor is computed as follows. A neighborhood
around the keypoint is considered and divided into 64 subregions.
Local gradients are computed in each subregion and a histogram is
constructed which shows the cumulative projections of the gradients
in 12 directions in the 3D space. Each direction corresponds to a
vertex of a regular icosahedron. To compute the cumulative gradient
projections in each direction, only those local gradients are consid-
ered that intersect with at least one of the faces comprising the vertex
in question. Fig. 12 shows the 64 subregions and the icosahedron in
one of the subregions.

The subregions are numbered based on their Cartesian coordi-
nates with respect to the keypoint. Similarly, the vertices of the
icosahedron are also numbered as in Fig. 13(a). The 64 histograms,
each consisting of 12 bins, are concatenated to form the keypoint
descriptor which we assign to the frame batch as its feature vector.
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FIGURE 14. Diagonal elements of M∗ visualized as histograms inside
subregions around the 3D-SIFT keypoint. Subregions labeled 1, 2 and 3 are
the same subregions as in Fig. 13(b). Each bin in a histogram represents a
specific direction in 3D space.

In other words, the feature vector has 12 × 64 = 768 dimensions.
Consequently, each element of a 3D-SIFT feature vector can be de-
scribed by two numbers: one number determining its corresponding
subregion relative to the keypoint, and one number depicting its
corresponding vertex in the icosahedron (i.e. the general direction
of the gradients).

Given this knowledge of what each element in a 3D-SIFT feature
vector means, we can generate more detailed interpretations of the
prediction process. For instance, using the diagonal elements of M∗

from Fig. 10, we can illustrate the locations of dominant features
relative to the keypoint as in Fig. 13(b).

Furthermore, we can describe the dominant features with their
direction and location relative to the keypoint. For example, we
can describe the most dominant feature in Fig. 10 as “the cumula-
tive projections of local gradients in the general direction of (θ =
148.28o, φ = 90o) in spherical coordinates, computed in a subregion
above the keypoint and to its northwest.” This long description can be
summarized by two numbers: (2, 41). The first number (i.e. 2) notes
the corresponding icosahedron vertex of the most dominant feature.
This vertex is marked in red in Fig. 13(a). The second number (i.e.
41) depicts the corresponding subregion (i.e. location) of the most
dominant feature. This subregion is marked by number 1 and pink
color in Fig. 13(b). The axes of Fig. 13 are defined based on the
keypoint’s orientation which is known.

The diagonal elements of M∗ can be visualized as histograms in
64 subregions around the 3D-SIFT keypoint. Fig. 14 illustrates 32 of
such histograms with the following coordinates x = {1, 2, 3, 4}, y =
{3, 4}, z = {1, 2, 3, 4}. We can locate the most dominant feature in
Fig. 10 on this illustration as well; it corresponds to the 2nd bin of
the 42nd histogram. This feature is distinguished by the color half-
red half-green in Fig. 14. Each bin in a histogram corresponds to an
icosahedron vertex. The histograms in Fig. 14 have 6 bins instead of
12; the reason is that the 3D-SIFT feature vectors were subsampled
with a rate of 2 : 1 to cut the time complexity into a quarter of its
original value.

In addition to single features, we can illustrate pairs of features
whose corresponding non-diagonal element in M∗ have the largest
values. Two such pairs are illustrated in Fig. 14 with red and green
colors. The red pair correspond to the highest non-diagonal element,
and the green pair correspond to the second highest. A large non-
diagonal element of M∗ means that the correlation between the two
features is highly informative for label prediction.

VI. CONCLUSION
To extract knowledge from ganglion cell responses to visual stimuli,
we propose an interpretable graph-based binary classifier learning

framework, where a positive semi-definite (PSD) metric matrix M is
optimized to determine feature distances between nodes represent-
ing visual events. Using a new objective called graph-based large
margin nearest neighbor (GLMNN), we formulate a semi-definite
programming (SDP) problem to optimize M, which is efficiently
approximated via an adoption of Gershgorin disc perfect align-
ment (GDPA) linearization. Given an optimized metric matrix M,
one can directly identify features substantially contributed to label
classification by locating large-magnitude diagonal terms. Experi-
mental results show that our graph-based classifier is competitive
with state-of-the-art classification schemes, while offering a level of
interpretability.

For future work, our model can be employed to predict the re-
sponses of individual ganglion cells, various physiological groups
of ganglion cells, or even retinal responses of other organisms such
as mice and primates [44], [45]. Analyzing the optimized model on
these datasets can reveal further insight into the retinal computation.
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