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ABSTRACT In this article, we introduce a causal low-latency low-complexity approach for binaural
multichannel blind speaker separation in noisy reverberant conditions. The model, referred to as Group
Communication Binaural Filter and Sum Network (GCBFSnet) predicts complex filters for filter-and-sum
beamforming in the time-frequency domain. We apply Group Communication (GC), i.e., latent model
variables are split into groups and processed with a shared sequence model with the aim of reducing the
complexity of a simple model only containing one convolutional and one recurrent module. With GC we are
able to reduce the size of the model by up to 83% and the complexity up to 73% compared to the model
without GC, while mostly retaining performance. Even for the smallest model configuration, GCBFSnet
matches the performance of a low-complexity TasNet baseline in most metrics despite the larger size and
higher number of required operations of the baseline.

INDEX TERMS Binaural, low-latency, multi-channel, real-time, speaker-separation.

I. INTRODUCTION
Enhancing speech signals in reverberant multi-talker scenar-
ios with additional noise is a challenging problem in the
context of assistive listening devices. One approach for speech
enhancement and improving speech perception is speaker
separation, which could alleviate challenges that hearing-
impaired listeners face in many-talker social interaction.
Speaker separation has seen major breakthroughs in recent
years when deep-learning strategies were applied to the prob-
lem, both in the time-frequency domain [1], [2], [3] or by
performing time-domain audio separation [4], [5], [6]. How-
ever, most of the proposed algorithms are offline approaches,
while causal low-latency algorithms are required for hearing
aids. Further, in the context of assistive listening devices,
which usually exhibit multiple microphones near the left and
right ear, spatial multi-channel information could be exploited
for improved source separation. A number of multichannel
approaches for speech enhancement and speaker separation
have been proposed [7], [8], [9], [10]. All of the above-
mentioned algorithms are based on architectures with a large

computational footprint and are not compatible with small-
footprint hardware, e.g., hearing aids. The majority of these
solutions does not consider low-latency constraints [7], [9]
and they are implemented as multiple input single output
(MISO) system, while for binaural hearing aids, it would
be favorable to use binaural, multiple input multiple output
(MIMO) algorithms that could preserve spatial cues. Such
algorithms were also proposed for binaural blind speaker sep-
aration [11] and speech enhancement [12]. However, these
approaches use the causal ConvTasnet as a backend which
has because of their convolutional layers with large receptive
fields a large memory footprint originating from the large
amount of required rolling buffers. This memory footprint
can make the application on memory redistricted low-power
devices difficult.

In [13], Luo et al. refined the sub-band LSTM approach
from [9] to a concept of grouping the latent representation
and using a shared sequence model across groups for reducing
size and complexity of models. To share information across
parallel groups, a Group Communication module (GC) was
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proposed. It was shown that grouping with GC can strongly
reduce the size and the complexity of models with only minor
performance drops on various architectures [14].

Some of the above-mentioned algorithms have been tested
as strategy in hearing-aid processing: In [15], Bramsløw et al.
showed that single channel neural-network based speaker sep-
aration can increase the intelligibility of 2-speaker mixtures
when the two separated signals are presented to the right and
left ear, respectively. The benefit was even larger when the
listener could choose the desired speaker.

In this study, we use a system that meets many require-
ments of real-life hearing devices. We do a in depth evaluation
of the Binaural Filter and Sum BFSnet a model adapted to
MIMO binaural multichannel blind speaker separation from
the Group Communication filter-and-sum network (GCFSnet)
introduced in [16] for low-latency low-complexity hearing-aid
speech enhancement.

The model applies complex-valued filter-and-sum beam-
forming and directly predicts the complex-valued filter output
for separating the talkers. Additionally, a complex-valued post
filter is estimated for each channel individually with the aim
of further increasing performance and robustness. BFSnet
provides a low latency since it uses a window length of
2 ms and a 1 ms shift. It features a simple topology based
on a convolutional and a recurrent module and allows for
reducing complexity by using grouping and Group Com-
munication [13] (GC) with transform average concatenate
(TAC) [14]. The model using GC is referred to as GCBFSnet.

We are interested in the trade-off between model perfor-
mance, number of parallel groups for the grouped parts of
the model, and model size controlled with the hidden size
of the groups. Four objective output metrics are reported that
either focus on single-channel improvements (scale-invariant
signal-to-distortion ratio, SI-SDR, and perceptual evaluation
of speech quality, PESQ) or on binaural/better-ear perception,
i.e., the modified binaural short-time intelligibility (MBSTOI)
model and the hearing-aid speech perception index (HASPI).

We are comparing the GCBFSnet to three baseline models
based on the common causal ConvTasNet [4]. The first is
the binaural ConvTasNet as described in [11]. For the second
model this approach is adapted to full MIMO processing for
fair comparison. For the third the MIMO model is used with
additional GC to create a low-complexity baseline.

The models are trained and used for speaker separation in a
scenario with two speakers in a reverberant environment with
diffuse noise. This scenario is static and well-defined, but also
quite challenging due to the task, noise, and reverberation.
It also represents a common communication situation which
can be analyzed with respect to spatial separation of speak-
ers and reverberation time (as presented in a post analysis
of results). For creating the training data we used the Libri
2mix corpus [17] and a large amount of simulated multichan-
nel binaural room impulse responses (BRIR) to represent a
large variety of acoustic conditions and source-and-receiver
positions.

FIGURE 1. Illustration of binaural spatial filtering structure with post filter
for separation of two speakers with Ml microphones on the left and Mr

microphones on the right.

II. METHODS
A. ACOUSTIC SCENARIO
For this study, we are considering scenarios with two speakers
and a noise source. The proposed model estimates filter coef-
ficients in the frequency domain. We therefore first apply the
multichannel short-time Fourier transform (STFT), which can
be written as

Y (m, t, f ) = X1(m, t, f ) + X2(m, t, f ) + XN (m, t, f ) (1)

where m, t , f are the microphone, frame and frequency index,
respectively. Xi corresponds to the complex time frequency
(TF) representation of the anechoic speech signal si(n) of
speaker i convolved with the corresponding binaural multi-
channel room impulse response hi(m, n). Y is the mixture
while XN is the TF-representation of the noise d (n) convolved
with the BRIR hd (m, n). Our goal is to extract the binaural
speech signals si(l,r)(n) only containing the direct part of the
reverberant speech. The estimation is performed by complex
filter-and-sum beamforming for the left l and right r channel
equally as

S̃i(l,r)(t, f ) =
2M∑

m=1

Y (m, t, f ) · Wi(l,r)(m, t, f ) (2)

where S̃i(l,r) denotes the intermediate estimated binaural
TF-representation of speaker i and Wi(l,r) ∈ {z ∈ C | −1 ≤
�(z) ≤ 1,−1 ≤ �(z) ≤ 1} are the filters estimated by the
model. M is the number of microphones on each side. Ad-
ditionally, a single channel post filter is applied to the left and
the right channel of each source separately

Ŝi(l,r)(t, f ) = S̃i(l,r)(t, f ) · Ci(l,r)(t, f ). (3)

Ci(l,r) ∈ {z ∈ C | −1 ≤ �(z) ≤ 1,−1 ≤ �(z) ≤ 1} denotes
the complex filter for the left and right channel of speaker
i. Ŝi(l,r)(t, f ) is transformed back to the time-domain by an
iSTFT. The general algorithm structure is illustrated in Fig. 1.
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FIGURE 2. Illustration of the proposed filter estimation model.

B. ARCHITECTURE
The proposed architecture (visualized in Fig. 2) has five mod-
ules. (a) A grouping module combines the features and splits
the latent representation in equally sized groups. (b) The Conv
module is included since a convolutional layer can extract lo-
cal temporal information, which could be especially important
when a very short frame length is chosen as in our approach.
(c) Due to its recurrent connections, the GRU module should
account for long-term temporal dependencies. (d) An un-
grouping module recombines the outputs of the groups to one
latent representation from which the filters are predicted by
the (e) filter estimation module.

The concatenated real and imaginary part of Y serve as
features to the grouping module; the multi-microphone repre-
sentations are reshaped into a single input vector. This vector
is linearly projected by a fully-connected layer (FC) of size
(4FM ) × P. The projection is split into equal groups of size
P/G where G is the number of parallel groups. This is inspired
by the grouping performed in [13]. Grouping is a from of
weight sharing and implies the reuse of a sequence model
for equal splits of a latent dimensions. Hence, the amount of
trainable weights can be reduced while retaining a similar per-
formance when keeping the amount of computations constant;
when using a larger number of groups, performance could also
increase compared to the system without GC.

Next, the groups are processed by a Conv module with
shared weights across all groups. The Conv module contains
an FC layer of size (P/G) × H and parametric rectified linear
unit (PReLU) activation. It is followed by causal depth-wise
separable convolution (DS-Conv) with kernel size 5 across
time followed by a DS-Conv with kernel size 3, both with
PReLU activation as well. An additive skip connection with
a depth-wise convolution (D-Conv) and kernel size 1 is used
in a branch parallel to the DS-Conv operations. This kind of
skip-connection is inspired by [18]. D-Conv and DS-Conv
were chosen to reduce the number of weights and complexity
compared to their full Conv layer counterparts. For frame-by-
frame implementation of the Conv module, two rolling buffers
are required for saving the previous inputs to the D-Conv
operations.

TAC [19] is utilized for GC [13] between the Conv and the
following module, which is motivated by findings from Luo
et al. who reported superior results in comparison to using
BLSTMs [14]. Further, TAC requires fewer operations than
BLSTM processing and can be parallelized during inference.
TAC consists of three FC layers with PReLU activation. The
first FC layer is shared between all groups and transforms the
latent presentation of the groups of size H to size 2H . Next,
the average over the group axis is calculated. The average is
processed by the the second FC layer with size 2H × 2H . This
output is concatenated to the transformed output of each group
created by the first FC layer and mapped by the third FC layer
from 4H to size H . In a last step, the input to TAC is added to
the output as an additive skip connection. Compared to [19]
and [14] we use TAC with a hidden dimension of 2H instead
of 3H to reduce the complexity. Preliminary experiments have
not shown a large degradation from the reduction of the hid-
den dimension.

The next module is a shared GRU module containing two
stacked GRUs with H units with an additive D-Conv skip
connection. The GRU-Module is followed again by TAC. The
combination of first using convolutional layers followed by
recurrent layers have shown to be beneficial in previous stud-
ies [20], [21].

In the following Ungrouping module, a shared FC layer
linearly projects the latent representation of the groups of size
H to size P/G. The projected latent representations of the
groups are concatenated to form a latent representation of size
P. From this representation, the real and complex part of the
filters W and C are predicted by FC layers of size P × (4FM )
for W and size P × (4F ) for C with a tanh activation in the
filter estimation module. The outputs of the FC layers are
reshaped and combined to the final complex filters.

C. LOSS FUNCTION
The compressed spectral MSE (cMSE) previously used for
multichannel sound source separation [22] is used as loss
function. The cMSE is defined as follows

LcMSE = (1 − α)||X̂ |c − |X |c|2 + α|X̂ c − X c|2, (4)
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where X and X̂ denote true and estimated STFT of the bin-
aural target signal, respectively. The sum, the frequency, time
and channel indices are omitted for brevity.

Note that STFT parameters used for the cost function does
not have to be identical to the STFT for the filtering frame-
work. X c = |X |c X

|X | denotes the magnitude compression of
X with c. α is a weight factor to balance the MSE be-
tween complex-valued spectra and magnitude spectra. This
loss function was chosen since the power-law compression is
beneficial during training. It reduces the dominance of large
values. c and α were set to 0.3 for all experiments. These
values were found to be a good trade-off between signal
quality and interference reduction [23]. The loss is combined
with utterance-wise permutation-invariant training [2] (uPIT)
to address the permutation problem of speaker separation.
When applying uPIT the left and right channel of each speaker
is seen as a fixed set to enforce a fixed channel order and so
not allowing random switching of the left and right channel.

D. DATASETS AND DATA GENERATION
As basis for our training, evaluation and test set, we created a
spatial version of the LibriMix Corpus [17]. LibriMix includes
the noise from the WHAM! corpus [24], which was gathered
in cafes, bars and public spaces. The LibriMix corpus has
a large amount of data and a large variety and number of
speakers which is beneficial for training robust models.

To create spatial signals, we simulated approximately 60 k
rooms with RAZR [25] with RT60 values drawn equally from
the range of 0.1 to 1 s. The rooms have ceiling heights equally
drawn from 2.5 to 4.5 m, widths from 3 to 10 m and surface
areas between 12 and 100 m2. As a basis for the spatial ren-
dering we are using the high-resolution HRTF set from [26] of
the B&K Hats with behind-the-ear hearing-aid dummies with
three microphones on each side (front, mid and rear). In total,
6 hearing-aid channels are available.

For each room, three point sound sources are modeled at
randomly drawn positions. The first two sources are used for
speech signals while the third is used for the noise source.
The speech sources are at least 1 m away from walls and
positioned in the range between 0.75 to 2 m away from the
receiver at a random angle at a height between 0.9 to 1.8 m.
The noise source has the same settings except its distance to
the receiver, which is at least 1 m with no upper bound. The
receiver is positioned at random up to 1 m from the center
of the room at a height between 0.9 to 1.8 m. From RAZR,
we can obtain either the full BRIR H or segments that relate
to the direct component or the impulse response Hdirect or
the early reflections and late diffuse reverberation (Hearly and
Hlate, respectively). This is beneficial since it enables us to
use Hdirect as a properly delayed training target to also in-
clude dereverberation and have a clean target for the objective
measures.

The training data comprises the 50.8 k utterances and noise
files of the min train-360 split from LibriMix. Training is
validated with the 3 k mixtures from the min dev split, while

testing is performed with the 3 k mixtures from the max test
split. During training, the training epochs are created online
to have a larger variety compared to a fixed training set (since
similar but not identical signals are used in different epochs).
For each training sample random speakers and noise utter-
ances are chosen in a first step. A random, 4-second long
signal is extracted from the utterances. Signals are convolved
with BRIRs from a random room where the speech signals
for the mixture are convolved with the full BRIR H while the
speech signals for the target are convolved with Hdirect . The
noise utterance is convolved with Hlate of the interferer BRIR,
which is the output of a feedback delay network, to create
a diffuse noise. We found it to be convincing virtual repre-
sentation of the WHAM! noise. Next, the utterances of the
second talker and the noise utterance are normalized by their
corresponding speech-weighted better-ear SNRs on the front
microphones relative to the first talker as it was done in [27].
The second talker’s signal is scaled by a gain drawn from
a normal distribution N (0, 4.12) dB and the noise is scaled
by random value from the normal distribution N (6.2, 4.42).
These distributions correspond to the original distribution of
LibriMix data. In a final step, the data is mixed and scaled to a
random value drawn from N (−26, 52) dB FS (relative to full
scale) to simulate recording level variability. All other signals
are scaled correspondingly.

The process for creating in-training validation data is sim-
ilar, but the fixed combinations of talkers and noise and the
SNR of the original material is used. For all signals, the first
4 s are chosen instead of random parts.

The test set is created offline from the LibriMix max test
split and uses the whole utterances as well as the original
SNRs and the original input scales.

Training, validation and test datasets have their unique set
of BRIRs and utterances. There is no overlap between the
splits.

E. TRAINING CONFIGURATION
The model is trained for 100 epochs with a batchsize B of
32. ADAM is used as optimizer with an initial learning rate
of 1e-3. The learning rate is multiplied by 0.98 every two
epochs. If the loss on the validation set does not decrease
for 5 consecutive epochs, the learning rate is multiplied by
0.8. For gradient clipping, we use AutoClip [28] with p = 10
for smoother training and better generalization. The models
are trained on a workstation with 4 Nvidia RTX A5000 and
32 CPU cores. Each training of a model uses only one GPU.
The training setup uses PyTorch 2.0.1. The frame length of
the filtering framework is 2 ms with a shift of 1 ms and an
FFT-length of 32. For STFT and iSTFT calculation, a

√
Hann

window is applied. The STFT for the loss function is set to
20 ms window length and 10 ms shift with an FFT-length of
320. P is set to 256 for all configurations. When G equals 1,
TAC is deactivated. The front and the rear microphone from
each side is used as input for all models, where the direct part
of the signals of the front microphone is used as reference.
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F. BASELINES
Three different configurations of ConvTasnet [4] serve as
baseline. The first version is the original causal binaural Con-
vTasNet (BiTasNet) proposed in [11]. BiTasNet is a MISO
approach, so the model is used twice for predicting the left
and the right output channel from a two channel input (left
and right). It uses parallel encoders and a mask-and-sum
mechanism in a learned feature domain which is similar to
filter-and-sum processing performed by the GCBFSnet in the
time-frequency domain. As in [11], 64 filters are used in the
linear encoder with a frame size of 2 ms and a frame shift
of 1 ms. Four stacks of eight 1-D convolutional blocks with
causal cumulative layer normalization are utilized for the tem-
poral convolutional network (TCN). This results in 1.65 M
parameters.

For the second baseline, we adapted this system to a full
MIMO (BiTasNetMiMo) system accepting 4-channel input
and predicting all output channels directly (so it is not required
to run twice) while using the parallel encoders and the mask-
and-sum mechanism for all four input channels. The TCN of
this baseline uses the same configuration as the previous one.

To also include a low complexity baseline, we further
adapted the sequence model of the BiTasNetMiMo to include
GC with TAC (GCBiTasNetMiMo). We use eight groups with
a hidden size of 32 which results in around 243 k parameters.
For TAC, a hidden size of 64 is used. All models are trained for
100 epochs with the SNR loss as suggested in [11], a batchsize
of 8 and a learning rate of 5e-4. The learning rate scheduling
is performed as explained in Section II-E.

G. EVALUATION METRICS
The first metric we are using for evaluation is the Scale-
Invariant Source-to-Distortion Ratio (SI-SDR) [29], a com-
mon measure for source separation quality. The second metric
is the Perceptual Evaluation of Speech Quality (PESQ) [30].
For SI-SDR and PESQ, the mean over the the binaural signal
is calculated. To better account for spatial hearing or speech
perception in the context of hearing aids, we use the Hearing
Aid Speech Perception Index (HASPI) [31] (Range: 0 to 1)
as third metric. HASPI is used with a better-ear mechanism,
i.e., its output calculated for both ears and the maximum
of these values is returned. This is inspired by findings that
large amount of speech reception performance in multi-talker
scenarios of human subjects can be explained with perception
of the ear with the better/higher signal to noise/interferer ra-
tio [32]. The last metric is the Modified Binaural Short Time
Objective Intelligibility (MBSTOI) [33], which takes binaural
processing into account. Its output values range from 0 to 1
(higher is better). MBSTOI was used as evaluation metric of
the first round of the 1st Clarity Enhancement Challenge [27]
while HASPI was used during the first round of the 2nd
Enhancement Challenge. For HASPI, the hearing thresholds
are set to 0 dB HL (normal hearing configuration) and the the
mixture is scaled to represent a playback level of 65 dB SPL
(sound pressure level). We use a normal hearing configuration

since we are not applying any hearing loss compensation
which would be required when applying a hearing loss. The
reference for all metrics is the speech signal convolved with
the direct part of the BRIR.

We report the computational complexity of the model in
multiply-accumulate operations per second (MACs) and the
size of the model in terms of number of parameters.

III. RESULTS
The results in terms of objective metrics and the correspond-
ing size and complexity of the models are shown in Table 1.

Overall performance: For all metrics, performance and
complexity are positively correlated, while this relation is less
pronounced for model size and performance (i.e., a decrease
in size does not always result in decreased performance).
The model with G = 4 and H = 128 reaches the best results;
compared to BFSnet, about twice the number of MACs are
required while the number of weights is decrased by 37%. The
lowest average performance with a GCBFSnet model is ob-
tained with G = 16 and H = 16. The performance increases
when keeping the hidden dimension constant and increasing
the number of groups. The effect is most prominent when
comparing the configuration with H = 128. The improvement
in terms of HASPI from G = 1 (no grouping and TAC) to
G = 4 is 0.12 and in terms of SI-SDR 1.24 dB while the
number of parameters only increases by 280 k weights and the
complexity increases by a factor of four. The highest perfor-
mance of the TasNet versions is reached by MiMoBiTasNet. It
produces the highest overall SI-SDR score with 0.76, which is
a total improvement of 9.92. The original BiTasNet performs
worse than MiMoBiTasNet while using twice the amount of
required operations. GCMiMoBiTasNet matches the perfor-
mance of BiTasNet except for the SI-SDR while only using
a quarter of required MACs. Compared to MiMoBiTasNet,
the performance in terms of metrics is reduced. The group-
ing mechanism in GCMiMoBiTasNet reduces the amount
weights by a factor of 7 and the required number of MACs
by a factor of 2 compared to MiMoBiTasNet. BiTasNet and
GCMiMoBiTasNet are outperformed by all configurations
of the (GC)BFSnet in terms of HASPI and PESQ and also
matched or outperformed for SI-SDR and MBSTOI (with
the exception of the configuration with G = 16, H = 16 and
G = 1, H = 128). In terms of HASPI, MiMoBiTasNet is out-
perfomed by all (GC)BFSnet configurations while for PESQ
it is matched by (GC)BFSnet with G = 16, H = 16 and G =
1, H = 128 and slightly outperformed by all other configu-
rations. MiMoBiTasNet produces the best overall scores in
terms of MBSTOI and SI-SDR; it is also larger by a factor
of eight (no. of parameters) or four (MACs) compared to the
smallest GCBFSnet, which produces better HASPI and PESQ
scores.

Results relative to the separation angle of the speech
sources: In the upper row (a) of Fig. 3, the metrics are plotted
versus the separation angle between speaker 1 and speaker
2. The results of the test set are clustered for 10◦ steps. The
metrics for the unprocessed signals are relatively constant
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TABLE 1. Results for the Noisy Reverberant Test Set in Terms of Evaluation Metrics. Model Complexity is Reported in Terms of Parallel Groups G, Numbers
of Hidden Units H, Model Size and Multiply-Accumulate (MAC) Operations. The Latter are Reported for Processing 1 s of Audio With a Frame Shift of 1 ms

FIGURE 3. Results in terms of objective metrics plotted versus the separation angle between two speakers (a) and objective metrics plotted versus the
reverberation time T60 (s) (b) for the three configurations of the GCBFSnet (representing different levels of complexity: high H = 128, G = 4, medium H =
64, G = 4 and low H = 16, G = 16) and the GCMiMoTasNet as reference.

over the separation angles. Only for MBSTOI a slight constant
reduction is visible from 90◦ to 0◦. The results for all models
and metrics following the same trend, the improvement above
the unprocessed increases with increasing separation angle up
to 90◦ and saturates above 90◦. No large improvements are
visible for any of the metrics or models above 90◦. The highest
results over all angles and metrics is reached by the GCBFSnet
with G = 4, H = 128. GCBFSnet with G = 4, H = 64 shows
a lower performance compared to G = 4, H = 128 and G =
16, H = 16 shows again slightly lower improvements com-
pared to G = 4, H = 128. GCMiMoBiTasNet matches the
performance of GCBFSnet wit G = 16, H = 16 for MBSTOI
and SI-SDR while it is clearly outperformed by all visible
configurations for HASPI and PESQ. These results are inline
with the overall results as shown in Table 1.

Results relative to reverberation time: In the lower row (b)
of Fig. 3, the metrics are plotted versus the reverbertion time
T60 of the simulated rooms of the test set. The results of
the test set are clustered for 0.1 s steps from 0.1 to 1 s. The
metrics of the unprocessed signals decrease with increasing
T60 for all metrics exept PESQ which stays relatively constant
for all T60 values. The overall values of the metrics decrease
for all models with increasing T60. For HASPI, MBSTOI
and PESQ the improvement above the unprocessed slightly
increases with increasing T60 for all models. For PESQ the
improvement decreases with increasing T60 for all evaluated
models. The order of the ranking of the models is inline with
results visible in Table 1.

Ablation study regarding post filter: To evaluate the effect
of the post filter, an ablation study is conducted. Models
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TABLE 2. Results of the Ablation Study on for GCBFSnet Configurations
With Different Complexity (High: H = 128, G = 4; medium: H = 64, G = 4;
low: H = 16, G = 16). For All Metrics Higher is Better

with different degrees of complexity (high: G = 4, H = 128;
medium: G = 4, H = 64, low: G = 16, H = 16) are trained
without the post filter while keeping all other parameters
constant. Since the learned filter values (real and imaginary
part) of W and C are each restricted to the interval [−1,+1],
W alone can not apply the same maximum amplification as
W and C combined. For this reason, we also train the same
three configuration while applying a scaling factor to W . This
scaling factor is set

√
2, which compensates for the possible

magnitude amplification when C is additionally applied. The
results of this analysis are shown in Table 2.

For all three configurations, the removal of the post filter re-
sults in slight reduction in performance. This is also true when
a scaling factor is applied to compensate for the potentially
decreased magnitude amplification when omitting the post
filter. Absolute differences for MBSTOI and PESQ are only
around 0.01, while slightly larger differences are observed for
HASPI and SI-SDR. The effects of the post filter appear to be
small, yet, they are consistent for all three size configurations.

IV. DISCUSSION
Effect of model size and grouping: The gradual decline in
performance with smaller models is consistent with [13].
Increasing the number of groups while keeping H constant
always increases the performance. In general it can be con-
cluded that the performance of GCBFSnet depends more on
the computational complexity than on the model size. When
keeping the number of MACs constant it can be beneficial to
choose a model with grouping over a model without group-
ing. This is indicated by the slightly better performance of
GCBFSnet with H = 128, G = 2 compared to the BFSnet
with H = 256, both with 1.27 G MACs. We did not explore
smaller numbers of weights in the current study since the
number of weights for the filter module is fixed at 175 K
weights and does not vary with G and H . For G = 16 and
H = 16, 80% of the model parameters are already attributed
to the filter module. On the other hand, the sequence part has
only 44 k weights in this configuration which is a reduction
by a factor of 25 compared to the sequence part of BFSnet.
The configuration with G = 4, H = 64 appears to be a good

trade-off between complexity, size and performance. Gener-
ally, a model configuration that fits hardware constraints of
a desired platform could be chosen without sacrificing too
much performance. With the decrease in model parameters
and computational complexity reported here, the smallest sep-
aration model should already be compatible with next-gen
hearing-aid system-on-chip (SOC) such as [34] if weights and
operations are quantized to 8-bit integers.

Effect of spatial between-speaker angle: With increasing
azimuth angle between the two speakers, separation perfor-
mance also increases, which is true for all four objective
metrics explored in our paper. This is not surprising since a
larger angle implies an improved signal-to-interferer ratio at
at least one microphone. The model should learn to exploit
information from the microphone that is closer to the desired
speaker (similar to better-ear-listening in human listeners).
Additionally, due to the joint learning that uses all microphone
channels as input, the model can implicitly learn to exploit
additional cues (such as interaural time and level differences)
that are relevant in human binaural unmasking. In future re-
search, it would be interesting to disentangle these two effects.

Effect of amount of reverberation: The effect of reverber-
ation was analyzed (lower row in Fig. 3, which shows the
absolute output of objective measures). Again unsurprisingly,
all metrics degrade as the reverberation time increases. The
PESQ score for the unprocessed signals is an exception, which
could be caused by a flooring effect: Unprocessed scores are
relatively low in the first place, and the lower bound of the
PESQ scale is 1 (since it was designed for modeling mean
opinion scores from 1 to 5). While the trends of all objective
metrics are consistent, we find the HASPI score to be espe-
cially interesting since its model output should directly relate
to intelligibility (i.e., a mapping function from model output
to intelligibility is not required). From this we can estimate
that the best-performing system (GCBFSNet, H = 128, G =
4) increases intelligibility from 44 to 84% compared to the
unprocessed baseline at a T60 of 100 ms. At the same time,
the detrimental effect of reverberation can be quantified, since
the performance of the best system decreases to 65% (T60 =
1000 ms) which amounts to a relative degradation of 19% in
terms of intelligibility. In daily life, we usually communicate
in environments with lower T60 values than 1 s, still, the
results indicate that reverberation has a large effect which
needs to be considered in future speech-processing systems.

Effect of the post filter: The results in Table 2 show that
the post filter can create a slight improvement compared to
using only spatial filters. When applying a scaling factor to
the spatial filter W (to compensate for amplification of the
post filter), the model should be able to learn the same char-
acteristics for the spatial filter as for the combination of the
spatial filters and post filter. However, results indicate a small
benefit for learning separate weights over scaling alone. One
factor to explain this is the slightly larger filter prediction
module when using the post filters. If the increased size of
the filtering module would be the only cause, the difference
between configurations with and without post filter should be
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more pronounced for model sizes dominated by the size of
the post filter. However, the observed benefits are relatively
stable across the model configurations shown in Table 2. We
therefore assume that the separation into spatial filters and
post filter brings some slight benefit for the training process
exceeding the mere effect of an increased size of the filtering
module, which should be explored in the future.

BiTasNet and comparison to (GC)BFSnet: The first base-
line system BiTasNet exhibits a relatively low performance
but requires lots of MAC operations, which follows from the
setup as MISO model, i.e., it has to run twice using two
channels of all available four channels. BiTasNetMiMo profits
from the four-channel input and shows superior performance
to the original BiTasNet. We assume that the reason for the
strong performance for MBSTOI and SI-SDR is the loss
function, i.e., a time-domain negative SNR function, which
optimizes the time domain representation in a beneficial way
for these two metrics.

The reduction in terms of performance metrics from group-
ing in GCBiTasNetMiMo (G = 8, H = 32) relative to BiTas-
NetMiMo is higher than for BFSnet and GCBFSnet (G =
8, H = 32) while still having relatively large computational
footprint. The organization of the grouping could be a poten-
tial explanation: In GCBFSnet the output of all groups is used
for filter estimation module, while in GCBiTasNetMiMo the
output of the groups is directly used as masks (as originally
implemented for [14]) without a dedicated filter estimation
module for utilizing and mixing the results of all groups for
all masks. While the cost in terms of size and complexity of
using the information of all groups for estimating the filters
is relatively high because of the larger matrix multiplications,
it seems to be beneficial compared to the approach used in
GCBiTasNetMiMo.

Another important difference of the approaches is that
(GC)BFSnet predicts filter in the time-frequency domain
while BiTasNet approaches are predicting masks in a learned
feature domain. Most state-of-the-art source separation or
low-latency approaches are waveform-to-waveform [6] or use
a learned feature transform [5]. However, the good average
performance of (GC)BFSnet indicates that for low-latency
approaches time-frequency domain approaches are still an
option. This is consistent with recent findings for the related
task of speech enhancement in [8], [35] using models with a
relatively high complexity compared to (GC)BFSnet.

Training and evaluation data: To reproduce results from
research using speech technology, the use of open-source
datasets provided by the community should be preferred over
using proprietary data. For the current study, we still decided
to create a new dataset, however based on open sources, so
the dataset can be made available upon publication. The re-
quirements for the dataset were that it should cover scenarios
with two speakers and diffuse noise in arbitrary rooms, i.e., the
training data should contain a large variety of reverberation
times and speakers compared to existing datasets. The data
from the Clarity Challenges [27] approximate these require-
ments, but the signals do not cover a mixture of noise and two

speakers, as required for separation (first challenge round) or
the number of speakers was variable second challenge round.
Further, the number of acoustic scenes was limited to a total
of 10 k scenes for training, validation and test. In the current
study, we included larger number of rooms with a variable
amount of reverberation to increase robustness with respect
to separation performance in reverberant conditions. While
future datasets and studies should feature a higher degree of
variability (number and kind of noise sources and speakers,
head movements, moving sources, see below) we hope that
open-sourcing our database fosters research of binaural sepa-
ration algorithms for assistive listening devices in reverberant
conditions.

Limitations of this work: The current study is constrained
to static two-speaker scenes with diffuse noise with re-
verberation. This is a first step (and represents a typical
communication scenario) for quantifying the general per-
formance of our approach in comparison to a competitive
baseline. In dynamically changing scenes, models trained
with permutation-invariant training in static scenarios could
mix up signals from speakers, i.e., the output of the speaker
could switch. To avoid such switching, our approach could
be combined with location-based training as in [36] or online
clustering of frame wise speaker embeddings as proposed
in [37].

Kolbæk and colleagues have shown that a system with
permutation-invariant training can be extended to more than
two speakers (Kolbæk et al., 2017, [2]): A system trained to
separate three speakers but using a two-speaker input pro-
duces a separation and one output with an energy that is 63 dB
below the other outputs. Since the proposed system also relies
on permutation-invariant training, we assume that it can be
extended to three or more speakers as well (with the same
constraints observed in this study regarding spatial separation
angle and reverberation, and by increasing the size and com-
plexity of the relatively large filter estimation module).

One aspect that was not explored in this study is related to
usability, i.e., how to enable a selection of the desired speaker
for the user of a hearing aid. One option is to choose the
desired stream with an additional device (e.g., a smartphone).
Alternatively, speaker separation in a listening device could
be linked to directional cues and to electrooculography [38]
(or optical eye tracking [39]) to determine the direction of
eye gaze, thereby allowing a speaker selection. In [40] it was
already shown that decoding the attended speaker can also be
performed with electrical brain activity signals acquired form
invasive electrodes. Future hearing devices could also feature
integrated or discrete behind-the-ear electrodes for decoding
the attended speech stream from electrical brain activity [41].

Future work: In future work, it would be interesting to
conduct a subjective evaluation of our models with hearing-
impaired listeners, since subjective evaluation is still the gold
standard for quantifying the effects of signal enhancement
algorithms. From a technical point of view, a replacement of
the fixed-size filter module with an alternative approach for
predicting filters with a smaller number of parameters could
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be explored. To further reduce complexity, methods such as
quantization [42] and pruning [43] should be applied. The
next step would be to evaluate the performance of such a
model on an hearing-aid system-on-chip, potentially include
head movements of the listener, and extend the model to
more than two speakers. Another important future step is the
further improvement of the audio quality, especially for high
reverberation situations. This could be achieved through sup-
pression of only the late part of the reverberation as performed
in [44] compared to the full dereverberation performed in this
study. Alternatively, the output signal could be remixed with
the unprocessed signal in a certain ratio [45], which increases
awareness for the acoustic scene and can mask artifacts of the
source separation procedure.

V. CONCLUSION
This study introduced a simple binaural low-latency, low-
complexity neural filter-and-sum beamforming model for
speaker separation. The model uses binaural input and uses
relatively few parameters by using Group Communication
and Transform Average Concatenate. We observe consistent
improvements for four different metrics in challenging noisy
conditions that cover different degrees of reverberation. With
smaller models, performance drops gradually, while they still
outperforming the larger baseline approaches in important
metrics.
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