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ABSTRACT We consider a cell-free massive multiple-input multiple-output (CF-MaMIMO) communication
system in the uplink transmission and propose a novel algorithm for blind or semi-blind joint channel
estimation and data detection (JCD). We formulate the problem in the framework of bilinear inference and
develop a solution based on the expectation propagation (EP) method for both channel estimation and data
detection. We propose a new approximation of the joint a posteriori distribution of the channel and data
whose representation as a factor graph enables the application of the EP approach using the message-passing
technique, local low-complexity computations at the nodes, and an effective modeling of channel-data
interplay. The derived algorithm, called bilinear-EP JCD, allows for a distributed implementation among
access points (APs) and the central processing unit (CPU) and has polynomial complexity. Our simulation
results show that it outperforms other EP-based state-of-the-art polynomial time algorithms.

INDEX TERMS Expectation propagation, bilinear inference, Bayesian learning, approximate inference,
distributed algorithms, joint channel estimation and data detection, cell-free massive MIMO.

I. INTRODUCTION
CELL-free massive multiple-input multiple-output (CF-
MaMIMO) networks enable primary goals for sixth genera-
tion (6G) wireless communication systems, such as ubiquitous
coverage with uniform quality of service (QoS) and ultra-
high-rate, energy-efficient data transmission [1], [2], [3], [4].
In CF-MaMIMO systems, a large number of geographically
distributed APs are jointly serving a much smaller number of
user equipments (UEs). The joint processing is coordinated
by one or multiple central processing units (CPUs) which
are connected to the APs via fronthaul links. The geograph-
ically distributed nature of CF-MaMIMO networks enhances
the attractive properties of centralized massive multiple-input
multiple-output (MaMIMO) systems by reducing the aver-
age minimum distance between APs and UEs. This allows
CF-MaMIMO networks to provide uniform high data rates
over the coverage area and high energy efficiency. However,

in contrast to centralized MaMIMO, channel hardening and
favorable propagation typically do not hold [5], [6], [7], [8].
Thus, the low-complexity matched filter, which provides near-
optimal detection performance in MaMIMO systems [9], is
not effective for CF-MaMIMO systems, and optimal joint
signal processing at the centralized CPU is computationally
unaffordable. Similarly, existing pilot decontamination solu-
tions for centralized MaMIMO [10], [11], [12], [13], [14] are
not effective. Thus, the quest for low-complexity detection
techniques with performance approaching that of centralized
joint optimal processing schemes is still an open challenge as
well as the search of effective pilot decontamination methods.

Distributed processing at the APs can efficiently reduce
computational complexity at the CPU, see e.g., the extensive
analysis in [15], [16] and [17], whereas semi-blind channel
estimation has shown to combat effectively pilot contamina-
tion [12], [13], [14]. Therefore, in this work, we propose a
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distributed semi-blind joint channel estimation and data detec-
tion (JCD) algorithm based on expectation propagation (EP)
which exhibits a low complexity.

EP is an approximate inference technique which itera-
tively finds a tractable approximation of factorized probability
distributions by projecting each factor onto an exponential
family [18], [19]. EP has been already applied for data de-
tection in previous works. In [20], the authors proposed
a low-complexity EP-based multiple-input multiple-output
(MIMO) detector while assuming perfect channel state infor-
mation (CSI) and a Gaussian approximation for the posterior
distribution of data symbols. In [21], the authors extended the
EP-detection algorithm proposed in [20] to imperfect CSI by
embedding channel estimation errors in the EP formulation.

The EP method was also applied to blind channel estima-
tion and noncoherent detection. In [22], the authors presented
a blind channel estimation algorithm for multi-cell MaMIMO
systems. In [23], a noncoherent multi-user detection scheme
was proposed for the single-input multiple-output (SIMO)
multiple access channel (MAC). In both schemes, the ap-
proximated channel and symbol distributions were chosen
to be multivariate Gaussian and multinoulli distributions, re-
spectively. In [22], the proposed approximate joint posterior
distribution of channels and transmitted symbols resulted in
two decoupled EP-based schemes for channel estimation and
data detection. Whereas the channel estimation part had af-
fordable complexity, the data detection part resulted in high
complexity updates. Therefore, only EP-based channel esti-
mation was retained followed by conventional linear symbol
detectors. The decoupling between channel estimation and
symbol detection implied that the EP-based channel estima-
tion could only exploit prior statistical knowledge on the
transmitted symbols but not their deterministic imperfect
knowledge. In [23], the proposed approximate posterior dis-
tribution factorization yielded a factor tree with a branch per
user. The detection scheme was derived by applying message-
passing rules for EP on this tree. The resulting algorithm
could be applied to both pilot-assisted and pilot-free commu-
nications. However, the complexity of the proposed algorithm
was exponential in the product of the number of channel uses
and the logarithm of the symbol constellation set cardinality
rendering it unaffordable for practical high data rate systems.

The EP framework was also used to develop decentral-
ized detection schemes for MaMIMO systems in [17], [24],
[25], [26]. In these works, the computational complexity
was reduced compared to centralized schemes by process-
ing the signals received by antenna sub-arrays locally via
EP message passing and then combining the messages from
sub-arrays at the CPU. The posterior data symbol distributions
were approximated by multivariate Gaussians and perfect CSI
knowledge was assumed. In [17], the authors reduced mes-
sage sizes by utilizing averaging. In [24], the decentralized
MaMIMO receiver embedded both detection and decoding
and the extrinsic information from the decoder was utilized as
a priori information for the EP-based detector. In [25], the au-
thors introduced a pre-processing based on QR-factorization

and a variance compensation scheme in the decentralized
detector of [24]. In [26], two decentralized EP detection ap-
proaches were proposed, the first based on user grouping and,
thus, group-wise joint detection, and the second on a daisy-
chain architecture.

EP-based receivers were also applied in CF-MaMIMO sys-
tems. The authors of [27] utilized a centralized EP-based
detector with a Gaussian data approximation which incor-
porated channel estimation errors as in [21]. The channel
estimation error accounted for pilot contamination and gen-
eral estimation errors due to noise. In [28], the authors
proposed a distributed EP detector for CF-MaMIMO based
on the decentralized subarray-based detector in [17]. The
aforementioned approach was extended to an iterative channel
estimation and data detection (ICD) scheme in [29]. Here, the
data detection was based on EP and the iterative algorithm
took into account the channel estimation errors. The chan-
nel estimation was based on minimum mean squared error
(MMSE) estimation with detected data symbols as additional
pilots.

In this work, we propose a new distributed algorithm for
JCD in CF-MaMIMO systems. Our contributions can be sum-
marized as follows:
� We develop a novel message-passing algorithm for a

bilinear inference problem arising in JCD. The inference
is based on the approximate EP method and assumes
general multivariate Gaussian and multinoulli distribu-
tions for the posterior distributions of the AP channels
and data symbols, respectively, as in [23]. In contrast to
the approximate posterior distributions of [22], [23], the
factorization of the proposed approximate posterior joint
distribution for channels and data symbols allows for
an alternating refinement of channel and data estimates
and a distributed implementation of the algorithm with
local processing at the APs. Furthermore, the inclusion
of single-user soft-input soft-output (SISO) decoders is
straightforward. Finally, the algorithm can automatically
take into account the effect of pilot contamination.1

� We show that the proposed bilinear-EP JCD algorithm
has polynomial complexity in system parameters and
bridges the complexity gap between algorithms based
on EP that approximate the posterior distribution of data
with a Gaussian distribution such as, e.g., [17], [20],
[22], [24], [25], [26], [27], [28], [29], [30] and those that
assume more precise categorical distributions [23].

� We consider four baseline schemes, namely a centralized
linear MMSE detector, the detector in [28] assuming
perfect CSI, the ICD algorithm in [29], and a modi-
fied version of the proposed JCD algorithm with perfect
channel knowledge which provides a lower bound to the
symbol error rate (SER). Our simulation results show the
superior performance of our approach compared to the
first three baseline algorithms.

1The analysis of the impact of SISO decoding and pilot contamination
exceeds the scope of this paper.
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It is worth noting that the appealing features of the proposed
algorithm stem from the choice of the factorization of the
approximate joint posterior distribution and the way to take
into account the interplay between the two sets of variables,
i.e., channel coefficients and data symbols. This method can
be applied to other bilinear inference problems such as gain
calibration, matrix factorization and compressed matrix sens-
ing [31].

This paper is organized as follows. In Section II, we in-
troduce the CF-MaMIMO system model. In Section III, we
review the EP algorithm and its application on graphs. Based
on this theoretical framework, we develop the bilinear-EP
JCD algorithm in Section IV. Then, in Section V, we present
numerical results which show the superior performance of the
proposed algorithm. Finally, some conclusions are drawn.

Notation: Lower case, bold lower case, and bold upper
case letters, e.g., x, x, X , represent scalars, vectors, and ma-
trices, respectively. IN is the identity matrix of dimension N .
{xl,k,t } =

⋃
l,k,t xl,k,t denotes the collection of all variables

obtained by varying the indices specified by the subscripts.
A \ B is the set complement operator between two sets A,B.
δ(·) is the Dirac delta function. The indicator function 1x∈S
takes value 1 if the condition in the subscript is satisfied
and zero otherwise, e.g., element x is in the set S . The op-
erator vec(X ) maps the matrix X onto the vector obtained
by stacking the columns of X on top of one another. ⊗ is
the Kronecker product between two matrices. Ep(x){·} stands
for the expectation operator with respect to the probability
distribution p(x) and Ê{·} stands for the empirical expectation
operator. We denote by π (·) and N (x;μ,C) the categorical
distribution and the circularly symmetric Gaussian distribu-
tion of complex-valued vectors x with mean vector μ and
covariance matrix C, respectively. The notation x ∼ p indi-
cates that the random variable x follows the distribution p.

II. SYSTEM MODEL
We consider a communication system in the uplink trans-
mission that consists of L APs and K single-antenna UEs.
Each AP is equipped with N co-located antennas. Each user
sends a signal vector xk = [xT

p;k, xT
k ]T consisting of a P-

dimensional pilot vector xp;k ∈ CP and a T -dimensional data
vector xk ∈ ST where S is the employed constellation set. We
combine pilot and data vectors of all users in the signal matrix
X = [x1, x2, . . ., xK ]T ∈ CK×(P+T ). The matrix X can also
be expressed as X = [X p, X ] where X p and X are matrices
consisting of the pilot and data vectors of all users, respec-
tively. The equivalent complex baseband received signal at AP
l ∈ {1, . . ., L} is given by

Y l = [Y p;l ,Y l ] = H l [X p, X ]+ Nl , (1)

where Y l ∈ CN×(P+T ) denotes a matrix whose element yl,i, j
is the received signal at antenna i of AP l during the j-th
channel use. Here, Y p;l and Y l are the components of the
matrix Y l corresponding to the pilot matrix X p and the data
matrix X , respectively. H l ∈ CN×K is the block Rayleigh

fading channel matrix whose element hl,n,k is the coeffi-
cient of the channel between user k and antenna n at AP l ,
which is assumed to be constant during P + T consecutive
channel uses, and Nl ∈ CN×(P+T ) is a matrix whose ele-
ment nl,i, j is the additive white Gaussian noise (AWGN) at
antenna i during the j-th channel use at the l-th AP. There-
fore, both channel and additive noise are zero mean complex
Gaussian vectors with covariance matrices �l ∈ CNK×NK

and σ 2IN (P+T ), respectively, i.e., vec(H l ) ∼ N (0,�l ) and
vec(Nl ) ∼ N (0, σ 2IN (P+T ) ). Furthermore, we assume that
the channels of different users are uncorrelated. Thus, the
covariance matrix �l is a block diagonal matrix of K blocks
�kl ∈ CN×N .

III. EXPECTATION PROPAGATION ON GRAPHS
In the following, we associate a factor graph to the factorized
true distribution and describe a message-passing scheme that
results from the local computation of the approximate factors
on the factor graph nodes. More details on the derivation of
the message-passing update rules can be found in [23], [32],
[33].

We aim at computing an approximation of a joint probabil-
ity distribution which is assumed to be factorizable as follows

p(x) =
∏
α

�α (xα ), (2)

where xα is a sub-vector of x, i.e., xα ⊆ x, and
⋃

α xα = x.
The approximation p̂(x) of the joint distribution reflects the
same factorized form,

p̂(x) = 1

Z
·
∏
α

p̂α (xα ), (3)

where Z is a normalization constant and p̂ is constrained to
lie within the exponential family F . Furthermore, we assume
that the approximation can be fully factorized as follows

p̂(x) =
∏
β

p̂β (xβ ), (4)

where the sub-vectors xβ contain elements which always
occur together in a factor. The sub-vectors xβ are not over-
lapping, i.e., xβ ∩ xβ ′ = ∅ ∀β 
= β ′. Furthermore, we have⋃

β xβ = x. Therefore, the sub-vectors xβ define a partition
of x. Additionally, it holds for all sub-vectors xβ and xα that
the sub-vector xβ either lies fully within xα , i.e., xβ ⊆ xα , or
they are completely disjoint, i.e., xβ ∩ xα = ∅.

The factorization described above induces a representation
of the joint distribution by a factor graph with factor nodes
associated to functions �α and variable nodes associated to
sub-vectors xβ . An edge exists between factor node �α and
variable node xβ if xβ ⊆ xα. We define the neighbor set Nα of
factor node �α as the set of indices β of all variable nodes xβ

that are connected to �α , i.e., Nα = {β | xβ ⊆ xα}. Similarly,
we define the neighbor set Nβ of variable node xβ as the set of
indices α of all factor nodes �α that are connected to xβ , i.e.,
Nβ = {α | xβ ⊆ xα}.
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FIGURE 1. Illustration of the EP message-passing update rules.

Since the approximation p̂ lies within the exponential fam-
ily F , the approximate factors p̂α and p̂β belong also to F .
The assumption of the fully-factorized approximation in (4)
yields the following factorizations for the approximate factors,

p̂α (xα ) =
∏

β∈Nα

m�α;xβ
(xβ ), (5)

p̂β (xβ ) = 1

Zβ

∏
α∈Nβ

m�α;xβ
(xβ ), (6)

where Zβ is a normalization constant and m�α;xβ
(xβ ) is inter-

preted as a message from the factor node �α to the variable
node xβ also belonging to the specified exponential family.
Thus, we can update the approximate factors, and therefore
also the approximate joint distribution p̂(x), by exchanging
and updating messages on a factor graph.

The EP algorithm is an iterative algorithm. Hence, we
denote the messages during iteration i as m(i). At first, we
initialize all the factor-to-variable messages m(0)

�α;xβ
(xβ ). For

initialization, prior statistical knowledge or, if not available,
uninformative distributions can be used. A particular exam-
ple is discussed in Section IV. Then, the variable-to-factor
messages and the factor-to-variable messages are updated,
respectively, as follows,

m(i−1)
xβ ;�α

(xβ ) ∝
∏

α′∈Nβ\α
m(i−1)

�α′ ;xβ
(xβ ), (7)

m(i)
�α;xβ

(xβ ) ∝
proj

{
q(i−1)

�α;xβ
(xβ )

}
m(i−1)

xβ ;�α
(xβ )

, (8)

where the distribution q(i−1)
�α;xβ

(xβ ) in (8) is given by

q(i−1)
�α;xβ

(xβ ) = 1

Z̃α

∫
�α (xα )

∏
β ′∈Nα

m(i−1)
xβ′ ;�α

(xβ ′ ) dxα\xβ. (9)

Here, Z̃α is a normalization constant and proj{·} denotes the
projection operator defined as

proj{ f (x)} = arg min
g(x)∈F

DKL ( f (x)||g(x)), (10)

where DKL( f (x)||g(x)) is the Kullback-Leibler (KL) diver-
gence between f and g and F is an exponential family
distribution. The message-passing update rules (7) and (8) are
illustrated in Fig. 1.

IV. BILINEAR-EP JCD
A. FACTORIZATION AND MESSAGES
In the following, we derive an EP-based algorithm for semi-
blind JCD which we call bilinear-EP JCD. In this section,
we focus on data signals since the received pilot signals are
utilized to characterize the a priori channel distribution. In-
spired by [23], we propose a novel factorization of the joint
posterior distribution of data and channel. We decompose (1)
in T vector relations, one for each channel use t , as follows

ylt =
K∑

k=1

xkt hlk + nlt , (11)

where hlk is the k-th column, ylt and nlt are the t-th columns,
and xkt is the element in row k and column t of the matrices
H l , Y l , Nl and X respectively. Furthermore, we define

zzzlkt := xkt hlk . (12)

We can factorize the posterior density function using Bayes
theorem as follows

p{xkt },{zlkt },{hlk}|{ylt },{Y p;l }

∝ p{xkt },{zlkt },{hlk},{ylt },{Y p;l }

= p{ylt }|{zlkt }p{zlkt }|{xkt },{hlk}p{xkt }p{hlk |Y p;l }, (13)

where the last equality follows from (11) and (12). We further
assume that the a priori channel distributions are independent
across users and APs. Then, exploiting the independence of
the noise across time t and APs, the independence of the data
symbols {xkt }, and (12), we can factorize (13) as follows

p{xkt },{zlkt },{hlk}|{ylt },{Y p;l }

∝
L∏

l=1

[
T∏

t=1

(
pylt |zl1t ,...,zlKt

K∏
k=1

pzlkt |xkt ,hlk

)]

×
K∏

k=1

L∏
l=1

phlk |Y p;l

K∏
k=1

T∏
t=1

pxkt , (14)

For the probability distributions in (14) we adopt the following
compact notation

�0,lt := pylt |zl1t ,...,zlKt ,

�1,lkt := pzlkt |xkt ,hlk ,

�2,lk := phlk |Y p;l ,
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FIGURE 2. Factor graph of bilinear-EP JCD for distributed CF-MaMIMO.

�3,kt := pxkt .

The factor graph induced by the factorization in (14) is
illustrated in Fig. 2 and contains cycles. According to the
system model in (1) the true factors are given by

�0,lt = N
(

ylt ;
K∑

k=1

zlkt , σ
2IN

)
,

�1,lkt = δ(zlkt − xkt hlk ),

�2,lk = N (hlk,μlk;MMSE,Clk;MMSE),

�3,kt = 1

|S|1xkt∈S ,

where we assume uniform prior distributions pxkt for data
symbols and �2,lk is given by the pilot-based Bayesian
MMSE channel estimate of the channel H l as follows

pH l |Y p;l = N
(

vec(H l ); 1

σ 2
CAH

p vec(Y p;l ),C
)

with C := (�−1
l + 1

σ 2 AH
p Ap)−1 and Ap := (XT

p ⊗ IN ). Due
to the independence of the channels among different
users, we have μlk;MMSE = [ 1

σ 2 CAH
p vec(Y p;l )](k−1)N+1:kN

and Clk;MMSE = C(k−1)N+1:kN,(k−1)N+1:kN . We choose the ap-
proximate factor-to-variable messages to be distributed as

m�0,lt ;zlkt = N (zlkt ;μ�0,lt ;zlkt ,C�0,lt ;zlkt ),

m�1,lkt ;zlkt = N (zlkt ;μ�1,lkt ;zlkt ,C�1,lkt ;zlkt ),

m�1,lkt ;xkt = π1lkt (xkt ),

m�1,lkt ;hlk = N (hlk,μ�1,lkt ;hlk ,C�1,lkt ;hlk ),

m�2,lk;hlk = N (hlk,μ�2,lk;hlk ,C�2,lk;hlk ),

m�3,kt ;xkt = π3kt (xkt ).

Algorithm 1: Bilinear-EP JCD Scheduling.
Require: Initialized Messages

for number of iterations I
for all APs l , UEs k and symbol times t
Update m�1,lkt ;zlkt

for all APs l , UEs k and symbol times t
Update m�0,lt ;zlkt

for all APs l , UEs k and symbol times t
Update m�1,lkt ;hlk

for all APs l , UEs k and symbol times t
Update m�1,lkt ;xkt

Please note that the dimensions of the parameters of all
factor-to-variable messages are given by the type of distri-
bution and the dimensions of the variable represented. The
variable-to-factor messages are just multiplications of factor-
to-variable messages and are used to compute the update of
the factor-to-variable messages. Due to space limitation, we
present the derivation only for some of the messages in the
Appendix. Other messages that are not explicitly derived can
be obtained by applying the rules presented in Section III or
can be found in an extended version of this paper.2

B. INITIALIZATION AND SCHEDULING
All messages with the exception of the constant messages rep-
resenting a priori knowledge are initialized as uninformative
distributions, i.e., for Gaussian messages the diagonal entries
of the covariance matrices are set to infinity and uniform
probability mass functions (PMFs) are utilized for categori-
cal messages. In our implementation, all Gaussian messages
are parameterized by the precision matrix � = C−1 and the
mean vector γ = �μ. Uninformative Gaussian messages are
initialized by all-zero precision matrices.

The scheduling is given in Algorithm 1. The first message
to be computed in each iteration is m�1,lt ;zlkt . In the first
iteration, it is computed based on the CSI from the Bayesian
MMSE estimation together with the constant data prior to
generate a first estimate of zzzlkt . During this step, the ini-
tialized uninformed message m�1,lt ;zlkt is updated to contain
information. Note that the messages m�2,lk;hlk ≡ �2,lk and
m�3,kt ;xkt ≡ �3,kt represent the a priori distributions on the
Bayesian MMSE channel estimates and data, respectively, and
are not modified by the message passing algorithm. Hence,
they are not included in the scheduling.

For our simulations, we used parallel scheduling, i.e., the
updates of the messages in the innermost for-loops are done
independently, which is suitable for efficient implementa-
tions.

C. UPDATE RULES
In this section, we provide expressions to update the messages
that appear in Algorithm 1. According to (8), the inputs to up-
date a factor-to-variable message are always variable-to-factor

2[Online]. Available: https://arxiv.org/abs/2312.11688
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messages. Each variable-to-factor message is computed by
applying (7). As an example, we derive the variable-to-factor
message forwarded from variable node hlk to factor node
�1,lkt as follows

mhlk;�1,lkt = N (hlk;μhlk;�1,lkt ,Chlk;�1,lkt )

∝ m�2,lk;hlk

∏
t̃ 
=t

m�1,lkt̃ ;hlk .

Since mhlk;�1,lkt is a Gaussian distribution, its computation
reduces to determine its covariance and mean. By applying
the Gaussian multiplication lemma [23], we obtain

Chlk;�1,lkt =
⎛
⎝C−1

�2,lk;hlk
+
∑
t̃ 
=t

C−1
�1,lkt̃ ;hlk

⎞
⎠−1

, (15)

μhlk;�1,lkt = Chlk;�1,lkt

(
C−1

�2,lk;hlk
μ�2,lk;hlk

+
∑
t̃ 
=t

C−1
�1,lkt̃ ;hlk

μ�1,lkt̃ ;hlk

)
. (16)

All other variable-to-factor messages can be computed analo-
gously. Their derivation is omitted due to space constraints.

In the following we provide the rules to update factor-to-
variable messages based on the incoming variable-to-factor
messages.

Update of m�1,lkt ;zlkt = N (zlkt ;μ�1,lkt ;zlkt ,C�1,lkt ;zlkt ). The
covariance and mean are given by

C�1,lkt ;zlkt =
(
�−1

lkt −C−1
zlkt ;�1,lkt

)−1
, (17)

μ�1,lkt ;zlkt = C�1,lkt ;zlkt

(
�−1

lkt ẑlkt

−C−1
zlkt ;�1,lkt

μzlkt ;�1,lkt

)
, (18)

where

ẑlkt =
∑

x′kt∈S
ω(x′kt )μ̃(x′kt ), (19)

�lkt =
∑

x′kt∈S
ω(x′kt )

(
μ̃(x′kt )μ̃(x′kt )H + C̃(x′kt )

)

− ẑlkt ẑ
H
lkt , (20)

ω(xkt ) = ω̃(xkt )∑
x′kt∈S ω̃(x′kt )

, (21)

with ω̃(xkt ) defined in (30). Finally,

C̃(xkt ) =
(

C−1
zlkt ;�1,lkt

+
C−1

hlk;�1,lkt

|xkt |2
)−1

, (22)

μ̃(xkt ) = C̃(xkt )

(
C−1

zlkt ;�1,lkt
μzlkt ;�1,lkt

+
C−1

hlk;�1,lkt

|xkt |2
xktμhlk;�1,lkt

)
. (23)

Update of m�0,lt ;zlkt = N (zlkt ;μ�0,lt ;zlkt ,C�0,lt ;zlkt ). The co-
variance and mean are given by

C�0,lt ;zlkt = σ 2IN +
∑
j 
=k

C�1,l jt ;zl jt ,

μ�0,lt ;zlkt = ylt −
∑
j 
=k

μ�1,l jt ;zl jt .

Update of m�1,lkt ;hlk = N (hlk;μ�1,lkt ;hlt ,C�1,lkt ;hlk ). The co-
variance and mean are given by

C�1,lkt ;hlk =
(
�̂
−1
lkt −C−1

hlk;�1,lkt

)−1
,

μ�1,lkt ;hlk = C�1,lkt ;hlk

(
�̂
−1
lkt ĥlk−C−1

hlk;�1,lkt
μhlk;�1,lkt

)
,

where

ĥlk =
∑

x′kt∈S
ω(x′kt )μ̄(x′kt ),

�̂lkt =
∑

x′kt∈S
ω(x′kt )

(
μ̄(x′kt )μ̄(x′kt )H + C̄(x′kt )

)− ĥlk ĥH
lk .

The factor ω(xkt ) is defined in (21). Finally,

C̄(xkt ) =
(
C−1

hlk;�1,lkt
+ |xkt |2C−1

zlkt ;�1,lkt

)−1
,

μ̄(xkt ) = C̄(xkt )

(
|xkt |2

C−1
zlkt ;�1,lkt

xkt
μzlkt ;�1,lkt

+C−1
hlk;�1,lkt

μhlk;�1,lkt

)
.

Update of m�1,lkt ;xkt = π1,lkt (xkt ). The probabilities of the
categorical distribution are given by

m�1,lkt ;xkt =
γ̃ (xkt )∑

x′kt∈S γ̃ (x′kt )
(24)

with

γ̃ (xkt ) := N (
0;μzlkt ;�1,lkt − xktμhlk;�1,lkt ,

Czlkt ;�1,lkt + |xkt |2Chlk;�1,lkt

)
.

D. INFERENCE
The desired estimates can be obtained computing the distribu-
tions p̂xkt and p̂hlk as follows

x̂kt = arg max
xkt∈S

p̂xkt = arg max
xkt∈S

m�3,kt ;xkt

L∏
l=1

m�1,lkt ;xkt

and

ĥlk = arg max
hlk∈CN

p̂hlk = arg max
hlk∈CN

m�2,lk;hlk

T∏
t=1

m�1,lkt ;hlk

= arg max
hlk∈CN

N (hlk;μtot;h,Ctot;h)

= μtot;h,
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where

Ctot;h =
(

C−1
�2,lk;hlk

+
T∑

t=1

C−1
�1,lkt ;hlk

)−1

,

μtot;h = Ctot;h
(

C−1
�2,lk;hlk

μ�2,lk;hlk

+
T∑

t=1

C−1
�1,lkt ;hlk

μ�1,lkt ;hlk

)

are obtained by applying the Gaussian multiplication
lemma [23]. Interestingly, the availability of the posterior
distributions allows us to determine the reliability of the es-
timates x̂kt and ĥlk .

E. ALGORITHM STABILITY
Each parameter of a distribution is iteratively computed by
a soft update [20], i.e., given the old parameters θ(i−1), the
new parameters θ(i) are computed according to the message-
passing rules and then updated as

θ(i) ← η θ(i) + (1− η) θ(i−1),

where η ∈ [0, 1] is the soft update parameter. Additionally,
the computation of some messages, e.g., (17) may lead to
precision matrices with negative eigenvalues. Inspired by [23],
we set the negative eigenvalues to zero to assure positive
semi-definiteness as required for Gaussian distributions.

F. ANALYSIS OF FRONTHAUL LOAD
In this section we discuss a distributed implementation of
the bilinear-EP JCD with special attention to the messages
exchanged through the fronthaul. As apparent from (26) in
the Appendix, AP l requires the messages m�1,l̃kt ;xkt from the

other APs l̃ 
= l . The data prior m�3,kt ;xkt ≡ �3,kt is assumed
to be uninformative and thus not needed. The messages are ex-
changed via the CPU which computes, based on the incoming
messages from all APs, the following message

mxkt ;tot ∝
L∏

l=1

m�1,lkt ;xkt , (25)

and then forwards them to the APs. Then, AP l can remove
its own message from the incoming message from the CPU to
obtain the desired message as in (26), i.e.,

mxkt ;�1,lkt ∝
mxkt ;tot

m�1,lkt ;xkt

.

In the following, we quantify the fronthaul load for the
communication between APs and CPU in terms of number
of messages per iteration. Each AP transmits KT messages
m�1,lkt ;xkt to the CPU. Additionally, the message mxkt ;tot is
transmitted to each AP totalling LKT messages to be trans-
mitted.

G. COMPUTATIONAL COMPLEXITY
The order of computational complexity at the APs is mainly
determined by the computation of inverse matrices of dimen-
sion N . Then, we focus on the messages which require matrix
inversion and present the highest computational complexity,
namely, messages m�1,lkt ;zlkt and m�1,lkt ;hlk . Their order of
complexity can be obtained from (22) and (30). We can ob-
serve that KT |A| weighted sums of covariance matrices per
AP need to be inverted where A := {a ∈ R+ | a = |x|2, x ∈
S} denotes the set of distinct amplitudes in the signal con-
stellation set S . Therefore, at the AP, the complexity order
per iteration is O(KT |A|N3). The computation of the mes-
sage mxkt ;tot in (25) at the CPU requires the multiplication of
real-valued scalars of order O(LKT |S|). Therefore, the order
of the computational complexity at the CPU is O(LKT |S|)
per iteration of the bilinear-EP JCD algorithm. The total com-
putational complexity that takes into account the processing
in each AP and at the CPU is then given by O(LKT (|S| +
|A|N3)).

V. SIMULATION RESULTS
A. SETTING
In this section we present the setting that we utilized for
our simulation. We consider a square surface with 400 m
side length and position L = 16 APs on a rectangular grid,
i.e., on the points of the set {(i × 400

3 m, j × 400
3 m) | i, j ∈

{0, 1, 2, 3}} as in [15]. Each AP is equipped with N = 1 an-
tenna. The K = 8 UEs are uniformly randomly distributed
over the square surface. Each UE transmits with a power of
p = 14 dBm and at each AP the received signal is impaired
by an additive white noise with variance v = −96 dBm. The
diagonal elements of the channel covariance matrix �l are
determined by the distance between the UE k and AP l using
the fading model in [15], i.e., for UE k and for all co-located
antennas n at AP l

[�l ]nk,nk[dB] = −30.5− 36.7 log10

(
dkl

1 m

)
,

where dkl is the distance between UE k and AP l . The pilot
sequences are orthogonal, specifically, X p = I, P = K. The
variability of the scenario is captured by sampling 300 re-
alizations of the positions of the UEs. In each position we
perform 104 transmissions with different small-scale fading
realizations. In each transmission, T ∈ {10, 100} symbols are
sent per UE. We use 4-QAM as modulation scheme. Our
numerical results are obtained with I = 10 iterations and we
use η = 0.7 as soft update parameter.

B. PERFORMANCE EVALUATION AND COMPLEXITY
ANALYSIS
In this section we present our simulation results and discuss
the performance-complexity trade-off. As usual in the investi-
gation of CF-MaMIMO to analyze the QoS distribution, we
study the performance of the proposed algorithm in terms
of the empirical cumulative distribution functions (CDFs) of
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TABLE 1. Computational Complexity of Distributed and Centralized Algorithms

the symbol error rate SER := Ê{1x̂ 
=x} for detection and nor-
malized mean squared error (NMSE) defined as NMSE :=
Ê{ ‖ĥ−h‖2
‖h‖2 } for channel estimation.

The samples for the empirical CDFs of the SER and NMSE
are obtained per each large-scale channel fading and UE re-
alization and per each large-scale channel fading, AP and
UE realization, respectively, by averaging the instantaneous
values corresponding to different small-scale realizations. Ad-
ditionally, in the CDF of the NMSE we omit weak channels,
i.e., channels where the received power is lower than the noise
variance to avoid to take into account errors on weak and
insignificant channels. In our simulation, we consider four
baseline schemes, namely, the detector in [28] assuming per-
fect CSI, the ICD algorithm in [29], which is also a semi-blind
algorithm based on EP with polynomial complexity order,
a modified version of our proposed bilinear-EP JCD algo-
rithm with perfect channel knowledge, which provides a lower
bound to the SER, and a centralized conventional receiver
based on a Bayesian MMSE channel estimation algorithm and
a subsequent linear MMSE filter for data detection.

Next, we compare the computational complexity order
of the above mentioned schemes including a non-coherent
centralized EP algorithm proposed in [23]. The results are
summarized in Table 1. Notably, the proposed bilinear-EP
JCD algorithm and the algorithm in [29] have linear and cubic
(quadratic) complexity order in T (K ), respectively. Thus, the
proposed algorithm is more efficient for long data sequences
and a large number of UEs. However in our approach, the
highest order term N3 scales linearly with the number of
UEs K . As the bilinear-EP JCD algorithm, the non-coherent
centralized EP algorithm in [23] adopts an exact categorical
distribution for data. When it is used for uncoded trans-
mission, as in the proposed approach, its complexity order
is given by O(K6|S|T )). Due to its exponential complexity
in the length of the symbol sequence length T , the re-
quired computational efforts are prohibitive for a comparative
study of the algorithm performance. Essentially, the algorithm
in [23] approximates a maximum-a-posteriori (MAP) decoder
whereas our algorithm approximates a MAP detector. It is
worth noting that the extension of proposed bilinear-EP JCD
algorithm by inclusion of a decoder is straightforward through
the use of loopy belief propagation which is known to have
polynomial complexity as well. In contrast to the other algo-
rithms, the conventional centralized MMSE algorithm is not
iterative in nature and, thus, a fair comparison with the other
receivers which require multiple iterations is not straightfor-
ward.

FIGURE 3. CDF of SER for L = 16, K = 8, N = 1.

FIGURE 4. CDF of NMSE for L = 16, K = 8, N = 1.

In the following, we analyze the performance. Fig. 3 shows
the empirical CDF of the SER of the proposed bilinear-EP
JCD for T = {10, 100} and the above mentioned baselines.
For both values of T the proposed bilinear-EP JCD algorithm
outperforms the ICD algorithm in [29] by more than one order
of magnitude, while the complexity of bilinear-EP JCD is only
linear in T and not cubic. Our approach also outperforms the
EP-based detector in [28] with perfect CSI and the centralized
MMSE approach. The performance gap between the algo-
rithm in [28] using perfect CSI and our proposed approach
relying solely on semi-blind channel estimation indicates that
the Gaussian approximation of the data symbol distribution
and the averaging of the messages in [28], [29] leads to
a degradation of performance. We observe an improvement
of the CDF of the SER obtained with our bilinear-EP JCD
algorithm when the length of the transmitted data symbols
increases from T = 10 to T = 100. The performance of our
modified algorithm obtained assuming perfect CSI shows that
there is room for further improvement. Fig. 4 shows the CDF
of the NMSE. We observe an improvement of the NMSE by
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more than an order of magnitude of our proposed algorithm
compared to the ICD scheme in [29]. Additionally, the per-
formance of our channel estimation also improves when T
increases.

VI. CONCLUSION
In this paper, we considered a CF-MaMIMO system and tack-
led the quest of low-complexity JCD with near-optimal per-
formance and robustness to pilot contamination. We derived
a blind or semi-blind distributed JCD algorithm by formulat-
ing the problem in the framework of bilinear inference and
obtaining the solution as an unfolding of a message passing
algorithm incorporating EP-rules over a factor graph. The
appealing features of the proposed algorithm stem from our
choice of the approximate posterior joint distribution of data
symbols and channels. Our simulation results showed that
the proposed scheme significantly outperforms the selected
baseline schemes based on the detector in [28], which assumes
perfect CSI, and the ICD algorithm in [29]. Additionally,
bilinear-EP JCD has polynomial computational complexity
and allows for straightforward embedding of state-of-the art
SISO decoders, such that the decoding complexity can also be
kept of polynomial order. This enables further investigations
on the rate that can be achieved using our proposed JCD
algorithm.

APPENDIX
In this section, we derive some of the factor-to-variable
messages. When it does not cause ambiguity, we adopt the
following abbreviated notation m�1,lkt ;zlkt = m�1,lkt ;zlkt (zlkt ).

Derivation of message m�1,lkt ;xkt

Message m�1,lkt ;xkt is obtained by applying (8) and (9).
This computation requires the knowledge of messages from
variable nodes to factor nodes, namely, mhlk;�1,lkt , mzlkt ;�1,lkt ,

and mxkt ;�1,lkt as we can evince from the factor graph in Fig.2.
In the following, we derive these messages by applying (7).
Thus, we obtain mhlk;�1,lkt (hlk ) ∝ m�2,lk;hlk

∏
t̃ 
=t m�1,lkt̃ ;hlk

which is a Gaussian distribution with covariance matrix and
mean given by (15) and (16), respectively. As product of
Gaussian distributions, the mean and covariance matrix above
are obtained by applying the Gaussian multiplication lemma,
see, e.g., [23]. Similarly, we derive the other variable-to-factor
messages as mzlkt ;�1,lkt = m�0,lt ;zlkt and

mxkt ;�1,lkt ∝ m�3,kt ;xkt

∏
l̃ 
=l

m�1,l̃kt ;xkt (26)

which is a categorical distribution. We normalize it as follows

mxkt ;�1,lkt (xkt ) =
m�3,kt ;xkt (xkt )

∏
l̃ 
=l m�1,l̃kt ;xkt (xkt )∑

xkt∈S m�3,kt ;xkt (xkt )
∏

l̃ 
=l m�1,l̃kt ;xkt (xkt )
(27)

By utilizing the variable-to-factor messages impinging on the
factor node �1,lkt computed above, we apply (9) to obtain the
distribution before projection as follows

q�1,lkt ;xkt ∝
∫

δ(zlkt − xkt hlk )

× mhlk;�1,lkt mzlkt ;�1,lkt dzlkt dhlkmxkt ;�1,lkt .

∝
∫

1

|xkt |2 N
mhlk;�1,lkt

(
zlkt

xkt

)
× mzlkt ;�1,lkt (zlkt )dzlkt mxkt ;�1,lkt , (28)

where the last expression is derived by applying the sifting
property of the Dirac delta function, see, e.g., [34]. Then, the
factor mhlk;�1,lkt ( zlkt

xkt
) in (28) can be rewritten as shown in

(29) at the bottom of this page. Therefore, using the Gaussian
multiplication lemma we obtain

q�1,lkt ;xkt ∝ N (
0;μzlkt ;�1,lkt − xktμhlk;�1,lkt ,Czlkt ;�1,lkt

+|xkt |2Chlk;�1,lkt

) · mxkt ;�1,lkt .

Next, we observe that q�1,lkt ;xkt is already a categorical distri-
bution in the exponential family. Then, the projection operator
in (8) leaves its argument unchanged, i.e., proj{q�1,lkt ;xkt } =
q�1,lkt ;xkt . Finally, by applying (8), we obtain the message
m�1,lkt ;xkt which is given in (24).

Derivation of message m�1,lkt ;zlkt

For the derivation of message m�1,lkt ;zlkt we consider again
factor node �1,lkt in Fig.2. Thus, the same variable-to-
factor messages computed above are necessary to determine
q�1,lkt ;zlkt . Analogously, the distribution before projection
onto the family of exponential functions is

q�1,lkt ;zlkt ∝
∑

x′kt∈S
mzlkt ;�1,lkt (zlkt )

1

|x′kt |2 N

· mhlk;�1,lkt

(
zlkt

x′kt

)
mxkt ;�1,lkt .

We observe that q�1,lkt ;zlkt is a Gaussian mixture in |S| com-
ponents with the parameters C̃(xkt ) and μ̃(xkt ) which depend

mhlk;�1,lkt

(
zlkt

xkt

)
= 1

πN det
(
Chlk;�1,lkt

) · exp

(
−
(

zlkt

xkt
− μhlk;�1,lkt

)H

C−1
hlk;�1,lkt

(
zlkt

xkt
− μhlk;�1,lkt

))

= |xkt |2 NN (
zlkt ; xktμhlk;�1,lkt , |xkt |2Chlk;�1,lkt

)
(29)

mzlkt ;�1,lkt (zlkt )mxkt ;�1,lkt (xkt )N (
zlkt ; xktμhlk;�1,lkt , |xkt |2Chlk;�1,lkt

)
= N (zlkt ; μ̃(xkt ), C̃(xkt )) · mxkt ;�1,lkt (xkt )N (

0;μzlkt ;�1,lkt− xktμhlk;�1,lkt ,Czlkt ;�1,lkt + |xkt |2Chlk;�1,lkt

)︸ ︷︷ ︸
:=ω̃(xkt )

(30)
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on the specific value xkt and are defined in (22) and (23),
respectively, which is obtained by applying again (29) and
then the Gaussian multiplication lemma. Additionally, each
component of the Gaussian mixture distribution is weighted
by the unnormalized factor ω̃(xkt ) given in (30) at the bottom
of the previous page. Then, as in (9) we have to project the
Gaussian mixture distribution onto the family of Gaussian
distributions, i.e., we need to determine the Gaussian distribu-
tion N (zlkt ; ẑlkt ,�lkt ) := proj{q�1,lkt ;zlkt }whose moments are
matched to the distribution q�1,lkt ;zlkt . Denoting with ω(xkt )
the normalized weights obtained from ω̃(xkt ) given in (21), the
parameters ẑlkt and �lkt of the moment matched distribution
are shown in (19) and (20), respectively. Finally, we have

m�1,lkt ;zlkt ∝
proj

{
q�1,lkt ;zlkt

}
mzlkt ;�1,lkt

= N (zlkt ; ẑlkt ,�lkt )

mzlkt ;�1,lkt

.

The parameters C�1,lkt ;zlkt and μ�1,lkt ;zlkt of the updated
message are then given by the Gaussian multiplication lemma
as shown in (17) and (18), respectively.
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