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ABSTRACT Supervised learning-based speech enhancement methods often work remarkably well in
acoustic situations represented in the training corpus but generalize poorly to out-of-domain situations,
i.e. situations not seen during training. This stands in the way of further improvement of these methods
in realistic scenarios, as collecting paired noisy-clean recordings in the target application domain is typically
not feasible. Recording noisy-only in-domain data is, though, much more practical. In this article, we tackle
the problem of unsupervised domain adaptation in speech enhancement. Specifically, we propose a way to
use in-domain noisy-only data in the training of a neural network to improve upon a model trained solely
on out-of-domain paired data. For this, we make use of masked spectrogram prediction, a technique from
self-supervised learning that aims to interpolate masked regions of a spectrogram. We hypothesize that
masked spectrogram prediction encourages learning of features that represent well both speech and noise
components of the noisy signals. These features can then be used to train a more robust speech enhancement
system. We evaluate the proposed method on the VoiceBank-DEMAND and LibriFSD50k databases, with
WSJ0-CHiME3 serving as the out-of-domain database. We show that the proposed method outperforms
both the out-of-domain system and the baseline approaches, i.e. RemixIT and noisy-target training, and also
combines well with the previously proposed RemixIT method.

INDEX TERMS Masked spectrogram prediction, speech enhancement, unsupervised domain adaptation.

I. INTRODUCTION
Speech enhancement (SE) is nowadays dominated by methods
based on neural networks (NNs), which allow for significant
improvements in intelligibility and quality of the enhanced
speech when compared to traditional methods [1], [2], [3],
[4]. This remarkable performance has motivated numerous
practical applications and even commercial products (such as
use in hearing aids [5], [6]). However, in contrast to controlled
laboratory experiments, the results in real-world settings are
often somewhat disappointing [7], [8]. This is largely due
to domain mismatch i.e. the discrepancies between the data
used to train the NN and the data encountered when the NN
is applied [9], [10], [11]. Unseen noises and reverberation
patterns, as well as microphone mismatch, are a few examples
of such discrepancies.

A straightforward way to overcome this issue would be to
train the NN using data collected in the target domain for
the given application (e.g. data collected from hearing aids
worn by hearing-aid users in everyday situations). However,
in order to train the NN for speech enhancement using tra-
ditional supervised learning techniques, pairs of noisy and
corresponding clean recordings are required. Such paired data
are extremely difficult to record in the real target domain.
As a result, the SE-NN training methods mostly turn towards
simulating data to resemble the target domain, which seldom
captures all of its properties, such as realistic reverberation
patterns, particular noise types, speaker turns, microphone
characteristics, or acoustic surroundings of the microphones
(e.g., for body-worn devices). While paired data are difficult
to acquire, in-domain data of noisy-only realistic mixtures
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(without corresponding clean ones) are much easier to get.
The goal of unsupervised domain adaptation1 is to use such
in-domain noisy mixtures alongside out-of-domain (OOD)
paired data to improve the system performance [12]. For in-
stance, when developing an SE system for a product, we might
collect noisy-only recordings from the actual product usage
and utilize them during the training instead of using a system
trained solely on publicly available synthetic paired datasets.

Self-supervised learning approaches have recently gained
popularity for training neural networks without supervi-
sion [14], [15]. Self-supervised approaches employ training
procedures similar to those used for supervised tasks but with
targets constructed from the input data itself. Typically, self-
supervised approaches have been used to pre-train a system
on a large amount of unlabeled data, before fine-tuning it
using supervised techniques applied to smaller labeled target
domain data. The concepts of self-supervision might however
also be applied to the stated unsupervised domain adaptation
setting (with unlabeled in-domain and labeled OOD data).
Indeed, in computer vision, self-supervised objectives have
been successfully used to leverage unlabeled in-domain data
in the context of unsupervised domain adaptation [16], [17].

Among the plethora of available self-supervised tech-
niques, masked spectrogram prediction (MSP) [18], [19] is
particularly well-suited for the SE task. In MSP, part of the
speech spectrogram is masked (i.e. removed from the NN
input) and the objective is to predict it from its surroundings.
Unlike other self-supervised techniques, which often form
their objectives on higher-level representations, MSP aims to
estimate the input features directly. This is a good fit for SE
task, which likewise requires synthesis of the signal in its
original form. Furthermore, masked modeling in general has
been shown to learn features that well represent the underlying
latent factors in the data [20]. In our case, we hypothesize that
predicting masked parts of noisy spectrograms incentivizes
learning features that well represent underlying speech and
noise components.

Given the above reasoning, we propose to use MSP to
leverage in-domain noisy mixtures during SE-NN training, as
inspired by similar approaches in image classification [16],
[17]. In particular, we propose a two-stage method depicted in
Fig. 1; In the first stage, both in-domain noisy-only and OOD
paired data are used with the MSP objective. For the noisy-
only in-domain data, the objective is to predict the masked
part of the noisy mixtures. The OOD paired data allow us
to additionally predict the clean components of the masked
parts. The MSP task should lead to learning features well
representing both domains. In the second stage, we use the
first part of the network trained during the first stage as a fixed
feature extractor and use the resulting features to train an SE
network on OOD paired data. The final model resulting from

1In many works the term “domain adaptation” is used for post-hoc modi-
fication of an already trained model towards a new domain. In our work, we
adopt the term “unsupervised domain adaptation” used e.g. in [12], [13] in a
broader sense for any methods using in-domain unlabeled and out-of-domain
labeled data.

FIGURE 1. High-level scheme of the proposed two-stage method.

this two-stage process should generalize well toward the target
domain thanks to the features learned in the first stage.

We test the proposed technique in two settings which differ
in how much discrepancy there is between the in-domain and
out-of-domain data. Fundamentally, the extent to which the
two domains differ limits the possible success of the unsu-
pervised domain adaptation. While this limit is difficult to
characterize theoretically [21], we study it experimentally, by
comparing the achieved improvements in enhancement per-
formance in the two settings. We further analyze the gains of
the adaptation in different noise conditions and compare them
to several baselines. In all experiments, we test the method
in artificially created scenarios where we abstain from using
clean data from the target domain, to be able to evaluate
and study the performance in controlled settings. The exper-
imental study is designed to demonstrate the ability of the
proposed method to utilize the in-domain noisy-only data,
rather than claiming the best performance on the test datasets.
For instance, a general model trained on various types of
speech and noise signals might perform strongly in the tested
scenarios. However, the potential of the proposed method is to
improve performance in target realistic domains, where even
general models often degrade, especially in low-complexity,
low-latency use cases where the model size is limited.

The rest of the paper begins with an overview of related
works in Section II, followed by a description of the problem
setting in Section III. The proposed method is explained in
detail in Section IV and contrasted with baseline methods in
Section V. Finally, we provide our experimental results in
Section VI and discuss the limitations and future directions
in Section VII.

II. RELATED WORKS
Various ways for exploiting noisy-only recordings during
training have been investigated in SE research. Prior to the
expansion of NNs for SE, methods for domain adaptation
were investigated for hidden Markov models [22] or non-
negative matrix factorization methods [23]. Nowadays, some
works use noisy recordings by adding extra noise to them

VOLUME 5, 2024 275



ZMOLIKOVA ET AL.: MASKED SPECTROGRAM PREDICTION FOR UNSUPERVISED DOMAIN ADAPTATION IN SPEECH ENHANCEMENT

and constructing the loss function using the original noisy
mixture as the target signal [24], [25], [26]. Other works
employ domain discriminators with adversarial training to
create domain-robust features [27], [28], [29], [30], [31]. Ad-
versarial loss functions were also studied on the feature level
together with cycle consistency techniques [32], [33], [34] or
combined with optimal transport strategies [35]. In [36], a
pre-trained model estimating speech quality was utilized to
provide an objective to optimize on the noisy-only data. The
problem has been also tackled from the perspective of gener-
ative modeling, with the use of variational auto-encoders [9],
[37]. Finally, teacher-student training schemes have been em-
ployed, in which an OOD teacher model is used to provide
targets for supervised training of a student model on target
data [38], [39]. Although numerous approaches are available,
no systematic comparison on a common data corpus has been
done in the literature. In this article, we compare our method
to noisy-target training (Nytt) [24], and RemixIT [38], a recent
teacher-student training scheme.

In parallel with our work, a similar masking scheme has
been used in [40] for self-supervised pre-training for the
task of speech enhancement. In contrast with our work, [40]
does not focus on unsupervised domain adaptation but rather
a self-supervised scenario, where a model pre-trained on a
huge unlabeled dataset is fine-tuned towards a labeled target
one. Similarly to our work, findings in [40] also point to the
suitability of masked spectrogram prediction for speech en-
hancement, and as such, it complements well the conclusions
presented here.

III. PROBLEM SETTING
A. SPEECH ENHANCEMENT TASK
The input to a speech enhancement system is an observed
mixture y composed of speech and noise:

y = s + v, (1)

where y ∈ R
T , s ∈ R

T , v ∈ R
T are the observed mixture,

clean speech signal and noise signal, respectively, in time-
domain, and T is the number of observed samples. In our
work, we model the signals in the short-time Fourier transform
(STFT) domain, where — due to the linearity of the STFT —
the relationship is also additive:

Y = S + V, (2)

where Y ∈ C
N×F , S ∈ C

N×F , V ∈ C
N×F are the STFT coun-

terparts of y, s and v, respectively, N is the number of STFT
time-frames and F the number of STFT frequency bins.

The basic goal of any SE system is to estimate the clean
speech S given the mixture Y. Some methods additionally
estimate the noise component V2

Ŝ, V̂ = f�(Y), (3)

2In our work, we mainly introduce the estimation of the noise component
for consistency with the baseline method RemixIT. However, we also found
that the models estimating both components seem to be more robust to
domain change — making our mismatched baseline model stronger.

where Ŝ ∈ C
N×F and V̂ ∈ C

N×F are the estimated speech and
noise in STFT domain, respectively, with the time-domain
counterparts ŝ ∈ R

T and v̂ ∈ R
T . Furthermore, f is an en-

hancement function parameterized by a set of parameters �.
In our case, f is modeled by an NN. For later convenience, we
divide the parameters � of the NN into two disjoint parts: en-
coder �enc and decoder �dec parameters, � = �enc ∪ �dec.
The NN function can then be composed as f� = f�dec ◦ f�enc ,
with ◦ denoting the function composition operator.

B. PROBLEM WITH SUPERVISED SE SYSTEMS
Typically, an NN for SE is trained using a supervised learning
paradigm on a set of examples, consisting of pairs of noisy
and clean speech signals. Such paired examples are difficult
to collect in the target domain; it is, however, possible to
use an OOD paired dataset D(ood)

paired = {(Y(ood)
i , S(ood)

i )}D(ood)

i=1 ,
constructed for example by adding separate OOD speech and
OOD noise recordings to form synthetic noisy signals. Given
such dataset, the training procedure of the NN can optimize
— in a supervised manner — a loss function measuring the
discrepancy between the estimated and target clean speech,
and, optionally, the estimated and target noise. One such
commonly used loss function is scale-invariant signal-to-noise
ratio (SI-SNR) [3], [41]:

�(ood) = argmin
�

L(ood), (4)

L(ood) =
∑

Y,S∈D(ood)
paired

SI-SNR(s, ŝ) + SI-SNR(v, v̂), (5)

where the target noise signal can be obtained as v = y − s,
and where ŝ and v̂ are functions of �, as defined in (3).

The SE system trained in this way on the OOD dataset will,
however, often generalize poorly [7], [8] and thus might fail
when applied in the target domain.

C. UNSUPERVISED DOMAIN ADAPTATION
The goal of unsupervised domain adaptation is to leverage
in-domain dataset of noisy mixtures D(id)

noisy = {Y(id)
i }D(id)

i=1 in

the training procedure alongside D(ood)
paired to obtain a set of

NN parameters �(uda), for which the NN performs better in
the target domain. The in-domain dataset cannot be simply
included in the conventional optimization in (4) due to the
lack of clean speech references. A novel training procedure
thus needs to be designed.

IV. MASKED SPECTROGRAM PREDICTION FOR
UNSUPERVISED DOMAIN ADAPTATION
We propose a two-stage process for unsupervised domain
adaptation, where in the first stage, all available data are used
(both noisy-only in-domain and paired OOD data) to train an
encoder, and in the second stage, the decoder is trained on the
paired OOD data. In this section, we first describe both stages
and then discuss the masking strategy and NN architecture
used in MSP.
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FIGURE 2. Overall training scheme with the proposed MSP method. The left sub-figure (a) shows the first pre-training stage (described in Section IV-A)
and the right sub-figure (b) shows the second supervised fine-tuning stage (described in Section IV-B). For simplicity, we omitted the noise estimation in
the figure.

A. FIRST STAGE: MASKED SPECTROGRAM PREDICTION
PRE-TRAINING
With the encoder-decoder structure described in Section II-
I-A, the goal of the first stage is to train an encoder �enc

to extract useful features, using all available training data
D(id)

noisy,D(ood)
paired. For this, we make use of the MSP technique.

The overall model used for the first stage is depicted in
Fig. 2(a). The model consists of one encoder �enc and two
decoders �dec-n,�dec-c. The input of the encoder is a masked
noisy spectrogram, Y = Y � M, created using a binary mask
M ∈ {0, 1}N×F , with � denoting element-wise multiplica-
tion. The decoder �dec-n is used to recover the original noisy
spectrogram Y, while the decoder �dec-c estimates the clean
spectrogram S:

Ŷ = f�dec-n ◦ f�enc (Y), (6)

Ŝ = f�dec-c ◦ f�enc (Y). (7)

Here, the parameters �dec-n can be learned on all available
data D(id)

noisy,D(ood)
paired by a loss function measuring discrepancy

between Ŷ and Y. The parameters �dec-c can be trained only
on a paired (hence OOD) dataset D(ood)

paired using a loss function

measuring discrepancy between Ŝ and S. Finally, the encoder
parameters �enc can be learned jointly with both decoders,
thus using all available data D(id)

noisy,D(ood)
paired.

We found that with MSP, it is especially difficult to predict
the phase information correctly, which makes the SI-SNR
loss as in (5) unsuitable.3 For MSP, we thus opt for a loss
function where the magnitude and phase estimation are de-
coupled. More specifically, for ground-truth STFT-domain
values X and estimated STFT-domain values X̂, we propose

3In particular, when using SI-SNR loss, uncertainty in the phase impacts
also prediction of the magnitude. As predicting phase information from
masked patches is difficult, using SI-SNR loss for MSP hinders the overall
learning.

to use:

L(mag)(X, X̂) = log
∑

n, f

(|Xn, f | − |X̂n, f |)2, (8)

L(phase)(X, X̂) = log
∑

n, f

|Xn, f |2
∣∣∣∣∣

Xn, f

|Xn, f |
− X̂n, f

|X̂n, f |

∣∣∣∣∣

2

,

(9)

L(magphase)(X, X̂) = L(mag)(X, X̂) + λL(phase)(X, X̂), (10)

where λ is a weighting factor. Overall, the MSP loss function
for the noisy estimate is then:

L(msp-n) =
∑

Y∈D(id)
noisy∪D(ood)

noisy

L(magphase)(Y, Ŷ), (11)

where D(ood)
noisy = {Y(ood)

i }D(ood)

i=1 consists of the noisy signals

only from D(ood)
paired. Analogously, the MSP loss function for the

clean speech estimate is:

L(msp-c) =
∑

Y,S∈D(ood)
paired

L(magphase)(S, Ŝ). (12)

The first stage thus overall solves the following optimiza-
tion problem:

�(pre) = argmin
�

L(msp-n) + L(msp-c), (13)

where �(pre) = �
(pre)
enc ∪ �

(pre)
dec-n ∪ �

(pre)
dec-c.

B. SECOND STAGE: SUPERVISED FINE-TUNING
The second stage is depicted in Fig. 2(b) and follows the
conventional supervised SE training paradigm as described
in Section III-B. That is, we employ only the paired data
D(ood)

paired with the loss function L(ood) (5). The crucial differ-
ence is that in the second stage, we initialize the encoder
�enc to parameters learned in the first stage �

(pre)
enc and keep

them fixed. Only decoder parameters �dec are thus trained

VOLUME 5, 2024 277



ZMOLIKOVA ET AL.: MASKED SPECTROGRAM PREDICTION FOR UNSUPERVISED DOMAIN ADAPTATION IN SPEECH ENHANCEMENT

at this stage:

�
(enh)
dec = argmin

�dec

L(ood). (14)

C. MASKING STRATEGY AND NN ARCHITECTURE
For MSP, a proper masking strategy is of great importance as
it can change the difficulty of the MSP task and the nature
of the features that are learned. In our work, we follow the
previous literature on MSP and masked image modeling in
general and mask rectangular portions (patches) of the spec-
trogram [18], [19], [42]. The spectrogram is thus divided into
a grid of regularly sized patches of size Tp × Fp and each
patch is masked with a probability pmask. An example of a
masked spectrogram is given in the left part of Fig. 2(a).

Previous works on MSP and masked image modeling used
the Vision Transformer (ViT) architecture [43]. As this ar-
chitecture directly works on the level of patches, it is very
well-suited for masked pre-training, where masked patches
can be simply omitted from the input of the attention layers
of the ViT. However, in our preliminary experiments, we
found that the ViT architecture is difficult to apply to the
given speech enhancement task with satisfying results. We
suspect that the successful application of ViT necessitates
large datasets of millions of recordings as used in previous
works [18], [19], [42]. We instead based our model on an
off-the-shelf TF-GridNet architecture, which has proven to be
efficient in speech separation and enhancement tasks [44].

Both the encoder and decoder of our architecture thus con-
sist of TF-GridNet blocks. Each TF-GridNet block consists
of sub-band temporal and intra-frame spectral modules, both
implemented by BLSTMs. The blocks operate on embeddings
of each time-frequency point. Overall, the input of the encoder
is a spectrogram with masked patches replaced by zeros. At
the input of the decoder, the embeddings corresponding to
masked time-frequency points are replaced with a learnable
masking token, as done in previous works [18], [42]. Note
that the usage of the TF-GridNet instead of ViT architecture
introduces a zero-mismatch problem, i.e., during pre-training,
the encoder processes zeros at masked portions of the spec-
trogram, which are not present during test time. Although this
might have a negative effect, we found the performance to
exceed that of ViT for our task. While in other settings, ViT
could lead to further improvements, we find it encouraging
that the MSP strategy can work also with an off-the-shelf SE
architecture.

V. BASELINES AND EXTENSIONS
A. NOISY TARGET TRAINING BASELINE
Nytt [24] is a training strategy for SE that does not require
clean speech signals. Instead, it uses a database of noisy
speech together with a database of noise-only signals. It trains
the NN using the noisy signals Y ∈ D(id)

noisy as targets, where
the input signal is created by adding additional noise to the
same noisy signal Y′ = Y + V(extra).

As in our work, we assume no access to in-domain noises,
we compare with Nytt in the same setting, where the extra
noise signals V(extra) are obtained from the out-of-domain
database. In this case, if the type of noise in the original noisy
signal Y and the type of extra noise V(extra) differ significantly,
Nytt might learn to remove only the extra noise and thus fail in
denoising the in-domain recordings [24]. To add more context,
we also provide results of Nytt in an extended setting with
in-domain noises used in the training.

B. REMIXIT BASELINE
RemixIT [38] is a teacher-student training scheme, i.e. we
assume having a teacher model f (te)

� and we use it to train

a student model f (st)
� . The student model f (st)

� is trained on

in-domain noisy recordings D(id)
noisy while using targets pro-

vided by the teacher in place of ground-truth clean recordings.
In particular, the teacher first processes a batch of noisy in-
domain signals Yi ∈ D(id)

noisy,

[(Ŝ(te)
i , V̂(te)

i )]i=1..N = [ f (te)
� (Yi )]i=1..N . (15)

The noise estimates V̂(te)
i are then permuted and mixed with

the clean estimates Ŝ(te)
i to create new synthetic noisy sig-

nals Y(te)
i = Ŝ(te)

i + V̂(te)
P(i), where P is a permutation function.

These synthetic noisy signals are then used to train the student
model according to

�(remixit) = argmin
�

L(remixit), (16)

where

L(remixit) =
∑

Y∈D(id)
noisy

SI-SNR(ŝ(st), ŝ(te) ) + SI-SNR(v̂(st), v̂(te) ),

(17)
and

Ŝ(st), V̂(st) = f (st)
� (Y(te) ). (18)

The RemixIT work [38] introduced several setups of the
scheme with different types of data available. Here, we com-
pare with the setup closest to ours, that is when the teacher is
a mismatched supervised model (trained on OOD data).

C. MSP + REMIXIT EXTENSION
MSP and RemixIT have some complementary characteristics.
RemixIT has the advantage that the final stage of training is
performed directly on the target in-domain data, while in MSP
the final stage of training employs the OOD paired dataset.
However, since RemixIT starts with an out-of-domain teacher,
the initial errors of the teacher might get propagated to the
student model during the training. MSP, on the other hand,
initiates the training by learning good representations on the
target in-domain data, it thus does not suffer from similar error
propagation. Due to this complementarity, combining both
MSP and RemixIT might be beneficial.

We combine the methods by using the MSP model as the
initial teacher for RemixIT. The training thus starts with the
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TABLE 1. Description of the Used Datasets

TABLE 2. Two Used Experimental Settings

two stages described in Section IV and finishes with RemixIT
training on the target in-domain data.

VI. EXPERIMENTS
A. DATASETS
To study the proposed technique, we employ three differ-
ent datasets: WSJ0-CHiME3 [10] as D(ood)

paired, VoiceBank-

DEMAND [45] as D(id)
noisy and LibriFSD50k [46] as D(id)

noisy.
The properties of the datasets are summarized in Table 1. Note
that in the case of VoiceBank-DEMAND and LibriFSD50k,
we use the clean speech and noise-only recordings only for
evaluation, or when explicitly stated.

Overall, we have two experimental settings summarized in
Table 2. Both are using WSJ0-CHiME3 as the out-of-domain
database and VoiceBank-DEMAND or LibriFSD50 k as the
target domains. In the first setting (WSJCH → VBD), the
two datasets are more similar to each other, however still
with some mismatch in the recording conditions and types of
noises used. The second setting (WSJCH → LFSD) is used
to test whether the presented methods are beneficial even in
a scenario where the two databases are significantly different
in terms of both signal-to-noise ratios and types of noise (see
Table 1 for details).

B. CONFIGURATION
1) NN ARCHITECTURE
We use a scaled-down version of TF-GridNet [44] as neural
network architecture for all experiments. The scaling down
involves the removal of the cross-frame self-attention module
and overall smaller size, as described below.4 Such scale-
down was necessary to enable us to run experiments on

4We compared the performance of the scaled-down TF-GridNet with the
widely used ConvTasNet [3] with 5 M parameters. In matched settings, the
performance of both is comparable, but TF-GridNet generalizes better in
the case of different training and test databases (our baseline Mismatched
scenario).

TABLE 3. Results on VoiceBank-DEMAND in WSJCH → VBD Setting. All
Baseline Methods are Our Re-Implementations. Bolded Numbers Denote
the Best Achieved Performance Among Methods Not Using Any In-Domain
Clean or Noise Data for Training (With Significance Tested Using Paired
T-Test With P-Value < 0.05). Results are Further Discussed in Section VI-D

TABLE 4. Results on LibriFSD50 k in WSJCH → LFSD Setting. All Baseline
Methods are Our Re-Implementations. Bolded Numbers Denote the Best
Achieved Performance Among Methods Not Using Any In-Domain Clean or
Noise Data for Training (Significance Tested Using Paired T-Test With
p-Value < 0.05). Results are Further Discussed in Section VI-D

available hardware, i.e. each experiment was run on a single
GPU with 11G memory. The notation below (B, D, H, I, J)
refers to the original paper [44]. The scaled-down TF-GridNet
consists of B = 4 blocks (in MSP experiments, two for the

VOLUME 5, 2024 279



ZMOLIKOVA ET AL.: MASKED SPECTROGRAM PREDICTION FOR UNSUPERVISED DOMAIN ADAPTATION IN SPEECH ENHANCEMENT

FIGURE 3. Example from LibriFSD50k dataset involving animal sound (bird
croaking).

encoder and two for the decoder). The embedding dimension
is D = 16, the number of units in BLSTMs is H = 16, and
the kernel and stride size for Unfold and Deconv1D is I = 4,
J = 1, respectively. The resulting model has 101 K trainable
parameters. We used the original implementation.5

For all experiments except Nytt, we employ mixture con-
sistency layer [38], [53] for ensuring that the speech and
noise output sum to the original noisy signal. For Nytt, we
observed significant degradation with mixture consistency, we
thus refrained from using it.

2) OPTIMIZATION
We use the Adam optimizer [54] with a learning rate of 0.001
and batch size of 12 for all experiments. We train the models
for 100 epochs. The learning rate is reduced by half after 5
epochs without improvement on the validation set.

3) INPUT/OUTPUT
The recordings are transformed to STFT domain using Hann
windows of 400 samples (25 ms) with 160 sample shift
(10 ms). The inputs and outputs of the neural network are
concatenated real and imaginary components of the STFT-
domain signal. The standard deviation of the inputs is further
globally normalized for each dataset (with statistics estimated
from training data) and de-normalized before computing the
loss function. During training, we use random segments of
128 frames as inputs in the case of VoiceBank-DEMAND and
256 frames for LibriFSD50 k and WSJ0-CHiME3. The spec-
trogram masking uses patches of Tp = 32 time-frames and
Fp = 32 frequency bins with probability of a patch removed
(replaced by zeros) pmask = 0.6.

5Available in ESPnet github.com/espnet

FIGURE 4. Results on VoiceBank-DEMAND in WSJCH → VBD setting,
broken down into different types of noises. �SI-SNR denotes the
improvement in SI-SNR over the observed noisy recordings. Results are
further discussed in Section VI-E.

4) BASELINES
For RemixIT, we update the teacher every 30 epochs with the
current student model. In Nytt, we mix the additional noise
with SNR uniformly sampled from -5–5 dB, following the
original work [24].

C. EVALUATION METRICS
We evaluate the performance of the proposed enhancement
models and baselines using SI-SNR [41] and Perceptual Eval-
uation of Speech Quality (PESQ) [55] for estimated speech
quality and extended Short-Time Objective Intelligibility (eS-
TOI) [56] for estimated speech intelligibility.

D. RESULTS: COMPARISON WITH BASELINES
In this section, we compare the overall results of the proposed
method with several baselines.

First, we present the results for the WSJCH → VBD
setting in Table 3. The Mismatched and Matched systems
are fully supervised systems trained on WSJ0-CHiME3
and VoiceBank-DEMAND, respectively, and represent our
baseline and topline. We compare the proposed methods
(MSP, MSP + RemixIT) with further baselines introduced in
Section V, namely Nytt (OOD) and RemixIT. Additionally, we
show results of the Nytt (ID) system, which, in contrast with
the other systems, has the advantage of using an in-domain
noise database during training.
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FIGURE 5. Results on VoiceBank-DEMAND in WSJCH → VBD setting, broken down into different input SNRs. �SI-SNR denotes the improvement in SI-SNR
over the observed noisy recordings. Results are further discussed in Section VI-E.

FIGURE 6. Results on LibriFSD50k in WSJCH → LFSD setting, broken down into different input SNRs. �SI-SNR denotes the improvement in SI-SNR over
the observed noisy recordings. Results are further discussed in Section VI-E.

In terms of the estimated speech quality (SI-SNR, PESQ),
the best results are achieved with a combination of MSP +
RemixIT, with the SI-SNR metric being more improved by
MSP, while PESQ by RemixIT method. The intelligibility
results in terms of eSTOI generally do not show substantial
differences, even between Mismatched and Matched systems.
The Nytt method performs well when in-domain (DEMAND)
noises are used during the training but stays far behind other
methods when using OOD noise (CHiME3).

Analogous results for the WSJCH → LFSD setting are
presented in Table 4. Several differences from previous results
(in Table 3) can be observed. First, the overall improve-
ments with all methods are smaller, with a bigger gap to
the Matched results. This is caused by a larger difference
between the in-domain and out-of-domain databases, as de-
scribed in Section VI-A. Second, RemixIT compares better
with the other methods in this condition, with the com-
bination of MSP + RemixIT performing overall best. Nytt
here does not lead to big improvements. We hypothesize
that this is due to the database containing lower SNRs than
VoiceBank-DEMAND, causing the targets used in the train-
ing to be more noisy and further from the optimal clean
targets.

Fig. 3 shows an example from LibriFSD50k where the MSP
adaptation significantly helps to remove noise. This example
contains an animal noise (bird croaking). The Mismatched
system trained on WSJ0-CHiME3 fails to remove this noise
as it did not encounter a similar type of noise during training.
In contrast, the MSP system encountered this type of noise

in the pre-training stage and, as a consequence, manages to
reduce the noise.

E. RESULTS: FURTHER ANALYSIS
The VoiceBank-DEMAND database contains conditions with
different classes of noise (domestic, office, street, transport).
For some of these, similar (but not identical) classes of noise
are also present in the OOD CHiME3 data (transport, street),
while some are not present (domestic, office). Fig. 4 shows the
achieved improvements separately for the different noise con-
ditions. Comparing Mismatched, MSP and Matched results,
the advantage of MSP is more significant for domestic and of-
fice conditions, which shows that the method adapted to these
conditions although they were unseen in the paired data. An
interesting trend is also revealed for Nytt (ID), where we can
observe that it works greatly in some conditions (e.g. office)
while in others it is outperformed by MSP (e.g. domestic or
transport).

Fig. 5 shows the breakdown of the results on VoiceBank-
DEMAND into different input SNR conditions. The improve-
ments brought by MSP are fairly uniformly distributed for
different input SNRs. Note that the WSJ-CHiME3 database
contains a similar SNR range as the target VoiceBank-
DEMAND; this setup thus does not introduce a mismatch in
the levels of noise. For LibriFSD50k, a similar breakdown of
the results is shown in Fig. 6. Here, modest improvements
with MSP+RemixIT can be observed mostly on lower SNRs,
which are mismatched with the SNRs contained in the in-
domain WSJ0-CHiME3 database.
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VII. LIMITATIONS AND FUTURE DIRECTIONS
In this article, we introduced MSP as a way to utilize in-
domain noisy-only recordings to improve the performance of
deep learning-based speech enhancement systems. The results
show the potential of the proposed approach in comparison
with previously proposed methods. This suggests that the
proposed approach could help bridge a gap between the often-
reported impressive performance of SE systems on artificial
data and the more modest performance achieved in realistic
settings. In the experiments presented above, we tested the
method in artificially created scenarios where we abstained
from using clean data from the target domain. This enabled
us to develop the method and evaluate it thoroughly in a
controlled scenario. To fully establish the usefulness of the
method in real scenarios, future work includes experiments
using realistic, more diverse datasets [57]. Furthermore, the
current version of the method assumes the prior availability
of in-domain noisy-only data at training time. While this is
a valid assumption in many scenarios, it would be of even
wider practical use if the system could be adapted to the target
domain dynamically during test time. In the field of com-
puter vision, similar methods [17] have been shown to work
well for test-time adaptation as well, and we hope to extend
our work in this direction in the future. Another interesting
direction for extending the work is pre-training on unseg-
mented recordings, containing noise-only portions or multiple
speakers. While the proposed method readily allows for such
data, experimental validation is needed to demonstrate this
potential.
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