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ABSTRACT Sound event detection systems are widely used in various applications such as surveillance
and environmental monitoring where data is automatically collected, processed, and sent to a cloud for
sound recognition. However, this process may inadvertently reveal sensitive information about users or
their surroundings, hence raising privacy concerns. In this study, we propose a novel adversarial training
method for learning representations of audio recordings that effectively prevents the detection of speech
activity from the latent features of the recordings. The proposed method trains a model to generate invariant
latent representations of speech-containing audio recordings that cannot be distinguished from non-speech
recordings by a speech classifier. The novelty of our work is in the optimization algorithm, where the speech
classifier’s weights are regularly replaced with the weights of classifiers trained in a supervised manner.
This increases the discrimination power of the speech classifier constantly during the adversarial training,
motivating the model to generate latent representations in which speech is not distinguishable, even using
new speech classifiers trained outside the adversarial training loop. The proposed method is evaluated against
a baseline approach with no privacy measures and a prior adversarial training method, demonstrating a
significant reduction in privacy violations compared to the baseline approach. Additionally, we show that
the prior adversarial method is practically ineffective for this purpose.

INDEX TERMS Adversarial neural networks, adversarial representation learning, privacy preservation,
sound event detection.

I. INTRODUCTION
The proliferation of ever-present devices equipped with sen-
sors has led to an exponential increase in data availability.
These devices continuously collect and process large amounts
of data, facilitating remarkable advancements in various ma-
chine learning tasks [1], [2], [3]. However, this trend raises
concerns regarding the privacy of users’ personal information
both during the data collection process and when the data
is utilized by machine learning models [4], [5]. Speech in-
terfaces and acoustic monitoring are prominent areas among
those with active research focusing on preserving user data
privacy. These systems record audio which may contain bio-
metric information such as human voices that can be identified
and attributed to individuals. Therefore new legislation has

been enacted to safeguard users against the inherent risks
associated with the exposure of personal information [6].
Acoustic pattern classification has numerous applications in
smart cities, smart homes, and context-aware devices [7].
These systems aim to automatically detect targeted sound
events such as sirens, birds chirp, and window breakage,
among others. While the primary focus of these methods
may not be on speech-related information, the environments
where they operate often include speech. Human speech con-
tains a significant amount of personal information, including
speakers’ identity, gender, accent, or sensitive content dis-
cussed during conversations [6], [8]. Many voice interface
and acoustic monitoring systems, including daily consumer
devices such as smartphones, locally extract features from
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FIGURE 1. Illustration of the problem setup where speech privacy is
compromised during the transmission of acoustic features to a cloud
platform.

audio and transmit them to a cloud for recognition tasks [9].
Unauthorized access to this information by adversaries can
have detrimental consequences for the individuals involved.
Fig. 1 provides an illustration of a typical setup for this sce-
nario, highlighting that the disclosure of such information
should only occur with speakers’ consent.

An example of this scenario, which served as the primary
motivation for conducting this research, pertains to automatic
sound recognition devices employed in home care settings.
The objective was to develop a device capable of promptly
notifying nurses when an elderly individual is in a dangerous
situation requiring assistance. The system actively monitors
the surrounding soundscape to trigger an alert in the event of
an emergency. Therefore, it inevitably captures many speech
signals. To ensure privacy, it becomes imperative for record-
ing devices to hide the speech-related information within the
encoded features of the signals to protect such information
during the data transmission.

To address this challenge, the objective of this study is to in-
tegrate a privacy-preserving algorithm into the representation
learning process in order to base final classification decisions
on features that ensure users’ privacy. To achieve this, we
employ an adversarial learning setup based on deep neural
networks (DNNs) to create latent representations of audio
recordings that contain information required for the recogni-
tion of targeted sound events, while removing information that
could be used for speech analysis.

Inspired by Ganin and Lempitsky [10], our adversarial
setup includes two neural networks: a feature extractor and
a speech classifier. The feature extractor is designed to ma-
nipulate the latent features in such a way that it confuses the
speech classifier, thereby reducing its performance on speech
classification tasks.

Although the general idea has been used previously in a
different application, this approach is vulnerable to the re-
trieval of speech attributes [11], especially when the learned
latent features are used to re-train a separate speech classifier
outside the adversarial process. To address this vulnerability,
we propose a straightforward solution that can be seamlessly
integrated into the learning process. The speech classifier is
frequently replaced by a new one, that is trained until con-
vergence, outside of the adversarial learning process. This
approach ensures that the speech classifier is not easily tricked
by the feature extractor, creating a robust training process
that ensures the speech-related information is not retrievable.

Throughout this paper, we refer to this algorithm as robust
discriminative adversarial learning (RDAL).

The main contribution of this paper lies in the introduction
of the RDAL algorithm, which facilitates the generation of
adversarial learning representations that effectively prevent
the detection of sensitive information within the latent feature
space derived from acoustic features, thereby enabling robust
sound event classification. A preliminary version of this work
was previously published as a conference paper [12]. This pa-
per introduces the RDAL algorithm, which was not previously
covered in the conference paper. While the conference paper
primarily focused on evaluating the effectiveness of source
separation in conjunction with RDAL, it did not delve into the
detailed explanations, rationale, and vulnerabilities addressed
by RDAL. In this extended version, we present comprehensive
insights into the RDAL algorithm, including a thorough ex-
ploration of the algorithm itself, its underlying principles, and
its efficacy in mitigating observed vulnerabilities in prior stud-
ies. Furthermore, to enhance the understanding of RDAL’s
generalizability across various sound event classes, we ex-
pand our dataset from our previous work in [12]. Lastly, we
incorporate gender classification into our evaluation setup to
demonstrate RDAL’s performance on this novel task.

II. RELATED WORK
In this section, we discuss previous works on privacy preser-
vation in two audio-related tasks: machine listening and
speech recognition. While the application of adversarial train-
ing for learning privacy-preserving features in machine listen-
ing tasks has not been extensively explored, there have been
successful attempts to use adversarial training to anonymize
speech characteristics, such as speaker identity, in automatic
speech recognition (ASR) systems.

A. PRIVACY-PRESERVATION IN MACHINE LISTENING
TASKS
Larson et al. [13] developed a cough detection system for
mobile phones, aiming to render speech unintelligible in the
reconstructed audio. They used principal component analysis
(PCA) analysis on cough sound spectrograms to select eigen-
vectors with the biggest eigenvalues for audio reconstruction.
However, PCA’s limited learning capacity reduced system
performance, especially for polyphonic sound event detection.
Additionally, unintelligible speech in the recovered audio does
not guarantee that speech information cannot be extracted.
Wang et al. [14] assert that human speech predominantly falls
within the frequency range of 80 Hz to 3 kHz. To recognize
indoor human activity, they suggest using a bandstop filter to
remove speech from the audio signal. However, this filtering
process also results in the loss of information related to other
sound events. Consequently, machine listening performance is
adversely affected, particularly for events that share a signifi-
cant frequency range with human speech.

Nelus and Martin [15] propose privacy-preserving repres-
entation learning using DNNs to extract variational infor-
mation. Their objective is to generate informative latent
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representations from log mel-band energy for the classifi-
cation task while minimizing speaker information. This is
achieved by minimizing the mutual information between mel-
band energy and extracted features by DNNs, ensuring low
dependency between these two features. Simultaneously, the
model is trained to keep the extracted latent features informa-
tive for classification.

B. ADVERSARIAL PRIVACY-PRESERVING
REPRESENTATIONS IN SPEECH RECOGNITION TASKS
In previous research on speech recognition tasks, adversarial
representation learning was employed to enhance the robust-
ness of predictive models by disregarding irrelevant infor-
mation. Specifically, subsequent studies utilized adversarial
learning to generate speaker-invariant features, as speaker
variability can have a detrimental impact on the performance
of acoustic modeling systems.

Meng et al. [16] minimize speaker information in audio
representations for senone classification. They introduce a
minimax speaker classification objective to generate bottle-
neck features that are speaker-invariant and yet discriminative
for senone predictions. Similarly, Tsuchiya et al. [17] employ
an adversarial training setup to develop a speaker-invariant
representation of audio data for zero-resource language acous-
tic modeling. These studies share similarities with privacy-
preserving representation learning as they eliminate speaker
information from the extracted features.

Srivastava et al. [11] conducted one of the initial studies
on privacy preservation in the audio domain using adversarial
learning. Their objective was to conceal speaker identities in
ASR systems by anonymizing the latent representations of
an end-to-end ASR network. This was achieved through a
minimax objective between the encoded representations from
a speech encoder and a speaker classifier. While the system re-
duced performance in close-set speaker identification, residual
information about speakers could still be recovered, leading to
improved performance in open-set speaker verification.

Later studies focused on removing specific speaker at-
tributes instead of general speaker identity information. For
example, Noé et al. [18] used adversarial training to pre-
serve the privacy of speakers’ gender information in an
automatic speaker verification system. While this study in-
vestigated a single attribute, in practice, there may be a need
to conceal multiple types of information. Perero-Codosero
et al. [6] reconstructed privacy-preserving x-vectors using
multiple adversarial privacy domains related to different
speaker attributes, such as ID, gender, and accent. They
demonstrated that incorporating multiple adversarial privacy
domains improved both utility tasks and privacy performance.
However, the recoverability of sensitive speech information in
audio features after adversarial learning, as observed in [11],
has not been addressed by proposed adversarial learning
systems. The privacy-preserving features obtained through
adversarial training do not guarantee complete removal of
sensitive information or prevention of recovery.

III. METHOD
A. PROBLEM SETUP
In this study, we focus on identifying a utility attribute y using
a latent representation z derived from acoustic features x. Our
goal is to ensure that z contains minimal information related
to a sensitive attribute s. While our specific utility attribute
is targeted sound event classes and the sensitive attribute is
speech presence, our approach can be extended to other at-
tributes, such as speaker identity, accent, or gender. Given that
speech presence is a prominent type of speech information,
our focus is primarily on speech presence estimation. We
assume that a method capable of removing information about
speech presence would also be effective in removing informa-
tion about other speech characteristics, which are generally
more challenging to recognize. Following the above problem
setup, we assume that we have access to a labeled dataset X,
consisting of N data samples x accompanied by sound event
labels y and speech labels s, i.e. X = {(xi, yi, si )}Ni=1.

Given an input x, our goal is to compute a latent repre-
sentation z using a feature extractor F , i.e. z = F (x), that
enables a classifier C to perform multi-class classification
for targeted sound events where the goal is to classify each
input into one of the predefined sound event classes de-
noted as y ∈ {1, 2, . . .,Y }, resulting in an estimated class
ŷ = C(z). To prevent disclosing speech-related information,
the latent representation z should not reveal any indica-
tions that allow classification of x into its speech class s
using a speech classifier D, i.e. ŝ = D(z). We formulate
this problem such that both goals are met simultaneously.
Fig. 2 illustrates each component of our method and their
interconnection.

B. ROBUST DISCRIMINATIVE ADVERSARIAL LEARNING
We build upon a discriminative adversarial learning approach
which was initially introduced by Ganin and Lempitsky [10]
for the purpose of obtaining domain invariant representations
in an unsupervised domain adaptation task.

To achieve a well performing sound event classification, the
feature extractor F and the sound event classifier C are jointly
trained to predict the present sound event in an input, i.e.
ŷi = C(F (xi )). As the first part of our algorithm, the objective
function

min
F,C

Lcls = −E(x,y)∼X
N∑

i=1

1[i=y] log(ŷi ), (1)

is then minimized by optimizing the parameters of F and C
in order to reduce the classification error between the true
labels yi of targeted sound events and their corresponding
predictions ŷi.

In order to prevent the recognition of any speech informa-
tion, we use an adversarial training method consisting of two
components: the feature extractor F and the speech classifier
D. More specifically, D is employed to predict present speech
in an input xi based on latent features zi. This is achieved using
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FIGURE 2. Schematic diagram of the proposed method. F , C, D, and Dτ are neural networks and L denotes different loss terms employed in our method.
The solid lines illustrate the regular forward pass. The dashed line actives after τ epochs. Finally, the dotted lines represent the backpropagation of each
specific error w.r.t the associated parameters.

the objective function

max
F

min
D

Ladv = E(x,s)∼X
N∑

i=1

�(si, D(F (xi ))). (2)

We use binary cross entropy as the loss function � in our
experiments. The primary objective of the speech classifier
D is to achieve optimal performance in speech classifica-
tion. However, within the adversarial learning framework, the
feature extractor F aims to obfuscate D by minimizing its
ability to classify speech based on the internal representations
zi. To facilitate this, a gradient reversal layer (GRL) mod-
ule is introduced, connecting D and F in the network [10].
The GRL operates differently during forward and backward
propagation. In the forward pass, it functions as an identity
mapping, preserving the input as the output. However, during
backward propagation, it multiplies the partial derivatives of
the adversarial loss Ladv with respect to the feature extractor
parameters θF , denoted as ∂Ladv

∂θF
, by a negative coefficient

−λ, where λ ≥ 0. This implies that when λ = 0, the feature
extractor F is solely optimized based on the classification
objective Lcls. As λ increases, the contribution of Ladv in
optimizing θF becomes more pronounced. Consequently, F is
encouraged to generate invariant representations that discard
speech-related information, thereby undermining the speech
classification performance of D. Therefore, we can summarize
the optimization process of F as

θF ←− θF − μ

(
∂Lcls

∂θF
− λ

∂Ladv

∂θF

)
(3)

where μ is the learning rate.
Although the minimax objective in (2) leads to the conver-

gence of the adversarial training and subsequently reduces the
speech classification performance of the speech classifier D, it
does not guarantee that the resulting representations z are free
from sensitive attribute information s. This limitation becomes
evident when training a new speech classifier solely on z
outside the adversarial learning process. A similar issue was
identified by Srivastava et al. [11], who aimed to anonymize
speakers in an ASR system. Srivastava et al. [11] found that
the method’s generalization performance was hindered by

limitations in the representation capacity of the adversarial
branch. It is important to note that this problem extends
beyond privacy-preserving representations learned within an
adversarial framework.

In a related study conducted by Jin et al. [19], they ad-
dress the same issue from a broader perspective by aiming
to minimize distribution shift in the latent space through a
discriminative adversarial setup, similar to our approach. As
the adversarial training progresses, the alignment between the
distributions of latent features for different speech classes
increases, resulting in reduced discriminative ability of the
speech classifier D in distinguishing between them. Conse-
quently, the feature extractor F has less incentive to further
align the latent representations, posing challenges for opti-
mizing F and D to learn invariant representations within this
adversarial setting.

To address such vulnerability in the optimization of adver-
sarial branch, we propose a mechanism aimed at enhancing
the discrimination power of the speech classifier D and
ensuring the generation of generalizable and robust privacy-
preserving latent features. RDAL introduces a supervised
training step using the latent representations z after every τ

epochs of adversarial training to train a new speech classifier,
denoted as Dτ , in a supervised manner. Subsequently, the
parameters of D are updated using those of Dτ before con-
tinuing adversarial process. This iterative process compels the
feature extractor F to continuously modify its outputs, making
the representations of speech classes indistinguishable so that
the new experts/speech classifiers are not able to distinguish
between them. This process is repeated until further training
iterations no longer lead to improved performance of Dτ . In
our study, speech labels can be represented using binary labels
s, and the training of Dτ is done by minimizing

min
Dτ

Lsp = −E(x,s)∼X
N∑

i=1

si log(Dτ (F (xi )))

+(1− si ) log(1− Dτ (F (xi ))). (4)

Notably, only the parameters of Dτ are optimized, while the
parameters of F are kept fixed. The details of the RDAL
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Algorithm 1: Robust Discriminative Adversarial Learn-
ing (RDAL).

Require: Labelled data X, trainable networks
parameters: Fθ , Cθ , Dθ , Dτ

θ

Require: Learning rate μ, batch size B, training Dτ
θ every

τ epochs
Require: GRL multiplier λ(m) at epoch m
while NOT converged do

Sample a mini-batch {(xi, yi, si )}Bi=1
Lcls = CE({(Cθ (Fθ (xi )), yi )}Bi=1)
Ladv = BCE({(Dθ (Fθ (xi )), si )}Bi=1)

θC ←− θC − μ( ∂Lcls
∂θC

),

θD ←− θD − μ( ∂Ladv

∂θD
),

θF ←− θF − μ( ∂Lcls
∂θF
− λ

∂Ladv

∂θF
)

if m mod τ = 0 then
Initialize Dτ

θ

while NOT converged do
Sample a mini-batch {(xi, si )}Bi=1
Lsp = BCE({(Dτ

θ (Fθ (xi )), si )}Bi=1)

θDτ ←− θDτ − μ( ∂Lsp
∂θDτ

)
end while
θD ←− θDτ

end if
end while

method are fully outlined in Algorithm 1. In this study, the
capability of RDAL algorithm is enhanced by augmenting a
masking U-net architecture prior to the feature extractor F , as
outlined in [12].

IV. EVALUATION
In this section, we evaluate the performance of our method
in obfuscating speech information in the latent feature space
while simultaneously performing sound event recognition for
targeted classes as the primary utility task.1 We measure the
effectiveness of preserving privacy in audio recordings by
conducting speech presence classification and gender classifi-
cation in one-second audio segments. Additionally, we assess
the performance on the utility task, which involves classify-
ing sound events within these one-second segments. In our
evaluation the segments are isolated from each other and not
processed as a part of continuous audio, but we term the tasks
as speech activity detection (SAD), gender detection (GD),
and sound event detection (SED), to indicate that in a realistic
application scenario we would be processing a continuous
stream of segments, and segment-wise classification would
lead to detecting the temporal activities of classes.

We compare the performance of RDAL against baseline
and naive adversarial methods. The baseline is defined as a
sound event classification system where no privacy measures
are taken, meaning F and C are optimized jointly using (1)

1[Online]. Available: https://github.com/lndip/RDAL

TABLE 1. Number of One-Second Sound Event Samples in Each Split of
Our Dataset

in a supervised manner without the adversarial branch. In ad-
dition, the naive adversarial method does not include Dτ and
therefore F , C, D are optimized only using (1), (2), and (3).
We refer to this method in the rest of the paper as NaiveAdv. In
order to augment the capabilities of the RDAL algorithm and
further improve its performance, we incorporate the mask-
ing network, as detailed in our preliminary study [12]. This
enhanced variant is denoted as RDAL+M in this paper. By
integrating a U-Net architecture of DNNs prior to the feature
extractor F , RDAL+M aims to separate the speech component
from the magnitude spectrogram of each data sample and
reconstruct a non-speech version of that sample. The mask-
ing network is pre-trained and remains unchanged throughout
the adversarial training process. More details of the masking
approach are provided in [12].

A. DATASET
In order to address the problem formulation outlined in
Section III, it is necessary to use audio recordings which
include both targeted sound events and speech. To achieve
this, we create a simulated dataset using real-world audio
recordings to generate one-second mixtures containing speech
and other sound events.

We collect the sound event data from the FSD50K
dataset [20]. Among the 144 leaf nodes in the FSD50K
dataset, we select 12 specific sound event classes that are po-
tentially applicable in acoustic monitoring applications. These
selected classes are listed in Table 1. For each sample belong-
ing to the target sound event classes, we extract the two most
energetic one-second segments to ensure an adequate number
of audio segments for each sound event class. These segments
are then normalized by subtracting their mean and dividing by
their standard deviation. If a recording is shorter than one sec-
ond, we pad it with zeros at the end after normalization. The
processed samples are divided into the development and test
splits, following the “development” and “evaluation” splits
defined in the FSD50 K dataset.

The speech content for our dataset is sourced from the
LibriSpeech corpus [21]. To match the sampling frequency
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of the FSD50K dataset, we resample the recordings from
16 kHz to 44.1 kHz. Similar to the procedure used for the
FSD50K samples, we extract the most energetic one-second
speech segment from each audio recording and normalize
these segments. The selected segments are obtained from the
LibriSpeech “train-clean-100” and “dev-clean” sets. These
segments are initially attenuated by 5 dB, then mixed with
the processed one-second segments of sound events from the
development and test sets respectively.

The development set comprises speech content from 126
male and 125 female speakers, while the test set consists of
20 speakers from both genders. In selecting speech recordings
from the LibriSpeech corpus, we ensure an equal representa-
tion of male and female speakers across each targeted sound
event class. Furthermore, the number of extracted one-second
speech segments from LibriSpeech is half of the number of
sound event segments. This approach allows us to create mix-
tures with a balanced number of samples for both the speech
and non-speech classes.

To facilitate model selection during training, the devel-
opment set is further divided randomly into the train and
validation sets in a 9:1 ratio. This division ensures that half
of the mixtures within each split, across sound event classes,
contain speech. Specifically, the number of samples contain-
ing speech in train, validation, and test are 2094, 227, and
494, respectively. However, there are no specific constraints
on speaker allocation. Therefore, the speakers in the train and
validation sets may overlap, and the ratio of male to female
speakers may not be balanced within the two splits.

We utilize log-mel spectrograms as the low-level features,
denoted as x, for the audio mixtures. The parameters for this
transformation are derived from the work of Kong et al. [22]
but are adjusted to account for the sampling frequencies of our
audio recordings (44.1 kHz instead of 32 kHz as used in [22]).
In computing the short-time Fourier transform (STFT), we
apply a Hamming window of size 1411 with a hop length of
441. To obtain the log-mel spectrograms, we employ 64 mel
filter banks. In the RDAL+M method, the magnitude of the
STFTs serves as the input to the masking network, while the
log-mel spectrogram is calculated on the masked spectrogram
prior to being passed through the feature extractor F .

B. NETWORK ARCHITECTURE
For our feature extractor F , we utilize the “CNN6” archi-
tecture from Kong et al. [22] as a basis, making minimal
adjustments to accommodate our data size. Our adapted archi-
tecture consists of 4 convolutional blocks, each containing a
2D convolutional layer with a kernel size of 3× 3, ReLU acti-
vation, and batch normalization. The number of convolutional
filters in these blocks is 64, 128, 256, and 512, respectively.
Except for the last block, all blocks incorporate max pooling
with a kernel size of 2× 2. The final convolutional block
employs max global pooling to transform the 2D features
into a 1D vector representation. A linear layer is then utilized
to generate the latent features z as a 64-element vector. The
sound event classifier C consists of a single linear layer with

softmax activation. As for the speech classifiers D and Dτ , it
comprises 4 linear layers, with output dimensionality of 48,
32, and 16 in the first three layers, respectively, each followed
by a LeakyReLU activation function. The output layer em-
ploys sigmoid as the activation function. For RDAL+M, we
employ the exact architecture of masking network described
in [12].

C. TRAINING
Initially, we train the entire networks in a supervised manner
for the first 30 epochs (λ = 0). This helps address stability
issues associated with adversarial training during the initial
iterations [23] and ensures proper training of the speech clas-
sifier D to recognize the speech presence before the start of
adversarial training. Following this, we gradually increase the
value of λ to initiate adversarial training. Once the maximum
value of 1 is reached, λ remains fixed. The schedule for in-
creasing λ is adapted from [10] and is defined as:

λβ = 2

1+ exp(−γ .β )
− 1 (5)

where γ is set to 100 in all experiments, and β ∈ [0, 1] rep-
resents the progress of the training process. After the first 30
epochs, β starts at 0 and increases with a step size determined
by dividing the range from 0 to 1 into equal intervals over
the course of the epochs, with a maximum number of 5000
epochs. The initial epoch for starting adversarial training has
not been optimized. The optimal value of τ , indicating the
number of epochs for adversarial training before training a
new Dτ , is selected from the values in the set of {10, 20, 30,
50, 70, 100} using the validation set. The models are trained
with a batch size of 64, with half of the samples containing
speech. Stochastic gradient descent (SGD) with a learning rate
of 0.01 and momentum of 0.9 is employed for optimizing the
networks parameters. Early stopping is determined by mon-
itoring the best Lsp value on the validation set, and if there
is no improvement after 10 repetitions, the training process is
halted.

D. RESULTS
Table 2 presents the accuracy results for SED, as well as the
accuracy and AUC scores for SAD and GD tasks on the test
set. After completing the training phase, we proceed to train
a new classifier, referred to as the attacker model, using the
latent representations z. This classifier is specifically designed
for the task of identifying speech presence or gender. It sim-
ulates a scenario where an unauthorized individual attempts
to recognize speech activities in one-second segments using
latent features. The evaluation in Table 2 is based on the
average values obtained from 10 separate runs.

The results presented in Table 2 yield several noteworthy
observations. Firstly, the comparable SED accuracy scores
across the three adversarial methods indicate that optimiz-
ing the adversarial branch to eliminate speech activity, while
simultaneously training a supervised SED system, does not
hinder the optimization of the SED task. Furthermore, RDAL
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TABLE 2. Results of Baseline, NaiveAdv, RDAL, RDAL+M

FIGURE 3. ROC curves for each method are displayed, showcasing the
privacy preservation results on the SAD task as outlined in Table 2.

demonstrates a notable improvement in privacy preservation
compared to the baseline, as evidenced by the SAD and GD
metrics. Additionally, RDAL+M further enhances RDAL’s
privacy preservation performance, achieving a reduced accu-
racy and AUC score for both SAD and GD tasks, approaching
the level of random guess scores in binary classification tasks.
Thirdly, the SAD accuracy of NaiveAdv suggests that it does
not offer enhanced privacy preservation compared to the base-
line when evaluated against the attacker model. Therefore,
NaiveAdv does not truly provide privacy-preserved features.
Lastly, the lower GD performance across all methods indi-
cates the inherent difficulty of this task compared to SAD.
Given the absence of specific gender information during train-
ing, the scores for this task generally fall below those of
SAD, making it relatively easier to obfuscate in the context of
privacy preservation. Fig. 3 illustrates the receiver operating
characteristic (ROC) curves of the tested methods for speaker
activity detection. The curve of RDAL-M is closest to the
random guess, demonstrating its best capability to preserve
privacy.

E. DISCUSSION
To ensure a fair comparison among the methods presented in
Table 2, we ensure the adoption of an identical architecture

for DNNs models across all methods. In addition, the same
scheduling of λ values is used for the NaiveAdv, RDAL, and
RDAL+M methods.

The significant privacy preservation improvement achieved
by RDAL in comparison to the baseline method substantiates
the main claim of this paper. Furthermore, we emphasize that
a naive implementation of adversarial training proves inef-
fective due to inherent limitations in optimizing the feature
extractor to align speech and non-speech distributions. Conse-
quently, the NaiveAdv method fails to effectively preserve pri-
vacy within our problem setup. Previous work by Srivastava
et al. [11] has demonstrated that the privacy-preserving perfor-
mance of NaiveAdv can even be worse than that of the baseline
method, which lacks any privacy-preserving components, par-
ticularly in open-set classifications.

Fig. 4 showcases the 2D distributions of latent features z
using t-SNE analysis [24]. We compare RDAL’s feature dis-
tributions with a privacy-preserving lower bound system that
incorporates supervised information of targeted sound events
and speech presence without considering privacy preservation
measures. The comparison reveals proper alignment of speech
and non-speech class distributions within each targeted sound
event class, providing further evidence of RDAL’s improved
privacy preservation performance.

Fig. 5 visualizes the kernel density estimates representing
the predicted probabilities for the speech and non-speech
classes. These probabilities are computed using the test set
after training the attacker model. In the baseline method
(left figure), the density curves clearly indicate the attacker’s
confident predictions regarding the presence or absence
of speech. This highlights the information embedded in
the latent representations of SED systems, even when
speech is not the target sound event. In contrast, the density
curves of RDAL (middle figure) exhibit significant overlap
between the speech and non-speech classes, indicating an
increase in model uncertainty and the attacker’s challenge in
distinguishing between the two. This increased uncertainty
in the attacker model’s predictions is a result of aligning
speech and non-speech latent features through the optimized
feature extractor from the RDAL method. Furthermore,
RDAL+M (right figure) improves upon the results achieved
by RDAL, and demonstrates a precise alignment between the
density curves of predicted probabilities for the speech and
non-speech classes. Given that the attacker model performs
binary classification, uncertainty in its predictions can be
quantified using the binary entropy function. Maximum
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FIGURE 4. Comparison of latent features obtained by RDAL’s F (right) and supervised training of F for sound events and speech (left). Sound events are
color-coded with 12 different colors, while speech and non-speech samples are marked with “o” and “x” respectively.

FIGURE 5. Density curves using Gaussian kernel to represent predicted probability densities from the attacker model on the test data using the latent
features of baseline (left), RDAL (middle), and RDAL+M (right) methods.

uncertainty arises when the attacker predicts a sample with a
probability of 0.5. As evidenced by the Fig. 5, a substantial
portion of the density mass for both speech and non-speech
classes is concentrated around this value.

V. CONCLUSION
Privacy breaches pose a significant threat to the confidentiality
of user information and sensitive data in SED systems. To
mitigate this risk, it is crucial to employ privacy-preserving
algorithms that safeguard against the disclosure of private
information. This study addresses the issue by formulating
privacy preservation as the detection of speech activity in
the latent features of audio mixtures. We introduce RDAL,
an adversarial training approach, which learns robust and
speech-invariant latent features. RDAL ensures agnosticism
towards speech presence and gender identity, while preserving
the targeted sound event information for SED.

The proposed method utilizes two neural networks: a fea-
ture extractor and a speech classifier, in a minimax game
to ensure the privacy preservation of audio mixtures. The
feature extractor generates invariant latent features of speech-
containing audio signals that are indistinguishable from those
of non-speech ones, while the speech classifier tries to distin-
guish between them. We also address the limitations of this
approach by introducing a new speech classifier periodically
into the adversarial training process to enforce the feature
extractor to consistently improve the performance for aligning

the distributions of speech and non-speech samples during the
adversarial training process.

The empirical results indicate that the proposed RDAL
approach significantly improves the privacy performance of
SED systems. By effectively preserving privacy in latent
features of audio mixtures, this approach can help prevent
potential privacy violations and ensure the confidentiality of
sensitive information. Furthermore, we demonstrated that the
performance of RDAL can be further improved through its
integration with a source separation method.

REFERENCES
[1] Y.-A. Chung et al., “W2v-BERT: Combining contrastive learning and

masked language modeling for self-supervised speech pre-training,” in
Proc. IEEE Autom. Speech Recognit. Understanding Workshop, 2021,
pp. 244–250.

[2] T. Brown et al., “Language models are few-shot learners,” in Proc. Adv.
Neural Inf. Process. Syst., 2020, pp. 1877–1901.

[3] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y.
Wu, “Coca: Contrastive captioners are image-text foundation models,”
Trans. Mach. Learn. Res., Aug. 2022.

[4] S. Kumar, L. T. Nguyen, M. Zeng, K. Liu, and J. Zhang, “Sound shred-
ding: Privacy preserved audio sensing,” in Proc. 16th Int. Workshop
Mobile Comput. Syst. Appl., 2015, pp. 135–140.

[5] C. Glackin et al., “Privacy preserving encrypted phonetic search of
speech data,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2017, pp. 6414–6418.

[6] J. M. Perero-Codosero, F. M. Espinoza-Cuadros, and L. A. Hernández-
Gómez, “X-vector anonymization using autoencoders and adversarial
training for preserving speech privacy,” Comput. Speech Lang., vol. 74,
2022, Art. no. 101351.

VOLUME 5, 2024 301



GHARIB ET AL.: ADVERSARIAL REPRESENTATION LEARNING FOR ROBUST PRIVACY PRESERVATION IN AUDIO
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