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ABSTRACT This paper presents a local energy distribution based hyperparameter determination for stochas-
tic simulated annealing (SSA). SSA is capable of solving combinatorial optimization problems faster than
typical simulated annealing (SA), but requires a time-consuming hyperparameter search. The proposed
method determines hyperparameters based on the local energy distributions of spins (probabilistic bits). The
spin is a basic computing element of SSA and is graphically connected to other spins with its weights.
The distribution of the local energy can be estimated based on the central limit theorem (CLT). The
CLT-based normal distribution is used to determine the hyperparameters, which reduces the time complexity
for hyperparameter search from O (n*) of the conventional method to O(1). The performance of SSA with the
determined hyperparameters is evaluated on the Gset and K2000 benchmarks for maximum-cut problems.
The results show that the proposed method achieves mean cut values of approximately 98% of the best-known
cut values.

INDEX TERMS Combinatorial optimization, Hamiltonian, Ising model, maximum-cut problem, simulated

annealing, stochastic computing.

I. INTRODUCTION

Combinatorial optimization is used to solve many practical
problems in various fields and involves finding the optimal
solution for a given objective function subject to a set of con-
straints [1]. Combinatorial optimization problems are often
NP-hard, meaning that finding the optimal solution requires
an exponentially large amount of time with respect to the
problem size [2]. One such approach is simulated annealing,
which is a stochastic optimization method inspired by the
physical annealing process in materials science [3], [4]. SA
has been successfully applied to various combinatorial opti-
mization problems, such as the traveling salesman problem,
the graph coloring problem, and the maximum cut prob-
lem [5]. Quantum annealing (QA) is another optimization
method that uses quantum mechanics to solve combina-
torial optimization problems [6], [7]. It employs quantum

devices that exploit quantum superposition and entanglement
to explore the search space more efficiently than classical
algorithms [8]; however, QA devices are still in the early stage
of development and have limited qubit coherence times and
connectivity, which restricts their ability to solve large-scale
problems [9].

Recently, a novel method known as stochastic-computing-
based simulated annealing (SSA) has been introduced, which
significantly expedites the annealing process compared to tra-
ditional SA and QA methods [10]. SSA is a parallel variant of
simulated annealing that utilizes an approximation of prob-
abilistic bits (p-bits) [11], implemented through stochastic
computing [12], [13]. Its flexibility allows for implementation
in both software and hardware [14], potentially scaling up
to handle large-scale problems. Combinatorial optimization
problems are expressed using an Ising model [15], which
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comprises spin states denoted as o, spin biases symbolized
by h, and weights between spins represented by J. The Ising
model embodies an energy. In SSA, a pseudo inverse tem-
perature is incrementally raised to determine a solution that
corresponds to the global minimum energy, using random sig-
nals. To enhance performance (i.e., to increase the likelihood
of reaching the global minimum energy), hyperparameters
related to the pseudo inverse temperature and the random
signals must be fine-tuned. This process, however, can be
time-consuming due to the significant computational cost in-
volved.

In this paper, we introduce a statistical method for deter-
mining hyperparameters for SSA that can eliminate the time-
consuming hyperparameter search. In the proposed method,
the hyperparameters are calculated based on the local en-
ergy distributions of spins. The local energy at each spin is
calculated by the spin bias and the summation of the mul-
tiplication of the spin weights and other spin states. As the
number of connections from the other spins is sufficiently
large, the distribution of the local energy can be estimated
based on the central limit theorem (CLT). Therefore, the
local-energy distribution can be approximated by the normal
distribution, which determines the hyperparameters, such as
the pseudo inverse temperature and the noise signals. Com-
pared with a conventional method that uses a grid search
(i.e. typical hyperparameter search) in [10], the time com-
plexity for the hyperparameter search is reduced to O(1)
from O(n®). Using the determined hyperparameters, a unique
noise control at each spin is also introduced for SSA to
enhance the performance. The determined hyperparameters
are evaluated in maximum-cut (MAX-CUT) problems [16]
that are a typical combinatorial optimization problem. On
the MAX-CUT problem benchmarks, such as Gset [17] and
K2000 [18], the mean cut values using the proposed method
reach approximately 98% of the best-known cut values for
1,000 cycles.

The contributions of the paper are:

1) Introducing a new statistical method for determining
hyperparameters in SSA that can eliminate the time-
consuming hyperparameter search required by the con-
ventional method.

2) Demonstrating the effectiveness of the proposed method
in solving the MAX-CUT problems and achieving mean
cut values that are close to the best-known cut values.

3) Reducing the time complexity for hyperparameter
search from O(n’) to O(1) compared to the conven-
tional method.

The rest of the paper is structured as follows. Section II
reviews SSA and its hyperparameters. Section III presents
the proposed statistical method for determining the hyper-
parameters in SSA. Section IV introduces the unique noise
magnitude for each spin. Section V evaluates the determined
hyperparameters and compares SSA with conventional SA.
Section VI discusses the hyperparameter determination with
the conventional hyperparameter search. Finally, Section VII
concludes the paper.
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FIGURE 1. Stochastic simulated annealing (SSA) [10] based on a spin
network that consists of spins, spin biases h, and spin weights J. Spin

states are flipped between “+1” and “—1" by noise signals to reach the
global minimum energy of the Hamiltonian.
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II. PRELIMINARY

A. STOCHASTIC SIMULATED ANNEALING (SSA)

There are several SA methods, such as serial updating [5] and
parallel tempering [19]. Recently, SSA has been presented
as one of the SA methods [10]. SSA is designed based on
p-bit-based SA (pSA), which was introduced in [20]. A p-
bit is a probabilistic bit that can be one of two spin states,
‘+1” and ‘—1". It has been proposed for use in invertible
logic, an unconventional computing technique [11], [21], [22].
pSA, implemented on an underlying Boltzmann machine [23],
realizes parallel updating of the spins for fast simulated
annealing. SSA approximates the behavior of p-bit using
stochastic computing, which overcomes the slow convergence
to the global minimum energy of pSA. Compared to other
SA methods, SSA achieved the highest maximum-cut value in
K2000 [24].

Fig. 1 illustrates SSA, which is on a spin network designed
using spins, spin biases £, and spin weights J between spins.
Each spin state o can be either ‘—1’ and ‘+1’. The spin
network is an Ising model [15] that represents a Hamiltonian
(energy function) as follows:

H(o) = —Zhia,-—ZJijGin- (L

i<j

To solve a combinatorial optimization problem, the problem
is mapped to the Hamiltonian coefficients of 4 and J. The
coefficients differ depending on the problem, such as graph
isomorphism and MAX-CUT problems [16], [25]. During
the annealing process, spin states are flipped between ‘+1’
and ‘—1’ in an attempt to reach the global minimum of the
Hamiltonian.

In SSA, the spin behavior is modeled by approximating
the p-bit using integral stochastic computing (ISC) [26]. Note
that ISC is an extended version of typical stochastic comput-
ing [12], [13], which can be used for area-efficient hardware
implementation [27], [28], [29]. An i-th spin has a bias &; and
edge weights J;; from/to other spins. At each cycle, the spin
state is updated as follows:

Lt + 1) =hi+ Y Jij-0(t) + nga - ri(0), (2a)
J
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FIGURE 2. Annealing process of SSA: (a) spin, (b) /o control, and (c) energy
transition. In SSA, I, is gradually increased from loy;, t0 fomax With
weighted noise signals n,4 - r;(t). These hyperparameters need to be
selected for the best performance of SSA.

Io(t) — o, if Isi(t) + L;(t + 1) = Ih(t)
Isi(t + 1) = { —Iy(t), else if Is;(t) + I;(t + 1) < —Io(t)
Is;(t) + L;(t + 1), otherwise
(2b)
oilt 4 1) = 1, ifIsi(t.—f— 1)>0 20)
—1, otherwise,

where o0;(t) € {—1, 1} and 0;(t + 1) € {—1, 1} is binary input
and output spin states, respectively. [;(t + 1) and Is;(t + 1)
are real-valued internal signals and 7,4 is the magnitude of
a random signal, r;i(t) € {—1, 1}. Iy is the pseudo inverse
temperature and « is the minimum resolution of data repre-
sentation. If only integer values are used in (2), « is 1 [10]. If
floating-point values are used, o can be approximated by 0.

B. HYPERPARAMETER SEARCH FOR SSA

Let us explain the annealing process of SSA using Fig. 2. At
each cycle, Iy is gradually increased from Iymin t0 Iomax as
Io(t + 1) = Iy(t)/B. The parameter [y controls the strength of
the external field that acts on each spin. When Ij is small, the
spin states can be easily flipped to search for many spin states.
This helps the spin states escape from local energy minima
and explore a wider region of the solution space. When I is
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FIGURE 3. Selecting hyperparameters in SSA: (a) conventional
method [10], [24] and (b) proposed method. The proposed method
statistically determines hyperparameters without searching while the
conventional method uses the grid/random search to find good
hyperparameters.

large, the spin states can be stabilized in an attempt to reach
the global minimum energy. Additionally, 7,4 1S an important
parameter used to control the stability of the spin states.

To achieve a high probability of reaching the global min-
imum energy, the three hyperparameters of Iomin, lomax and
nmd need to be carefully selected. In previous studies [10],
[24], a grid search or a random search has been used to se-
lect these hyperparameters, as shown in Fig. 3(a). In a grid
search, a search space is defined as a grid of hyperparameter
values, and every position in the grid is evaluated. In a ran-
dom search, a search space is defined as a bounded domain
of hyperparameter values, and points are randomly sampled
within that domain. If good hyperparameters are not found,
the search process is iteratively carried out until the required
performance (e.g., probability of reaching the global mini-
mum energy) is satisfied. While these methods are simple,
they often require a long time to find good hyperparameters.
In particular, when solving large combinatorial optimization
problems, the time-consuming hyperparameter search could
be a critical issue. In this paper, we determine the hyper-
parameters statistically by calculation, without performing a
search, while achieving high performance of SSA, as shown
in Fig. 3(b).

1il. HYPERPARAMETER DETERMINATION BASED ON
LOCAL ENERGY DISTRIBUTION

A. LOCAL ENERGY DISTRIBUTION

In the spin network, the spins interact with each other via
pairwise interactions, which are often represented by the edge
weights J;; in a graph representation of the Ising model. The
total energy of the spin network is defined as per (1), whereas
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FIGURE 4. Hyperparameter determination in SSA: (a) local energy
distribution at i-th spin approximated by the normal distribution and

(b) hyperparameter determination using the mean of all the local energy
distributions. The three hyperparameters of lonin, fomax, and ny,q are
determined using the normal distribution N(mean(|x;|), mean(s?)).

the local energy at the i-th spin is defined as follows:

Hy(o;) = —hjo; — ZJijUj0i~ (3
i#]

The local energy varies depending on the states of other spins
o; that are connected to it with the edge weights J;;. As
the number of edges connected to a spin becomes larger,
the distribution of the local energy becomes more and more
Gaussian, which can be explained by the central limit theorem
(CLT). In this case, the random variables are the edge weights
Jij, and the sum is over all the edges connected to a spin.

In Fig. 4(a), the local energy distribution at the spin is
illustrated, where n is the total number of spins representing
a combinatorial optimization problem. The i-th spin connects
(n — 1) edges to other spins with the edge weights J;.. Note
that J;. is a vector containing all the edge weights connected
to the i-th spin. Using CLT, the local energy distribution can
be approximated by a normal distribution N (u;, siz) with mean
i and standard deviation s; calculated as follows:

i = (n—1) -mean(J;,), (4a)

si = /(n— 1) - Var([Ji.; —Ji.]).

where the semicolon (;) is used to indicte concatenation of the
two vectors.

(4b)

B. HYPERPARAMETER DETERMINATION

Fig. 4(b) illustrates how to determine the three hyperparame-
ters of Iomin, lomax, and 71:q using the local energy distribution.
As the three hyperparameters are common for all the spins,
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TABLE 1. Summary of the Determined Hyperparameters for SSA

i (n —1) - mean(J;.)

Si V(n—=1) - Var([J;:; —Ji.])
Nrnd 0.6745 - mean(s;)
Iomin | 0.01-max(s;) + min(|u;|)
Tomasx 2 - max(s;) + miln(|,ui|)

8 (%><cycle—l)

as shown in (2), the mean of the local energy distribu-
tions are considered. In other words, a normal distribution
N(mean(|u;]), mean(siz)) is used to control /y that commonly
controls for all the spins.

First, the magnitude of noise signals n;,q is determined as
follows:

Nd = 0.6745 - mean(s;). 5

The reason to select 0.6745 is that the point where the area
from the mean of the normal distribution equals 50% is at
40.6745 - o from the mean. It means that the local energy dis-
tribution can be equally divided into two area by n.,q. Second,
the minimum pseudo inverse temperature Iy, is determined
as follows:

Iomin = 0.01 - max(s;) + min(| ;). (6)

Iomin 1s set as close to min(|u;|) as possible to facilitate the
flipping of the spin states. Third, the maximum pseudo inverse
temperature Iomax is determined as follows:

lomax = 2 - max(s;) + min(| ;). )

It means that a cumulative probability within a distance of
2 - max(s;) from the mean is approximately 95%. The reason-
ing behind the selection of max/min functions originates from
the local energy distribution. Each local distribution at its spin
has different s; and p;, varying from small to large values.
The usage of the max and min functions ensures that /y can
encompass all local energy distributions by changing Iy, to
Iomax during the annealing process.

Table 1 summarizes the determined hyperparameters for

SSA. B is determined by (Iomin /IOmax)(fydﬁ) as o is updated
by Iy(t + 1) = Ip(t)/B, as shown in Fig. 2. Note that cycle is
the total number of cycles during the annealing process. The
determined hyperparameters will be evaluated in Section V.

IV. SSA WITH UNIQUE NOISE MAGNITUDE (SSAU)

In SSA, the magnitude of the noise signals n,q is common
for all spins, as shown in Fig. 5(a). However, each spin has a
unique local energy distribution that is different from others.
To properly control the noise magnitude for each spin, SSA
with a unique noise magnitude (SSAU) is introduced as an
extension of SSA. This approach aims to better control the
noise level for each spin and improve the search performance.

455



ONIZAWA ET AL.: LOCAL ENERGY DISTRIBUTION BASED HYPERPARAMETER DETERMINATION FOR STOCHASTIC SIMULATED ANNEALING

Unique
rnd Mnd i Mynd_ i Mnd k

Common n

N(ﬂi’ Sf)

(@) (b)

FIGURE 5. Magnitude of random signals: (a) SSA and (b) SSAU. In SSAU, a
unique noise magnitude n,,, ; is applied for each spin depending on its
local energy distribution.

FIGURE 6. Example of a five-node MAX-CUT problem with edge weights of
—1 and +1. The line cuts the edges to divide the graph into two groups
while the sum of the edge weights is maximized.

Fig. 5(b) shows SSAU with a unique noise magnitude 7,
for the i-th spin. The noise magnitude for SSA in (5) is up-
dated for SSAU as follows:

Nypg; = 0.6745 - s, ®)

where s; is the standard deviation of the local energy distribu-
tion at i-th spin in (4). The other hyperparameters for SSAU
are the same as that of SSA as shown in Table 1.

Using 1,4 i, (2a) is replaced by the following equation:

Lt+ 1) =hi+ Y Jij o)+ nma i rit). ()
J

The other equations of (2) are common for SSA and SSAU.

V. EVALUATION

A. SIMULATION SETUP

The proposed statistical methods for determining hyperpa-
rameters are evaluated on maximum-cut (MAX-CUT) prob-
lems, which are a typical class of combinatorial optimization
problems [16]. An example of a five-node MAX-CUT prob-
lem with edge weights of —1 and +1 is shown in Fig. 6.
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TABLE 2. Summary of MAX-CUT Problems Used for Evaluation

Graph #mnodes | Structure | Weights (J;;) # edges
(Jij #0)
Gl 800 random {+1,0} 19176
G6 800 random {+1,0, -1} 19176
Gl11 800 toroidal {+1,0, -1} 1600
G14 800 planar {+1,0} 4694
G18 800 planar {+1,0,—1} 4694
G22 2000 random {+1,0} 19990
G34 2000 toroidal {+1,0, -1} 4000
G38 2000 planar {+1,0} 11779
G39 2000 planar {+1,0,-1} 11778
G47 1000 random {+1,0} 9990
G48 3000 toroidal {+1,0,—1} 6000
G54 1000 random {+1,0} 5916
G55 5000 random {+1,0} 12498
G56 5000 random {+1,0,—1} 12498
G58 5000 planar {+1,0} 29570
K2000 2000 full {+1,-1} 1999 000

The objective of MAX-CUT is to maximize the sum of edge
weights by dividing the graph into two groups through a line
cut. The annealing process changes the spin states in an at-
tempt to reach the global minimum energy described in (1),
where the maximum cut value is corresponding to the global
minimum energy. The black circle illustrates a spin state of
‘+1°, while the white circle illustrates a spin state of ‘—1’.
In this example, the graph is divided into Group A (nodes 2,
3, and 4) and Group B (nodes 1 and 5), with a sum of edge
weights equal to 4. The edge weights are represented using J
in the Hamiltonian shown in (1).

Table 2 summarizes the benchmarks for the MAX-CUT
problems that are used to evaluate the proposed method. The
Gset includes the Gx graphs with different sizes, shapes, and
weights [17], while K2000 is another benchmark that consists
of fully-connected graphs with 2,000 nodes [18]. All simula-
tion results are obtained using Python 3.9.6 on an Apple M1
Ultra with 128 GB of memory.

B. DETERMINED HYPERPARAMETERS

Table 3 summarizes the hyperparameters used for SSA and
SSAU. The equations for calculating these hyperparameters
are provided in Table 1 and (8). To illustrate how these values
are determined, let us consider the example of G1. The matrix
J of GI1 is an 800x 800 matrix. It consists of edge weights
either ‘+1° or ‘0’, with the count of ‘+1° edge weights being
19,176. The total number of edges in the matrix amounts to
319,600. First, |u;| and s; are calculated for each of the 800
vectors in J, which yields a unique set of values for each spin.
As an example, two normal distributions with the minimum
and maximum values of u are shown in Fig. 7(a). The range
of ;| is from 26.97 to 66.92, and the range of s; is from 5.19
to 8.18, as shown in Fig. 7(b).
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TABLE 3. Summary of Hyperparameters Determined for SSA and SSAU
Graph | i Si SSA SSAU
Nrnd ‘ Tomin ‘ Tomax Nynd_i
Gl [26.97, 66.92] [5.19, 8.18] 4.66 27.05 43.33 [3.50, 5.52]
G6 [0.00, 28.96] [5.19, 8.18] 4.66 0.08 16.36 [3.50, 5.52]
Gl11 [0.00, 3.99] [1.99, 1.99] 1.35 0.02 3.99 [1.35, 1.35]
Gl4 [4.99, 131.84] [2.23, 11.48] 2.18 5.11 27.96 [1.50, 7.74]
G18 [0.00, 17.98] [2.23, 11.48] 2.18 0.11 22.96 [1.50, 7.74]
G22 [6.99, 36.98] [2.64, 6.08] 2.99 7.05 19.16 [1.78, 4.10]
G34 [0.00, 3.99] [1.99, 1.99] 1.35 0.02 3.99 [1.35, 1.35]
G38 [3.99, 248.88] [1.99, 15.78] 2.17 4.16 35.55 [1.35, 10.64]
G39 [0.00, 42.98] [1.99, 14.49] 2.17 0.14 28.97 [1.35, 9.77]
G47 [7.99, 33.97] [2.83, 5.83] 2.99 8.05 19.64 [1.90, 3.93]
G48 [3.99, 3.99] [1.99, 1.99] 1.35 4.02 7.99 [1.35, 1.35]
G54 [4.99, 135.86] [2.23, 11.66] 2.18 5.11 28.30 [1.51, 7.86]
G55 [0.00, 14.99] [0.00, 3.87] 1.46 0.03 7.75 [0.00, 2.61]
G56 [0.00, 9.99] [0.00, 3.87] 1.46 0.03 7.75 [0.00, 2.61]
G58 [3.99, 560.88] [1.99, 23.68] 2.17 4.24 51.36 [1.35, 15.97]
K2000 [0.99, 168.92] | [44.70, 44.70] 30.15 1.45 90.40 [30.15, 30.15]
ooy (] = @26.975.19%) Tomax = 4333
.S 0.07 40
i3]
c 006 ) )
2 (|| 52 = (66.92,8.18?) <
2 005
7}
$ 004
kel 30
£ o003 Toin = 27.05
§ 0.02 0 200 400 600 800 1000
[ / Cycles
a4 o001 / @
0 L
0 20 40 60 80 100 0
@)
0.45 . 5 -1000
oal | Si b
L -2000
0.35
0.3 r
-‘E‘ 3000
% 0.25
'8 0.2 0 200 4OOC \ 600 800 1000
o ycles
0.15 | m l ©)
0.1 l
0.05 FIGURE 8. Simulation example of SSA with determined hyperparameters
’ for G1: (a) /o vs. cycles and (b) energy vs. cycles. The energy decreases to
0 1'0 2'0 3'0 4‘0 5‘0 6‘0 70 the global minimum energy as I is increased from loy;, and lomax-
(b)

FIGURE 7. |u;| and s; for G1: (a) two normal distribution with the
minimum and the maximum |«;| as an example and (b) the histogram of
|ni] and s; for all 800 spins.

Next, |u;] and s; are used to calculate the hyperparameters
of nnds Iomin, and Ipmax. In the case of SSAU, each spin has
a unique n,,q ; value, which corresponds to its local energy
distribution. The range of n,,4_; is from 3.50 to 5.52.

VOLUME 4, 2023

To verify the hyperparameters, SSA with G1 is simulated
as an example. Fig. 8(a) illustrates the pseudo inverse-
temperature transition for 1,000 cycles. Iy is gradually in-
creased from Iy, = 27.05 to Iymax = 43.33. The value of I
is updated by Iy(t + 1) = Ip(¢)/B, where B = 0.99952. The
energy, defined by (1), decreases to the global minimum as
Iy increases. Once the simulation completes 1,000 cycles, the
spin states o; are extracted to compute the cut value using J.
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TABLE 4. Comparisons of Performance on the MAX-CUT Benchmarks for 1000 Cycles

Graph | Best known Mean of cut values Standard deviation of cut values Ratio of mean cut value
cut value SA [5] SSA SSAU SA SSA SSAU SSA SSAU SSAU
vs. SA vs. SA vs. SSA
Gl 800 10754.52 | 11427.05 | 11428.13 | 47.63 32.83 33.28 6.25% 6.26% 0.01%
G6 800 1276.96 2159.59 2160.63 45.56 12.29 12.44 69.12% 69.20% 0.05%
Gl1 800 334.98 549.60 549.47 13.16 4.12 4.10 64.07% 64.03% -0.02%
Gl14 800 2803.34 3009.71 3013.20 15.55 8.13 7.70 7.36% 7.49% 0.12%
G18 800 590.68 972.49 974.72 25.60 8.34 7.56 64.64% 65.02% 0.23%
G22 2000 11161.3 13099.78 | 13102.26 | 50.47 31.63 31.34 17.37% 17.39% 0.02%
G34 2000 469.26 1346.64 1346.67 27.97 6.34 6.39 186.97% | 186.98% 0.00%
G38 2000 6642.68 7546.93 7554.4 31.09 15.82 15.71 13.61% 13.73% 0.10%
G39 2000 862.1 2352.47 2362.03 46.48 14.01 12.41 172.88% | 173.99% 0.41%
G47 1000 5854.9 6536.24 6537.83 33.10 21.62 21.15 11.64% 11.66% 0.02%
G438 3000 3562.2 5724.25 5724.29 30.94 38.20 38.15 60.69% 60.70% 0.00%
G54 1000 3484.95 3780.36 3784.71 19.66 8.73 8.54 8.48% 8.60% 0.11%
G55 5000 6973.55 9994.42 10037.44 | 45.21 2233 21.02 43.32% 43.94% 0.43%
G56 5000 702.21 3930.36 3947.27 55.74 14.72 12.08 459.71% | 462.12% 0.43%
G58 5000 15791.8 18930.60 | 18949.24 | 68.81 27.41 30.40 19.88% 19.99% 0.10%
K2000 2000 11267.73 | 32931.54 | 32932.38 | 566.15 | 117.59 117.71 192.26% | 192.27% 0.00%

C. COMPARISONS

Table 4 compares SSA and SSAU with a conventional SA
in the 16 different MAX-CUT problems for 1,000 cycles.
Let us briefly explain the simulation conditions for SA, as
detailed in [5]. In this method, the temperature 7 is gradually
decreased by Ajr as T < 1/(1/T + A7) at each cycle. The
initial temperature is set to 1, and the final temperature is
set to 1/1000. The number of cycles is 1,000, which is the
same as for SSA and SSAU. During each cycle, a spin state
is randomly flipped, and a new state is accepted if the new
energy (E,qy) is lower than the current energy (E,;) or if it is
higher with a probability of exp(—(Ejewy — Ecur)/T).

The mean and the standard deviation of cut values are
obtained by running 100 trials for each benchmark. When
comparing SSA and SSAU with SA, the ratios of the mean
cut values are positive in all benchmarks. In particular, the
ratios are significantly positive in the case of graphs with {+1,
0, —1} weights. The reason is that SA takes more cycles to
achieve better cut values in the case, where the mean cut
values are significantly smaller than the best-known values.
The mean of normalized cut values is 65.0% for SA.

When comparing SSA and SSAU, the mean cut values of
SSAU are larger than that of SSA in most of the benchmarks.
The ratios are relatively large in the case of graphs with {+1,
0} weights. The standard deviation of the cut values is similar
for both methods, with these values significantly smaller than
that of SA. On average, across all benchmarks for 1,000 cy-
cles, the mean cut values of SSA and SSAU are 97.9% and
98.0% of the best-known cut values, respectively. In terms
of computation cost, SSAU takes almost the same simulation
time as SSA. For instance, the simulation time on K2000 for
1,000 cycles is 1.43 seconds for both SSA and SSAU. The
best cut values are summarized in Table 5. It shows that SSA
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TABLE 5. Summary of Best Cut Values for 1,000 Cycles

| sa | ssa [ ssau

Gl 10859 | 11550 | 11560
Go6 1389 2178 2178
Gl1 364 564 564
Gl14 2836 3040 3040
G18 647 990 992
G22 11325 | 13214 | 13221
G34 536 1368 1368
G38 6715 7603 7606
G39 993 2399 2400
G47 5947 6647 6615
G48 3642 5934 5904
G54 3530 3820 3815
G55 7088 10073 | 10121
G56 831 3982 3996
G58 15919 | 19014 | 19033
K2000 12413 | 33235 | 33225

and SSAU achieve 99.2% of the best-known cut values while
SA only attains 67.7%.

Fig. 9 displays the mean of normalized cut values in rela-
tion to the number of cycles for 16 benchmarks. Both SSA
and SSAU quickly achieve an average of 95.4% of the nor-
malized best-known value within just 100 cycles, while SA
only reaches 48.2%. For 10,000 cycles, SA, SSA, and SSAU
achieve 90.0%, 98.8%, and 98.9% respectively. Compared
to related works on K2000, the mean cut value of SSAU
is 32,932, which surpasses the 32,458 and 32,768 values
from [18] and [30], respectively.
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FIGURE 9. Mean of normalized cut values versus cycles for 16
benchmarks. It shows that both SSA and SSAU rapidly attain an average of

95.4% of the best-known normalized value within just 100 cycles. In
comparison, SA only achieves 48.2%.

TABLE 6. Time Complexity of Hyperparameter Search in SSA

Conventional [10], [24]
O(n?)

This work
o)

Time complexity

VI. DISCUSSION

A. COMPARISON WITH HYPERPARAMETER SEARCH

The comparison result between SA and SSA for G11 was
previously presented in [10]. SSA achieved superior mean
cut values compared to SA and QA, even though the pre-
vious study employed hyperparameter searching. Table 6
provides a comparison of the time complexity of hyperparam-
eter searching for SSA. In the conventional method [10], [24],
the hyperparameters of nyq, Iomin, and Iomax Were selected
through searching, leading to a time complexity of O(n?).
In contrast, the proposed method determines these hyperpa-
rameters statistically without the need for searching, thereby
resulting in a time complexity of O(1).

Let us discuss the impact of determined hyperparame-
ters in SSA. As summarized in Table 6, the conventional
method necessitates the search for hyperparameters prior to
simulated annealing. Table 7 compares the search and an-
nealing time, along with the normalized mean cut values
for the all 16 benchmarks using SSA, where the annealing
takes 1,000 cycles. In the conventional method, the hyper-
parameters of Iomin, lomax, and nm,g are randomly searched
for across 1,000 trials, with each value ranging from O to
1000 with a condition of Iymin > Iomin- Based on these search
results, the best hyperparameters are selected to evaluate the
mean cut values. The outcome indicates that the proposed
method, which excludes the hyperparameter search, yields
results that are superior to the conventional method in most
benchmarks. Moreover, the proposed method completely
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eliminates the time-consuming process of hyperparameter
searching.

Fig. 10 illustrates the normalized cut values using ran-
dom search with 1,000 cycles on G58. In G58, the proposed
method achieves a normalized mean cut value of 98.2%,
which is superior to the 97.6% of the conventional method.
Both the best hyperparameters identified through searching
and the determined hyperparameters are plotted. The plotted
values for n.,q and Iy, are similar between the conventional
and proposed methods; however, the values for Iomax differ
significantly, potentially leading to performance loss. As the
search process iterates 1,000 times, more iterations might
yield better hyperparameters, but this would also increase the
search time.

B. HYPERPARAMETER SELECTION

Let us discuss the effect of using 0.01 for lymi, in (6). In
this study, the constant 0.01 is utilized to position Ippin, close
to min(|x;|). This results in a mean normalized cut value of
97.9% on average in SSA. When 0.01 is changed to 107°
or 0.05, the respective averages become 97.6% and 97.8%.
Hence, the constant for Iyni, does not significantly impact the
results. Note that a value of 0 is not permissible. The rangle of
this value is associated with the equation g = (f&ﬁ)(cydkl)
as shown in Table 1. If the value is 0, Ipyyi, becomes O in sev-
eral benchmarks, especially when min(|u;|) is 0. This makes
it impossible to determine S. Therefore, Iy, is set to a value
as low as 1076,

Additionally, the number of standard deviations set to 2
for Ipmax in (7) is examined. To evaluate the impact of this
standard deviation number, it is altered to 3 and 4. As a result,
the mean normalized cut value averages 97.8% in SSA for
both cases. Therefore, the constant for Iy, also does not have
a significant effect on the results.

There might be a constraint of the proposed determined
hyperparameters based on CLT when each spin contains a
few connections. To assess the performance of the proposed
method based on the number of connections, new bench-
marks are created using K2000 as a reference. K2000 is fully
connected with weights of +1 or —1, and the ratio of +1
to —1 weights is 50%. These benchmarks encompass spin
counts ranging from 5 to 1000, with each spin being fully
connected and assigned weights of either +1 or —1. The mean
cut values, taken from 100 trials, are contrasted between the
conventional search and the proposed method in Fig. 11. The
conventional method searches the best hyperparameters for
1,000 trials. The findings indicate that the proposed method
outperforms the conventional approach when there is a larger
number of connections. However, with a smaller number of
connections, the assumptions underpinning the Central Limit
Theorem (CLT) might not be met, even though the mean cut
values remain nearly identical. A possible explanation is that
annealing is effective with a smaller number of spins, even in
the absence of precise hyperparameters.
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TABLE 7. Comparisons of Search and Annealing Time With Normalized Mean Cut Values for 1000 Cycles on All 16 Benchmarks Using SSA

Conventional This work Normalized mean cut value
Search time [s] | Annealing time [s] | Total time [s] | Annealing time (total time) [s] Conventional | This work Ratio
Gl 310.61 0.28 310.88 0.40 98.58% 98.31% -0.28%
Go6 286.76 0.26 287.02 0.28 89.51% 99.15% 10.78%
Gl1 313.34 0.28 313.62 0.40 88.1%4 97.45% 10.56%
Gl4 312.60 0.25 312.85 0.39 97.44% 98.23% 0.81%
G18 316.05 0.28 316.32 0.29 87.90% 98.03% 11.53%
G22 1523.29 1.45 1524.74 1.45 97.4%2 98.06% 0.66%
G34 1494.86 1.45 1496.30 1.80 94.66% 97.30% 2.79%
G38 1483.77 1.45 1485.21 1.83 96.95% 98.17% 1.26%
G39 1473.18 1.45 1474.63 1.83 87.2%3 97.69% 12.00%
G47 433.96 0.41 434.37 0.61 96.92% 98.18% 1.31%
G48 3250.20 3.26 3253.46 4.19 88.33% 95.40 % 8.01%
G54 418.73 0.40 419.12 0.61 97.81% 98.14% 0.34%
G55 8812.68 8.96 8821.64 10.71 94.68% 97.04% 2.49%
G56 8869.97 8.80 8878.77 9.30 94.24% 97.84% 3.83%
G58 8794.97 8.82 8803.79 9.24 97.57% 98.12% 0.57%
K2000 1451.41 1.44 1452.85 1.52 98.24% 98.78% 0.56%
oo 217 (8 work) 424 (this work) o l"’ {this work) 711 (conventional)

<+<— 9.71 (conventional)
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FIGURE 10. 1000 normalized cut values using random search for 1000 cycles on G58 are presented as: (a) N4, (b) fomin, @and (c) lomax- The conventional
method achieves a normalized mean cut value of 97.6% with the best hyperparameters searched, while the proposed method achieves 98.2% with the
determined hyperparameters. Both sets of parameters are plotted in the figures.
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FIGURE 11. Mean cut values versus the number of connections per spins
in fully-connected benchmark graphs with weights of +1 or —1.

VII. CONCLUSION

This paper proposes the local energy distribution based hy-
perparameter determination in SSA, which is a faster solving
method for combinatorial optimization problems than SA.
The method is based on the local energy distributions of

460

spins and utilizes the CLT-based normal distribution for
hyperparameter determination, significantly reducing the time
complexity for hyperparameter search. Additionally, using the
local energy distributions, the unique magnitude for the ran-
dom signal at each spin has been presented to further improve
SSA. The proposed method is evaluated in the MAX-CUT
problems, where it achieves high accuracy while reducing
time costs compared to conventional SSA with hyperparame-
ter search.

Future research directions include applying the proposed
method to other optimization problems, exploring the im-
pact of hyperparameters on the SSA performance, developing
more efficient hardware.
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