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ABSTRACT Channel state information (CSI) is crucial for enhancing the performance of wireless systems
by allowing to adjust the transmission strategies based on the current channel conditions. However, obtaining
precise CSI is difficult because of the fast-changing channel conditions caused by multi-path fading. An
inaccurate CSI hinders the performance of various adaptive wireless systems, highlighting the need for
channel prediction techniques to effectively mitigate the drawbacks of outdated CSI. Conventional methods
typically depend on assumptions regarding user velocity or require knowledge of the Doppler frequency. In
contrast to existing approaches, we aim for a more robust and practical solution by training neural networks
without making any assumptions about user velocity, relying solely on noisy channel observations during
training. Specifically, we adapt both the sequence-to-sequence with attention (Seq2Seq-attn) and transformer
models for channel prediction. Additionally, a new technique called reverse positional encoding is introduced
in the transformer model to improve the robustness of the model against varying sequence lengths. Similarly,
the encoder outputs of the Seq2Seq-attn model are reversed prior to the application of attention mechanisms.
By means of simulations, we show that these proposed techniques enable the models to effectively capture
relationships within sequences of channel snapshots without increasing the complexity. Importantly, this
capability remains robust across varying sequence lengths, representing a substantial improvement over

existing methodologies.

INDEX TERMS Channel prediction, positional encoding, Seq2Seq, transformer.

I. INTRODUCTION

In 5G, and beyond 5G, wireless communication systems, the
channel state information (CSI) is essential for the base station
(BS) to optimize its transmission strategy to communicate to
the receiving mobile terminal (MT) [1]. The CSI, or channel,
is a complex-valued matrix whose dimensions correspond to
the number of transmit and receive antennas. It describes the
link between each transmit and receive antenna pair, that can
be affected by factors such as fading, multipath propagation,
and interference from other signals. In a typical frequency
division duplex (FDD) system, the BS sends a predefined
sequence of symbols, called pilots, to the MT, which estimates
the CSI and feeds the CSI coefficients back to the BS. Hence,
there is an inevitable delay between the instant of when the

MT estimates the CSI and the one in which the BS receives
the CSI coefficient. Therefore, since the channels change over
time, it is crucial for the BS to predict the channel [2]. The
problem of channel prediction is quite straightforward when
the channel dynamics are known. In particular, when the
Doppler frequency is known, linear predictors such as autore-
gressive (AR) models or Kalman filters (KFs) can effectively
be used for tracking the CSI, see [3], [4], [5], [6]. However, in
a typical wireless communication system, the MTs move with
unknown channel statistics and different velocities. There-
fore, a finite number of AR predictors need to be pre-trained
for different Doppler frequencies and the channel parameters
must be estimated from the available data. In order for this
approach to work well, both, i) the Doppler frequency must
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be correctly estimated, and ii) a potentially large number of
linear predictors need to be stored. Additionally, a wrong or
a coarse approximation of the Doppler frequency can cause
a non-negligible loss. Given these challenges, it is crucial for
both academia and industry to prioritize the development of
reliable predictive models. Notably, predictive models play a
crucial role in reducing latency by anticipating channel vari-
ations, which is especially vital for high-speed users facing
rapid changes.

In recent years, neural networks (NNs) have become a
promising solution in various research fields including wire-
less communications. In [7], convolutional neural networks
(CNNs) are used in combination with AR models for CSI
forecasting. In particular, CNNs are used to correctly identify
the channel dynamics, and to load the corresponding pre-
trained AR predictor to forecast the CSI. The authors of [8]
also propose a hybrid approach called Hypernetwork Kalman
Filter. There, a single-antenna setup is considered and only
Kalman equations are utilized for prediction, whereas a hyper-
network continuously updates the Kalman parameters based
on past observations. In [9] it was shown that the machine
learning-based predictor requires smaller operational com-
plexity compared to a vector Kalman filter-based predictor.
In [10] a spatio-temporal neural network was proposed by
considering channel prediction of MIMO-OFDM as a spatio-
temporal series problem. The work in [11] instead considers
frequency-selective channels and optimizes linear predictors
by leveraging a long-short-term channel decomposition, in
which the channel is decomposed into long-term space-time
signatures and fading amplitudes. Additionally, meta-learning
is used for training the model and reducing the required
number of pilots. In [12] meta-learning is used to improve
the prediction accuracy with only a few fine-tuning samples.
In [7], [13], [14], [15] recurrent neural networks (RNNs) are
used for CSI prediction. In particular, due to the ability of
RNNSs to incorporate the typical dynamics of time series data,
they represent a valid alternative to AR models for time series
forecasting. However, notably RNNs are difficult to train due
to vanishing or exploding gradient issues, see [16]. In [17] it
was shown that deep learning brings a notable performance
gain compared with the conventional predictors built on shal-
low recurrent neural networks. Among the recent advances,
we find the work in [18] where the CSI prediction is incor-
porated in a reinforcement learning-based setup with goal to
maximize the multi-user sum rate over time. In this setting,
the so-called Actor Network is responsible for CSI prediction
and it is realized via a multi-layer perceptron (MLP). The
most recent study in [19] presents a novel approach to predict
future channels in parallel using a transformer-based parallel
channel prediction scheme. The main objective is to prevent
error propagation that often occurs in sequential prediction.
To this end, the one-step ahead sequential prediction in the
transformer decoder, also called dynamic decoding in the
literature, is eliminated completely. Instead, the transformer
decoder takes as input a certain number of the past channel
realizations, along with a specific number of all-zero vectors
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equal to the number of unknown channels, to predict all the
future channels in parallel.

In this study, we draw inspiration from the achievements
in natural language processing by so-called attention-based
models. We adapt both, the transformer and the sequence-
to-sequence with attention (Seq2Seg-attn) models, to the
channel prediction task. The decision to utilize Seq2Seq-attn
and transformer models for predicting dynamic channels is
driven by their inherent compatibility with sequential data.
These models are specifically designed to handle tasks where
the input and output exhibit varying lengths, such as machine
translation or time series prediction. Instead of settling for
the vanilla architecture [20], [21], we introduce a novel re-
versed positional encoding (RPE) technique in the transformer
model to improve the model’s robustness against variable se-
quence lengths during testing, that may differ from the lengths
assumed for training. With the same goal in mind, we also
reverse the encoder outputs of the Seq2Seq-attn model before
applying attention. Unlike the state of the art, we investigate
the challenging setup where only noisy channels are available
for training and where the users are moving inside a cell
within a wide range of velocities, i.e., between 0 km/h and
120 km/h. We evaluate our models for varying noise levels
and sequence lengths, including lengths that differ from those
used during training. Additionally, we analyze the complexity
the proposed neural networks with respect to existing bench-
marks both in terms of number of parameters and in terms of
floating point operations. The contributions of this paper are
summarized as follows:

e We adapt both the transformer and the Seq2Seg-attn

model to the channel prediction task.

® We introduce novel ordering techniques in those models

to make them robust in adapting to CSI sequences of any
length,

® We show by means of simulations that the proposed

methods outcome the limitations of both classical meth-
ods and existing learning based methods without intro-
ducing undue complexity.

For the source code, refer to our GitHub repository: https:
/lgithub.com/vrizz/reverse-ordering. The rest of the paper is
organized as follows. In Section II, the system model is de-
scribed; in Section III, the proposed Transformer-RPE model
is presented; in Section IV, the proposed Seq2Seg-attn-R
model is presented; in Section VI, the dataset used and the
training setup are presented, and the simulation results are
discussed; in Section VII, we draw our conclusions.

II. SYSTEM MODEL

We consider a BS serving multiple MTs in a typical 5G
cell. The BS is equipped with M antennas, whereas the
single-antenna users are moving with different velocities and,
therefore, experience different fading conditions. In accor-
dance to the 5G standard [22], we assume that the channel
remains constant for the duration of a slot which we denote as
Tyot, and that a frame contains Ny slots. Additionally, we
assume that the velocities of the users are constant within
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the duration of a frame. From now on, we denote as h; €
CM the CSI vector corresponding to the ith generic slot of
the CSI time series. The sequence of Ny subsequent CSI
vectors {hi}g\i“l" is assumed to be strongly correlated. The
goal of multi-step CSI prediction is to find the best esti-
mator f : CM¥*t — CM*% which predicts the CSI vectors
{hi}f:fH based on preceding ¢ observations {hi}f=1 with
£ + 6 < Ngot. Note that, we assume that the channels {hi}f= |
are not perfectly known, and that only the corresponding noisy
observations {izi}le are available, i.e.,

hi < hi+n; i=1,...¢, (1)

where n; denotes the complex-valued noise vector with in-
dependent elements distributed as N¢ (0, a,f), and such that
E[nin?] = 0 forall i # j. Our assumption of continuous syn-
thetic channel data availability provides a controlled training
and evaluation environment. Though different from real-world
situations, it enables systematic assessment of our model’s
predictive capabilities. In practice, we acknowledge the need
of digital twins [23] or actual measurements to capture
real-world dynamics. In addition, throughout this study, we
consider real-valued neural networks. Therefore, we trans-
form the complex vector h; into a real vector where the real
and imaginary parts of the original vector are concatenated as

R™M 5 h; = concat(%e(lvzi), jm(lvzl-)). 2)

1Il. TRANSFORMER-RPE MODEL

In this section, we describe the proposed Transformer with
RPE model for CSI prediction, which has the Transformer
model [20] as baseline. The Transformer-RPE model is il-
lustrated in Fig. 1. In the following, we provide a brief
description of the Transformer model. However, the reader
can refer to [20] for a more detailed explanation. A Trans-
former consists of an encoder and a decoder NN. The encoder
aims to extract the important information from its input se-
quence, which can help the decoder to predict the next slots
one by one in a subsequent step. This input sequence is rep-
resented by the £ known noisy channels {il,-}le. The encoder
has Ly layers and each layer contains two consecutive resid-
ual networks. The first residual network has the “multi-head
attention” as the main layer, whereas the second residual net-
work contains an MLP as the main module. Moreover, the
layer normalization (LN) [24] precedes each of these mod-
ules. The MLP contains two fully-connected layers and a
GeLU [25] activation function after the first layer. A concise
pseudo-code of the multi-head attention layer can be found
in Algorithm 1. Multi-head attention in transformer models
processes input sequences by using multiple sets of attention
weights, or “heads,” instead of a single set. Each head attends
to different parts of the input sequence, allowing the model
to adapt to various data patterns. The outputs from all heads
are combined, providing a comprehensive representation of
the input. This approach allows the model to focus on di-
verse input aspects and learn more expressive features. In the
transformer encoder, we compute a multi-head self-attention,
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FIGURE 1. Transformer-RPE for CSI prediction.

Algorithm 1: Multi-Head (Masked) Self- or Cross- At-
tention [20].

Input: X € R&*k Z € R4*k Mask € {0, 1}=>k,
primary sequence, context sequence, and an optional
mask

Output: Y € R%uwxi ypdated representation of X

Hyperparameters: H, number of attention-heads

Learnable parameters: W RHdaunxdy
Wy € RHdmdeL, W, e RHdmidXdz’ W, € R4outxHdiq

Q< WX o> queries € R daunxk
K <~ WyZ > keys € R danxL
V «~W,Z o> values € R dmiax/z

for h = 1to H do
s K(h),TQ(h)
if Mask then
SW[=Mask] < —oco

end if

7P —v® . softmax (S(h)/«/datm) > € Rmiaxlx
end for
Vv
Y « WOV

> scores € R/2xk

> e RHdmiXmx
> e RdoutXlx

which means that in Algorithm 1, the context sequence Z is
equal to the primary sequence X .

The decoder has Lge. layers and each layer contains three
consecutive residual networks. The first and the second resid-
ual networks have the multi-head attention layer as the main
module of the residual block, whereas the third residual net-
work contains an MLP as the main module. As for the encoder
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layer, the LN precedes each of these modules. In the first
residual network of the decoder, Algorithm 1 takes as input,
in addition to the primary sequence X, a mask that ensures
that the prediction of k4 only depends on {h, j}lj‘.;(l). In the
Algorithm 1, this is achieved by setting all the values of the
input of the softmax activation function [26] to —oco which
correspond to “illegal” connections. The primary and context
sequence coincide. On the contrary, in the second residual
network of the decoder, Algorithm 1 takes the encoder output
sequence as context sequence Z. In this way, the information
contained in the known CSI slots can be leveraged to predict
the next slot.

For the proposed model, the first element of the decoder
input sequence is the last known CSI snapshot &,. This is
in contrast to what happens in natural language processing
since there, due to the absence of previous output at the be-
ginning of a translation, a predefined start-of-sentence token
is given as first decoder input. Additionally, during training,
teacher-forcing [27] is used in the decoder, which means
that during training, we use the true noisy CSI observation
ﬁg+1, .. .,l~13+5_1 as further decoder inputs, instead of the
predicted ones obtained at the decoder output. This helps
to speed up the training process since the decoder outputs
hyii, ..., heis can be obtained in parallel. However, during
testing, we have to stick to a sequential one-by-one prediction.

Similarly to the original implementation in [20] also in this
case, we transform the input sequences of both, the encoder
and the decoder, first by a linear layer and then by adding a
constant bias term, called positional encoding (PE). The PE
consists of constant, non-learnable vectors that are added after
the first linear layer in both, the encoder and the decoder. Since
there is no recurrence in the model, the PE is the only way to
inject information about the order of the sequence. Therefore,
it is crucial for the transformer architecture. In [20], and in our
work, the PE is constructed with sine and cosine functions as

PE(J, 2i) = Sin(j/(lOOOOZi/dmodel))
PE(]a 2i + 1) = COS(j/(lOOOOZi/dmndel))’ (3)

where j € {0, ¢ — 1} is the index corresponding to the posi-
tion within the sequence, i € {0, |dmode1/2]} is the index of
the dimension, and dpoge; corresponds to the dimension of
each CSI slot after the first linear layer. However, differently
from the vanilla architecture, we introduce a novel RPE in
the transformer encoder, while keeping the standard PE in
the transformer decoder. Intuitively, this means that we start
counting the CSI snapshots in the encoder from the last known
snapshot. In other words, this enhances the robustness of the
transformer to sequences of variable lengths, as the PE linked
to the latest known slots remains consistent for shorter or
longer sequences. The RPE can be obtained by first computing
the standard PE in (3) and then by reversing the order with
respect to the position index ;.

To better understand the motivation behind this procedure,
we can consider a simple example in which the trans-
former [20] with standard PE in the encoder is trained with an
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encoder input sequence of length ¢, whereas it is tested with
an encoder input sequence of length v, with v # £. During
training, the transformer implicitly exploits the information
contained in the most recent snapshots more than the in-
formation contained in the initial snapshots to make a good
prediction. In the transformer with standard PE those are the
snapshots associated with, e.g., PE({—1,:),...,PE({—¢, )
with ¢ < £, and the colon that denotes all the elements of
the corresponding row. However, when v < ¢, such model
fails to make a good prediction because in this case the most
important (or recent) snapshots are associated with the PEs
that were linked with the initial snapshots during training,
thus their importance is underestimated. On the other hand,
when v > ¢, the usual ordering leads to the situation in which
those snapshots, which are now outdated, are interpreted as
the most recent ones by the model, and their importance is
overestimated for making prediction. This problem is solved
with the proposed RPE, which introduces consistency when
mapping the PEs to the corresponding snapshots, and makes
the transformer robust, allowing to capture the relationships
between different snapshots in the sequence, regardless of the
sequence length.

IV. SEQ2SEQ-ATTN-R MODEL

Another relevant framework to solve the problem at hand is
the sequence-to-sequence (Seq2Seq) architecture, see [28].
Like the transformer, also the Seq2Seq model comprises an
encoder and a decoder neural network, which are both RNNs
in the simplest case. Specifically, the encoder RNN encodes
the input sequence to produce a final state which in turn is
used as initial state for the decoder RNN. The hope is that the
final state of the encoder encodes all the important information
about the source or input sequence such that the decoder
can generate the target sequence based on this vector. How-
ever, in such setting, the decoder has to extract meaningful
information from a single representation (the final state of
the encoder), which can be a daunting task, especially when
taking into account long sequences, or sentences. In [29] an
attention mechanism has been introduced in the decoder neu-
ral network to address this problem. In particular, instead of
passing only the final state of the encoder RNN, this approach
involves passing all the encoder RNN states to the decoder.
Hence, at each decoder step, the attention mechanism decides
which parts of the source sequence are more relevant.

In the following, we propose an adapted model of [29],
called Seq2Seq-attn-R model, to tackle the channel prediction
task. To avoid vanishing or exploding gradient problems,' we
opt for a GRU as RNN for the encoder. The main steps of the
GRU are

2z = o(Wconcat(h;, u; 1) +b.)
r = a(W,concat(ilt, u;_1)+b,)

'Because RNNs allow for information to be fed back to the same node
multiple times, the gradients can become too small or too large, leading to
unstable training. The gating mechanism of both gated recurrent unit (GRU)
and long-short-term memory (LSTM) models addresses this issue.
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FIGURE 2. Decoder of Seq2Seq-attn-R model for CSI prediction.

i, = tanh(W,;concat(izt, re Qu,_1)+by)
u=~0-z)0u +z OQu_y, 4

where z; and r; represent the update and the reset gate, re-
spectively, and o denotes the sigmoid activation function [26].
In particular, when z; is close to 1, we ignore completely the
current input /&, for the update of the current hidden state u,.
On the other hand, when both r; and z; are equal to zero, the
hidden state only depends on the current input. The decoder
also comprises a GRU. However, at each step, and in order
to encourage the decoder to leverage the important parts of
the encoder outputs before making the prediction, an attention
mechanism with respect to the encoder outputs precedes the
GRU. The model used for the decoder is shown in Fig. 2.
In particular, the current hidden state, and the current input
are concatenated, and then projected via a single layer onto a
dimension equal to the maximum number of encoder outputs
Cmax- At this point, the first £ out of the ¢p,x units are selected
and the obtained vector is normalized with the softmax activa-
tion function [26] to obtain the weights (probabilities), which
are multiplied with the reversed encoder outputs uy, ..., u;j.
The rationale behind reversing the encoder outputs is sim-
ilar to the idea of using the reverse positional encoding in
the transformer encoder. Essentially, by reversing the encoder
outputs, we ensure that the weights associated with the initial
units out of the €max units correspond to the most recent
known slots. This enables the network to generalize to se-
quences of varying lengths. Alternatively, instead of reversing
the encoder outputs, we could achieve the same goal by se-
lecting the last (instead of the first) ¢ units out of £;,,x before
applying the softmax.

Next, the result of the weighted sum of the encoder out-
puts, or “attention” with respect to the encoder outputs, is
combined with the current decoder input and fed to a linear
layer followed by a rectified linear unit (ReLLU) [30] activation
function to produce the second input vector for the decoder
GRU. The current hidden state of the decoder GRU serves as
the first input vector. Therefore, before entering the GRU, the
current decoder input is preprocessed to take into account the
contribution of the known slots.

Finally, and analogously with typical RNNs, the output of
the GRU is fed to a linear layer to output the prediction of
the next CSI vector. Like the Transformer-RPE model, the
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first input of the decoder is represented by the last known CSI
snapshot, and teacher-forcing [27] is deployed during training.
However, differently from the Transformer-RPE model, in the
Seq2Seq-attn-R model, the training happens sequentially.

V. BENCHMARKS

In this work, we consider an LSTM [31] model as further
benchmark. An LSTM cell employs three different gates, an
input gate i;, a forget gate f,, and an output gate o, to prevent
exploding or vanishing gradients. The main idea behind the
gating system is not to retain information about all the inputs
and to capture long-term dependencies. In formulas, we have:

i = U(Wiconcat(izt, u;,_1)+b;)
[ = a(choncat(fz,, u1)+by)
0, = o(W ,concat(h,, u,_) + b,)
¢ = tanh(W zconcat(f,, u;_1) + bz)

¢ =f0¢_1+iO¢, u; = o0; O tanh (¢;), )

where u; and ¢, denote the hidden and the cell states, respec-
tively, and o denotes the sigmoid activation function [26].
Note that differently from the classical RNN, where the next
hidden state is directly represented by ¢;, here, the hidden
state is updated using the cell state ¢,. Therefore, ¢, is first
modulated by the input gate and then by the output gate. In
this work, we utilize an LSTM to encode the input sequence
{ft,-}f:1 into uy. Then, in order to predict the next § CSI slots,
we employ a final linear layer that takes u, as input and
. =T =T T
directly outputsy = [k, {, ..., hy 5]

Apart from the LSTM-based model, additional benchmarks
are: i) a two-layer MLP with a ReLU [30] activation func-
tion in the hidden layer; ii) a multivariate autoregressive
(MAR) model of order equal to ¢, where the coefficients
are found with the ordinary least squares solution, see [32,
Section 3.4.3]; iii) a transformer which utilizes the standard
PE in the encoder, as in [20]; iv) the Transformer-Parallel
architecture, proposed in [19]. Note that, the MAR approach,
upon our investigation, emerged as the only conventional
method adaptable to the challenging setup we are currently
exploring. Unlike conventional solutions like the Kalman fil-
ter, he MAR based prediction does not require estimating
user velocity or autocorrelation function, making it more ef-
ficient in terms of time and performance. Indeed, this would
be quite inefficient in terms of both time and performance,
since it would require the acquisition of many CSI snap-
shots during the online operational phase, and additional
computation for estimating the velocity of the user. More-
over, the estimate of the velocity based on noisy observations
may be inaccurate and using it as the basis for building
a predictive model could compromise the reliability of the
predictions.
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VI. SIMULATIONS

A. SIMULATION SETUP

For the simulations, we consider CSI sequences generated
with QuaDRiGa v.2.6, see [33]. In particular, we generate
Nsamptes = 150,000 CSI sequences corresponding to 1,500
different velocities. Therefore, we have 100 users for each
velocity. Every CSI sequence corresponds to a frame which
contains Ngjoy = 20 slots, each with duration Tyo = 0.5 ms.
The carrier frequency is 2.6 GHz and each velocity v mea-

L

sured in m/s is Rayleigh distributed: 2

y = 8. The reason for this choice is to simulate a realistic
urban scenario, where the majority of the MTs move within
a range of 20 to 50 km/h. However, there are MTs with v <
20 km/h (e.g., pedestrians and cyclists), as well as a few MTs
with velocities exceeding 100 km/h (e.g., fast moving cars).
The scenario is the “BERLIN_UMa_NLOS” which gener-
ates non-line-of-sight channels with 25 paths. Specifically, the
channel model we used in this study is based on measurements
conducted in Berlin. QuaDRiGa places scatterers in the sur-
roundings of the BS. Scatterer positions are determined from
drawn small-scale parameters, meeting specific requirements
(e.g., 3GPP standards) for large-scale wireless channel param-
eters like delay and angular spreads. Once scatterer positions
are set, QuaDRiGa deterministically calculates path lengths,
angles, delays, etc., enabling the generation of time-evolving
channels consistent with its environment [33], [34]. The BS at
a height of 25,m has a uniform rectangular array with M = 32
antennas (8 vertical, 4 horizontal). Users’ initial positions are
randomly distributed over a 120deg sector, with distances
from the BS ranging from 50,m to 150,m at a height of 1.5,m.
Generated CSI sequences are normalized by path-gain, then
split into training, validation, and test sets (80%, 10%, 10%).

Simulations consider varying noise levels, corrupting chan-
nel k; (described in (1)) with noise variance O'nz to achieve a
specific average SNR. The formula relates the average SNR
to 0,,2.

2
exp (— 2“7 ), where

1 ZNsamples ZNsl(ln ”h(J) “2
i= i

Nsamplestlm Jj=1

SNR =
Mo}

where hg’ ) denotes the CSI vector in the i’th slot of the j’th
sample in the dataset. For our simulations, we assume that the
first £ = 16 noisy CSI realizations are known. Therefore, the
goal is to predict the next § = 4 noisy CSI vectors.

The performance metric that we consider is the normal-
ized mean squared error (NMSE) with respect to the test
set between the true noiseless CSI and the CSI predicted by
the different models based on the noisy observations of the
previous slots. In formulas, we have:

1 Mest ) IH) —ﬁ(j)”F
N Z € €= HD
test = l IF

NMSE =

)

where H is the matrix that consists of the clean CSI snap-
shots, and H = [hy41, ..., h¢ss] is the matrix that consists
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of the corresponding predicted CSI snapshots. During train-
ing, we assume that only noisy data are available. Therefore,
the loss function is given by the NMSE between H =
[h P h ¢+s] and H. All the models are trained separately
for each SNR value. The number of epochs is set to 500 and
the batch size is equal to 200. The Adam optimizer (see [35])
with learning rate equal to 1073 is used. For each model,
the parameters leading to the smallest NMSE concerning the
validation set, between the noisy CSI and the predicted one,
are saved and considered during the test phase. It is important
to notice that the clean CSI is exclusively used during testing
to evaluate performance. Throughout training and validation,
only noisy CSI observations are employed. Additionally, all
the NN in this study were trained on a single GPU, specifi-
cally the Nvidia Tesla V100-PCIE-16GB.

B. MODELS PARAMETERS

For the Transformer-RPE described in Section III we consider
Lene = Lgec = 2. Furthermore, in Algorithm 1 we set H = 4,
and dyyn = dppig = 16, while the observed dimensions that
correspond to the dimension of the real-valued CSI snap-
shots are dy = dy = doy = 64. Consequently, dpyodel = 64.
The MLP block in both, the encoder and the decoder, has a
hidden dimension equal to 128.

For the Seq2Seq-attn-R model described in Section IV, we
consider GRUs with two layers and hidden states with dimen-
sion equal to 128. In the decoder, the first linear layer followed
by the softmax activation maps (64 + 128) units to £myax = 20
units, where 64 is the input dimension (the dimension of it,-),
128 is the dimension of the hidden state u;, and the addition
is due to the concatenation of the two. On the other hand,
the second linear layer followed by a ReLU maps (64 + 128)
units to 64 units, where 128 is the resulting dimension after
the “Multiply & Add” block. The decoder’s final linear layer,
which produces the CSI prediction for the next step, maps
the 128 units of the next hidden state to the 64 units of the
next CSI. The dimensions of all the weights matrices and bias
vectors of the GRU, that appear in (4) can be derived with the
given information.

For the LSTM model, we have considered a two-layer
LSTM, with hidden states with dimension equal to 128,
and a final linear layer which maps the last hidden state
to the output dimension which is equal to 256. The di-
mensions of all the parameters which appear in (5) can be
inferred with the given information. In the MLP model, the
observed dimension, the hidden dimension, and the output
dimension are 1024, 512, and 256, respectively. The Trans-
fomer with standard PE has the same parameters as the
Transformer-RPE. For the Transformer-Parallel, the decoder
input is initialized with the past 8 CSI snapshots followed by §
snapshots initialized as all-zeros vectors, while the remaining
parameters have the same values as for the Transformer-
RPE. The parameters of our models are chosen heuristically,
considering task complexity, dataset size, and the risk of
overfitting.
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C. NUMERICAL RESULTS

In Fig. 3, the NMSE vs. average SNR is displayed for all
the models described within this work. In Fig. 3(a), we can
observe that the models designed for sequential data, such
as LSTM, Seq2Seq-attn-R, and all the Transformer-based
models, outperform both the MAR and the MLP models.
Moreover, among these, the models that include an attention
mechanism outperform the LSTM model, despite the fact
that the LSTM predict all the & snapshots in one step. This
means that in the LSTM, an imperfect prediction for the £ + 1
snapshot has no influence regarding the prediction of the fu-
ture 6 — 1 snapshots. Additionally, we observe that both the
proposed Transformer-RPE and the one of [20] outperform
the Transformer-Parallel [19] model in all the cases. This is
because the former architectures can leverage the predicted
CSI snapshots to make better prediction for the next one.
And, at moderate or high SNR levels, this is advantageous
for making a more accurate channel prediction. To highlight
the importance of channel prediction, we compare it to a
control group without prediction, which maintains the last
known CSI snapshot for subsequent § snapshots. Additionally,
we assess the performance of the sequential models trained
for £ =16 and 6 =4 on different sequence lengths as a
benchmark.

In Fig. 3(b), the NMSE of various models for ¢ = 8 and § =
2 is displayed. Transformer-RPE and Seq2Seq-attn-R outper-
form other models, except at low SNR where Transformer-
Parallel is slightly better. However, in low SNR for all models,
NMSE is too high (>0.2), indicating poor performance in this
region. Our approach outperforms Transformer-Parallel [19]
mainly due to two factors. Firstly, we prioritize sequential
prediction of each snapshot, leveraging the dynamic de-
coding process, unlike Transformer-Parallel, which predicts
all snapshots in a single step. Secondly, our method uses
reversed positional encoding, whereas Transformer-Parallel
uses classical positional encoding in the encoder. By compar-
ing Transformer-RPE and Transformer [20], improvements
in generalization are evident due to the introduced RPE. It’s
essential to note that in Fig. 3(b), only half of the vector y
from SectionV is considered for LSTM.

In Fig. 3(c), the NMSE of the different models for ¢ = 14
and § = 6 is shown. In this case, the proposed models out-
perform both, the Transformer with PE and the Transfomer-
Parallel. At the same time, in Fig. 3(c), we can observe
that the performance of the LSTM is very close to those of
both, the Transformer-RPE and the Seq2Seq-attn-R model.
Furthermore, to obtain the results in Fig. 3(c), we have to
sweep twice through LSTM model: the first time to predict
the next 4 snapshots and the second time, it uses the known
snapshots together with the predicted ones to predict the re-
maining 2 snapshots. In both, Fig. 3(b) and (c), the presence
of peaks in the lines of both, the Transformer with PE and
the Transfomer-Parallel, is due to the fact that these models
trained for £ = 16 and § = 4 cannot generalize to other se-
quence lengths. These results highlight the robustness of the
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proposed models and show that they can generalize to any
sequence length, as opposed to existing methods.

In Fig. 4, we depict NMSE versus prediction step for
SNR = 15 dB, ¢ = 14, and § = 6. Notably, prediction er-
ror increases with advancing time steps into the future.
The proposed models, Transformer-RPE and Seq2Seq-attn-R
outperform both, the Transformer with standard positional
encoding [20] and the Transformer-Parallel [19]. The LSTM
model shows a comparable prediction error, but it requires two
passes, as discussed earlier. Additionally, in Fig. 5, we present
the NMSE for two velocity ranges under SNR = 15 dB, ¢ =
8, 6 = 2. The proposed models exhibit superior performance
across various velocity ranges when compared to other mod-
els analyzed in this study. As expected, all models exhibit a
smaller NMSE in the lower range of [20, 30] Km/h as opposed
to the higher range of [80, 100] Km/h.

Table 1 shows model complexity in terms of parameters
and floating point operationss (FLOPs) for £ = 16 and § = 4.
Sequential data models have similar parameters and FLOPs.

VOLUME 5, 2024

TABLE 1. Number of Parameters and Complexity for ¢ = 16, § = 4

Model # parameters # FLOPs
LSTM 264, 448 6.37 x 106
Seq2Seg-attn-R 370, 832 6.13 x 106
Transf.-RPE? 178,752 5.96 x 106
Transf. Parallel [19] 178,752 4.68 x 109

Transformer-based models have the fewest parameters, while
Transformer Parallel has the fewest FLOPs. This is due to
Transformer Parallel predicting all § CSI snapshots simulta-
neously, while Transformer-RPE iterates over the transformer
decoder § times, considering previous predictions.

In summary, the proposed models, particularly the
Transformer-RPE, offer more accurate channel prediction
compared to existing models while maintaining the com-
plexity at the same order of magnitude. Additionally, the
fact that the proposed models exhibit robust results for
different sequence lengths highlights that in a practical sce-
nario it is sufficient to train a single model instead of
having to train a different model for each combination
of ¢ and §, which saves computational power, as well as
storage requirements at the BS. The proposed approach,
like many deep learning methods, relies on the assumption
that the dataset accurately represents a specific cell’s chan-
nel statistics. Consequently, the prediction model, such as
Transformer-RPE, is tailored to a specific cell and requires
training on data from that cell. If applied to a different
cell, retraining the Transformer-RPE is necessary. However,
transfer learning principles [36] can be used to extend the
model’s applicability to multiple cells simultaneously. Nev-
ertheless, this extension is beyond the scope of the current
work.

VIl. CONCLUSION

In this study, we introduce two models for predicting
time-varying channels: Transformer-RPE and Seq2Seq-attn-
R. Both outperform existing methods in channel predic-
tion accuracy across different noise levels and generalize
to unseen sequence lengths. The proposed reverse order-
ing techniques are straightforward and effective, offering
an attractive solution to avoid training multiple neural net-
works for varying lengths and thereby reducing training
complexity and storage requirements at the BS. This is
crucial in 5G and future wireless systems, emphasizing
flexibility and resource efficiency. Future research could
extend models to multiple-input-multiple-output (MIMO)
channels, beyond the current focus on multiple-input-single-
output (MISO) channels. Additionally, improving the mod-
els to predict precoding indices rather than channel val-
ues may offer a more practical solution for real-world
systems.

Zsame as Transf. [20].
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