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ABSTRACT The group synchronization problem involves estimating a collection of group elements from
noisy measurements of their pairwise ratios. This task is a key component in many computational problems,
including the molecular reconstruction problem in single-particle cryo-electron microscopy (cryo-EM). The
standard methods to estimate the group elements are based on iteratively applying linear and non-linear
operators, and are not necessarily optimal. Motivated by the structural similarity to deep neural networks, we
adopt the concept of algorithm unrolling, where training data is used to optimize the algorithm. We design
unrolled algorithms for several group synchronization instances, including synchronization over the group
of 3-D rotations: the synchronization problem in cryo-EM. We also apply a similar approach to the multi-
reference alignment problem. We show by numerical experiments that the unrolling strategy outperforms
existing synchronization algorithms in a wide variety of scenarios.

INDEX TERMS Algorithm unrolling, group synchronization, multi-reference alignment.

I. INTRODUCTION
Given a group G, the group synchronization problem entails
estimating N elements g1, . . . , gN ∈ G from their noisy pair-
wise ratios gi j ≈ gig

−1
j . Since gig

−1
j = (gig)(g jg)−1 for any

g ∈ G, the group elements can be estimated up to a right mul-
tiplication by some g ∈ G. A canonical example is the angular
synchronization problem of estimating N angles θ1, . . . , θN ∈
[0, 2π ) from their noisy offsets θi j ≈ (θi − θ j ) mod 2π ; this
problem corresponds to synchronization over the group of
complex numbers on the unit circle U (1) [1], [2], [3], [4].

Under the standard additive Gaussian noise model, the
maximum likelihood estimator (MLE) of the angular syn-
chronization problem can be formulated as the solution of a
non-convex optimization problem on the manifold of product
of circles:

max
z∈CN

1

z∗Hz, (I.1)

where Hi j = eιθi j is the measurement matrix, ι = √−1, and
CN

1 := {z ∈ CN : |z1| = . . . = |zN | = 1}. Singer [1] proposed
to solve (I.1) by extracting the leading eigenvector of H using
the power method: given an initial estimate of the sought
angles, the power method iteratively applies the matrix H to

the current estimate and then normalizes its norm. In follow-
up papers, Boumal [2] suggested an alternative normalization
strategy, and Perry et al. [5] developed an algorithm which is
inspired by the approximate message passing (AMP) frame-
work. These strategies can be naturally extended to additional
group synchronization setups. We describe all these methods
in detail in Section II. For our purposes, it is important to note
that the t-th iteration of all these methods follows the same
structure:

z(t ) = f (H, z(t−1), z(t−2)), (I.2)

for some non-linear function f . Specifically, at each iteration,
the current estimate is acted upon by a linear operator, fol-
lowed by a non-linear function. This structural resemblance
to the blueprint of a neural network layer is the cornerstone of
this work.

The group synchronization problem is an important compo-
nent in a variety of scientific, engineering, and mathematical
problems, including the structure from motion problem [6],
sensor network localization [7], phase retrieval [8], [9], [10],
ranking [11], community detection [12], and synchronization
of the rigid motion group [13], [14], [15], [16], the dihedral
group [17], and the permutation group [18].
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This work is mainly motivated by the problem of 3-D
molecular structure reconstruction using cryo-EM [19], in
which each observation is a noisy tomographic projection
of the molecular structure, taken from some unknown view-
ing direction. One approach to solving the cryo-EM problem
is to estimate the missing 3-D rotations from the observa-
tions and then recover the 3-D structure as a linear problem.
This methodology is used to constitute ab initio models [20].
In [21], [22], [23], [24], it was shown that the pairwise relative
rotations can be estimated from the observations based on the
common lines property. Therefore, the cryo-EM reconstruc-
tion problem boils down to a synchronization problem over
the group of 3-D rotations SO(3).

Motivated by the fact that existing synchronization methods
are not optimal, and the resemblance of the iteration (I.2) to
the general structure of a modern neural network layer, we
adopt the approach of algorithm unrolling [25], to develop an
efficient, interpretable neural network that outperforms exist-
ing methods. The underlying idea of algorithm unrolling, first
introduced in the seminal work of Gregor and LeCun [26],
is to exploit existing iterative algorithms and optimize them
using training data. Specifically, each iteration of the algo-
rithm is represented as a layer of a network, and concatenating
these layers forms a deep neural network. Passing through
the network is analogous to executing the iterative algorithm
for a fixed number of steps. The network can be trained us-
ing back-propagation, resulting in model parameters that are
learned from training samples. Thus, the trained network can
be naturally interpreted as an optimized algorithm. This is es-
pecially important since, while the past decade has witnessed
the unprecedented success of deep learning techniques in nu-
merous applications, most deep learning techniques are purely
data-driven, and the underlying structures are hard to interpret.
The unrolled networks are parameter efficient, require less
training data, and are less susceptible to overfitting. More-
over, the unrolled networks naturally inherit prior structures
and domain knowledge, leading to better generalization. The
algorithm unrolling approach has been adopted for various
tasks in recent years, including compressive sensing [27],
image processing [28], [29], [30], [31], [32], graph signal
processing [33], biological imaging [34], to name but a few.
We refer the readers to a recent survey on algorithm unrolling
and references therein [25]. Fig. 1 demonstrates the concept
of algorithm unrolling for the synchronization problem over
the group Z/2; see Section II.

Existing synchronization algorithms assume a certain
model of the measurements and use an approximation to solve
the non-convex optimization problem, which is not neces-
sarily optimal. For example, the noise is typically not i.i.d.
Gaussian. In contrast, the unrolling algorithm, which is data-
driven, with inductive bias derived from the problem structure,
has the ability to learn a better model, which empirically leads
to improved error and improved efficiency. The downside of
using a learned algorithm is the complexity of the solution,
which requires training on labeled data, and the fact that it
might suffer from overfitting. It is known, as we also observed,

FIGURE 1. Concept of an unrolled algorithm for Z/2 synchronization
based on the projected power method. The upper panel shows the
standard projected power method for Z/2 synchronization with T
iterations; see Section II-A2. The middle panel illustrates a single iteration
of the algorithm in the form of a single-layer network, where the sign
operator is replaced by a general, learned non-linear function fθ . The
bottom panel shows the concatenation of T layers into an unrolled deep
network. Each layer may have a separate set of parameters. The Onsager
correction term that uses z(t−1) is omitted for simplicity.

that the unrolling technique mitigates such issues, compared
to a fully data-driven approach.

We also study the application of the unrolling approach
to the multi-reference alignment (MRA) problem. MRA is
the problem of estimating a signal from its multiple noisy
copies, each acted upon by a random group element. The
computational and statistical properties of the MRA problem
have been analyzed thoroughly in recent years; see [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46]. Group
synchronization is often used to solve the MRA problem in
high SNR regimes, by first estimating the pairwise ratios be-
tween the group elements from the noisy observations, and
then estimating the group elements themselves as a synchro-
nization problem. Given an accurate estimate of the random
group elements, the MRA problem reduces to a linear inverse
problem, which is much easier to solve. Importantly, in con-
trast to group synchronization, the goal in MRA is to estimate
the underlying signal, while the group elements are nuisance
variables whose estimation is merely an intermediate step.

The rest of the article is organized as follows. In Section II
we introduce three particular cases of group synchronization
and two MRA models, and present existing methods to solve
them. Section III introduces the proposed unrolled algorithms,
and Section IV shows numerical results. Finally, Section V
concludes the article, and discusses future work.

II. GROUP SYNCHRONIZATION, MULTI-REFERENCE
ALIGNMENT, AND EXISTING SOLUTIONS
In this section, we introduce three group synchronization
and two MRA models. We also elaborate on three different
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methods to estimate group elements. These methods are the
keystone of the unrolled algorithms described in the next
section.

A. Z/2 SYNCHRONIZATION
We begin with the simplest group synchronization problem
over the group Z/2. The goal is to estimate a signal z ∈ {±1}N

from the noisy measurement matrix:

H = λ

N
zzT + 1√

N
W, (II.1)

where Wi j = Wji ∼ N (0, 1), and λ > 0 is a signal-to-noise
ratio (SNR) parameter. The scaling is such that the signal
and noise components of the observed data are of comparable
magnitudes. The diagonal entries of W follow the same distri-
bution. We also assume that each entry of z is drawn i.i.d. from
a uniform distribution over ±1. We can only hope to estimate
z up to a sign, due to the symmetry of the problem.

The Z/2 synchronization problem is associated with the
maximum likelihood estimation problem:

max
z∈RN

1

zT Hz, (II.2)

where RN
1 := {z ∈ RN : |z1| = . . . = |zN | = 1}. This is a non-

convex optimization problem. We now describe different
existing iterative algorithms to solve (II.2). All algorithms are
initialized with small random values in [−1, 1]. Specifically,
in our numerical experiments, the algorithms are initialized by
z(0), z(−1) ∼ N (0, 10−2I ).

1) POWER METHOD (PM)
In [1], Singer proposed a spectral approach (in the context of
U (1) synchronization) that relaxes (II.2) to

max
z∈RN ,‖z‖2=N

zT Hz = max
z∈RN ,‖z‖2=N

N
zT Hz

‖z‖2
. (II.3)

The expression in (II.3) is known as the Rayleigh quotient and
is maximized by the leading eigenvector of H that corresponds
to the largest eigenvalue. This eigenvector can be computed
using the power method, whose (t + 1)-th iteration reads:

z(t+1) = Hz(t )

‖Hz(t )‖ . (II.4)

After the last iteration T , the output is projected onto the Z/2
group by z(T ) = sign(z(T )), where sign() is the sign function,
acting separately on each entry of the vector.

2) PROJECTED POWER METHOD (PPM)
The projected power method [2] suggests replacing the global
normalization (II.4) by an entrywise projection onto the
group. Specifically, the (t + 1)-th iteration reads:

z(t+1) = sign(Hz(t ) ). (II.5)

3) APPROXIMATE MESSAGE PASSING (AMP)
Perry et al. [5] proposed an algorithm that is inspired by the
AMP framework. For the Z/2 synchronization, its (t + 1)-th

iteration reads:

z(t+1) = tanh(c(t+1)), (II.6)

where

c(t+1) = λHz(t ) − λ2(1 − 〈(z(t ) )2〉)z(t−1), (II.7)

and 〈·〉 denotes averaging over the vector entries. The second
term in (II.7) is called the Onsager correction term and is re-
lated to backtracking messages in graphical model [5]. In the
setting of Z/2 synchronization, an algorithm equivalent to the
AMP [5] was analyzed in [47], where a statistical optimality
property is proven: if AMP is warm-started with a state v0

with nontrivial correlation with the truth, then it converges to
an estimate of x that achieves minimum mean-squared error
(MMSE) asymptotically as n → ∞. In [5], they conjecture
based on ideas from statistical physics that in many regimes
besides Z/2 synchronization, the AMP algorithm is statisti-
cally optimal, as the matrix dimensions approaches infinity.

We underscore that all the methods mentioned above share
a similar structure: the current estimate of the group elements
is multiplied by the measurement matrix, followed by a non-
linear operation.

B. U (1) SYNCHRONIZATION
Next, we consider the synchronization problem over the group
U (1) of complex numbers with unit modulus. The formulation
is similar to Section II-A, but the goal is to estimate z ∈ CN

1 .
In this case, W is a Hermitian matrix whose entries are dis-
tributed independently (up to symmetry) according to the
standard complex normal distribution CN (0, 1). We assume
that each entry of z is drawn i.i.d. from a uniform distribution
on the unit circle. Due to symmetry considerations, we can
only hope to estimate z up to a global element of U (1).
We describe different existing iterative algorithms to solve
the optimization problem. All algorithms are initialized with
small random values. In our experiments, the algorithms are
initialized with z(0), z(−1) ∼ CN (0, 2 · 10−4I )

1) POWER METHOD (PM)
Using a relaxation similar to (II.3) with z ∈ CN instead of z ∈
RN , we get power iterations as in (II.4).

2) PROJECTED POWER METHOD (PPM)
Similarly to (II.5), the (t + 1)-th iteration of the PPM reads:

z(t+1) = phase(Hz(t ) ), (II.8)

where phase(z)[i] = z[i]/|z[i]|.

3) APPROXIMATE MESSAGE PASSING (AMP)
Following [5], for each i = 1, . . . , N , the (t + 1)-th iteration
of the AMP algorithm reads:

z(t+1)[i] = f
(|c(t+1)[i]|) c(t+1)[i]

|c(t+1)[i]| , (II.9)
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where f (t ) = I1(2t )/I0(2t ), Ik denotes the modified Bessel
functions of the first kind of order k, and

c(t+1) = λHz(t ) − λ2(1 − 〈|z(t )|2〉)z(t−1). (II.10)

C. SO(3) SYNCHRONIZATION
SO(3) is the group of 3-D rotations. Each element of
SO(3) can be represented by a 3 × 3 matrix Ri that satisfies
det(Ri ) = 1, and RiRT

i = RT
i Ri = I , where I is the identity

matrix. The SO(3) synchronization problem is to estimate the
block matrix

R = [RT
1 , . . . , RT

N ]T ∈ R3N×3, (II.11)

given the noisy pairwise ratios:

H = λ

N
RRT + 1√

3N
W, (II.12)

where W is a symmetric matrix whose entries are distributed
independently (up to symmetry) as N (0, 1), and λ > 0 de-
notes the SNR parameter. The problem can be associated with
the maximum likelihood estimation problem [23]:

max
R

RT HR, (II.13)

where R ∈ R3N×3 is of the form (II.11), and each 3 × 3 block
Ri is in SO(3).

1) SPECTRAL METHOD
Similarly to synchronization over Z/2 and U (1), we begin
by computing the three leading eigenvectors of H ∈ R3N×3N ,
which we denote by R̂1, R̂2, R̂3. This method is typically
called the spectral method [23], and we omit the details of the
power iterations for simplicity. Then, we form a matrix R̂ =
[R̂1, R̂2, R̂3] ∈ R3N×3, and finally each 3 × 3 block of R̂ is
projected onto the nearest orthogonal matrix. This projection,
denoted by projectSO(3), takes a 3 × 3 matrix M, computes its
SVD factorization M = U�V T and replaces the diagonal ma-
trix � by an identity matrix so that projectSO(3)(M ) = ±UV T .
The sign is chosen so that the determinant is one.

2) PROJECTED POWER METHOD (PPM)
The (t + 1)-th iteration of the PPM reads:

R(t+1) = projectSO(3)(HR(t ) ). (II.14)

To initialize the algorithm, we draw N , 3 × 3 matrices whose
entries are drawn i.i.d. from N (0, 1), and then project each
matrix to the nearest orthogonal matrix as described above.

D. MULTI-REFERENCE ALIGNMENT (MRA)
We consider two MRA setups. In both cases, assuming the
SNR is not too low, we first estimate the pairwise ratios be-
tween the group elements from the observations. Then, we
estimate the group elements using a synchronization algo-
rithm, align the noisy observations, and average out the noise.

1) MRA OVER Z/2
We assume to acquire N measurements of the form

yi = six + 1

λ
εi, i = 1, . . . , N, (II.15)

where x, εi ∈ RL, εi ∼ N (0, I ) and si ∈ {−1, 1}. Our goal is
to estimate x, up to a sign, from y1, . . . , yN , when s1, . . . , sN ,

are unknown.
To estimate x, we first build the pairwise ratio matrix by

Hi j

‖x‖2
2

= yT
i y j

‖x‖2
2

≈ sis j, (II.16)

and then estimate the group elements {si}N
i=1 using one of

the existing methods for Z/2 synchronization described in
Section II-A. Let ŝ1, . . . , ŝN , be the estimated group elements.
Then, the signal can be reconstructed by averaging

x̂ = 1

N

N∑
i=1

ŝiyi. (II.17)

We emphasize that, in contrast to the synchronization prob-
lem, the error in (II.16) is not Gaussian anymore; in fact, the
error is correlated:

Hi j = λ

N
yT

i y j = λ

N
sis j‖x‖2

2 + wi, j, (II.18)

where wi, j = 1
N (xT (s jεi + siε j ) + 1

λ
εT

i ε j ). Note that
E[wi, jwi,k] = s j sk

N2 E[(xT εi )2] �= 0, where the expectation
is taken with respect to the noise terms.

2) MRA OVER THE GROUP Z/L OF CIRCULAR SHIFTS
Now, we consider a set of measurements of the form

yi = Rsi x + 1

λ
εi i = 1, . . . , N, (II.19)

where x ∈ RL is sought signal, Rs is a circular shift opera-
tor, that is, Rs(x)[i] = x[(i − s) mod L], s ∼ U [0, L − 1], and
εi ∼ N (0, I ). We wish to estimate x, up to a circular shift,
from y1, . . . , yN , when s1, . . . , sN are unknown.

To estimate the signal, we first estimate the pairwise ra-
tio between the group elements (namely, the relative circular
shift) by taking the maximum of the cross-correlation between
pairs of observations. This can be computed efficiently using
the FFT algorithm by the relation

si j = arg maxF−1(F (yi ) ◦ F∗(y j )), (II.20)

where F stands for the Fourier transform and ◦ is an element-
wise multiplication. Then, we construct the pairwise matrix:

Hi j = λ

N
eι2π

si j
L , (II.21)

and estimate the group elements using one of the existing
methods for U (1) synchronization described in Section II-B.
We keep the normalization to be consistent with the scaling of
the synchronization model when the pairwise ratios are given.
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Let ŝ1, . . . , ŝN , be the estimates of the group elements. The
signal can then be estimated by alignment and averaging.

x̂ = 1

N

N∑
i=1

R−ŝi yi. (II.22)

Throughout this work, we assume that the SNR is high enough
so that the group elements can be estimated with reasonable
accuracy. We mention that when the SNR is very low, the
group elements cannot be estimated reliably, and thus the
strategy described above will fail. We focus on λ > 1, in
which the spectral method and the projected power method
are shown to result in a non-trivial solution [5]. In the MRA
problem, the effective SNR is λ‖x‖2 ≈ λ

√
L, since x ∈ RL ∼

N (0, I ). Throughout our experiments, we chose λ values such
that the SNR is of the order of 1. Several methods were devel-
oped to estimate the signal in such low SNR environments
without estimating the group elements, see, for instance, [36],
[38], [39].

III. UNROLLED ALGORITHMS FOR GROUP
SYNCHRONIZATION
Based on the structural similarity between the group synchro-
nization algorithms described in Section II and deep neural
networks, we adopt the concept of algorithm unrolling: map-
ping each iteration of an iterative algorithm into a learned
network layer and stacking the layers together to form a deep
neural network. Each layer consists of multiplying the current
estimate of group elements with the measurement matrix,
Hz(t ), as in the iteration formula, but replaces the explicit
non-linear function with a learned non-linear function. Each
layer has the flexibility to incorporate information from the
(t − 1)-th layer. Specifically, the (t + 1)-th layer receives as
an input the measurement matrix H and the previous estimates
z(t ) and z(t−1), and is parameterized by a set of weights θ (t ):

z(t+1) = �θ (t ) (z(t ), z(t−1), H ), (III.1)

where � denotes the architecture of the layer. The layers can
either share weights or have different weights per layer. Fig. 1
illustrates the concept of an unrolled algorithm for Z/2 syn-
chronization.

In order to train the network, we generate data according to
the data generative model, including the relative measurement
matrix and the ground truth group elements. The network is
trained using stochastic gradient descent to minimize a loss
function that measures an error metric (up to a group symme-
try) over a batch of samples. Thus, given an initial estimate
z(0), we get an estimator for the group elements of the form:

ẑ = F	(z(0), H ), (III.2)

where 	 is the entire set of weights: 	 = [θ (0), . . ., θ (T −1)],
and F is the deep neural network function.

While we cannot provide theoretical guarantees, we con-
jecture that the unrolling algorithm outperforms existing
algorithms for the following reasons:

1) Existing solutions are not necessarily optimal, and the
error guarantees are for asymptotic settings, whereas we
examine the finite-dimensional setting.

2) The analysis of previous algorithms assumes that the
errors of the relative group ratios are independent. How-
ever, usually, the relative group ratios are estimated
from the data (e.g., in cryo-EM), and thus this error
model does not hold.

3) The starting point of this work was the resemblance
of existing iterative synchronization algorithms to the
blueprint of neural networks. We chose to use algorithm
unrolling, and not a generic neural network architecture,
to benefit from its advantages: interpretable structure,
which contains domain knowledge and requires less
training data.

In the following subsections, we elaborate on specific
network architectures, including the loss functions, for the
models introduced in Section II.

A. ARCHITECTURE AND LOSS FUNCTION FOR Z/2
SYNCHRONIZATION
Following the AMP iterations in (II.6) and (II.7), the (t +
1)-th layer receives as input the measurement matrix H ∈
RN×N , and the previous layers’ estimates z(t ), z(t−1) ∈ RN .
The output z(t+1) ∈ RN can be described using the following
equations:

c = θ0λHz(t ) − λ2(1 − 〈(φθ2 (z(t ) ))2〉)z(t−1), (III.3)

and,

z(t+1) = fθ1 (c), (III.4)

where f and φ are learned functions parameterized by a set of
weights θ1 and θ2.

We denote by Dense(N) a linear layer with N neurons,
whose input is the previous layer’s output, BatchNorm() de-
notes a batch normalization layer, ReLU() is a relu layer,
and tanh() is a hyperbolic tangent layer. The learned function
has the following structure: Dense(32) → BatchNorm() →
ReLU() → Dense(1) → BatchNorm() → tanh(), such that its
outputs are in the range [−1, 1].

Given a batch of M samples, with ground truth and pre-
dicted group elements {zm}M

m=1 and {ẑm}M
m=1, respectively, we

use the following loss function to optimize the weights:

L(	) = 1 − 1

NM

M∑
m=1

|zT
mẑm|, (III.5)

where 	 = [θ(0), . . ., θ(T −1)] is the set of parameters of the
network, and θ(t ) = [θ (t )

0 , θ
(t )
1 , θ

(t )
2 ] is the set of parameters per

layer. The loss function (III.5) measures the average alignment
error, up to a sign, between the predicted and the ground truth
group elements. The absolute value function is required due
to the sign symmetry.
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B. ARCHITECTURE AND LOSS FUNCTION FOR U (1)
SYNCHRONIZATION
Based on the AMP iterations (II.10) and (II.9), the (t + 1)-th
layer receives as input Hr, Hi ∈ RN×N , the real and imag-
inary parts of the measurement matrix, respectively, and
z(t )

r , z(t )
i , z(t−1)

r , z(t−1)
i ∈ RN : the real and imaginary parts of

the estimates of the previous layers. The output z(t+1)
r , z(t+1)

i ∈
RN can be described using the following equations:

cr = θ0λ(Hrz(t )
r − Hiz

(t )
i ) − λ2(1 − 〈z(t )

r
2 + z(t )

i
2〉)z(t−1)

r ,

ci = θ0λ(Hrz(t )
i + Hiz

(t )
r ) − λ2(1 − 〈z(t )

r
2 + z(t )

i
2〉)z(t−1)

i
(III.6)

and

z(t+1)
r [n] = cr[ j]

max (|c[ j]|, ε)
fθ1 (|c[ j]|),

z(t+1)
i [ j] = ci[ j]

max (|c[ j]|, ε)
fθ1 (|c[ j]|), (III.7)

where |c[ j]| =
√

cr[ j]2 + ci[ j]2, and ε = 10−12 is a small
constant that is introduced for numerical stability. The non-
linear function f is a learned function parameterized by a set
of weights θ1 with the following structure: Dense(256) →
ReLU() → Dense(1) → tanh(), such that its outputs are within
[−1, 1].

Let {zrm}M
m=1, {zim}M

m=1 and {ẑrm}M
m=1, {ẑim}M

m=1 be the real
and imaginary parts of the ground truth and the predicted
group elements, respectively, of a batch of M samples. We
use the following loss function to optimize the weights:

L(	) = 1 − 1

NM

M∑
m=1

[
(zT

rm
ẑrm + zT

im ẑim )2

+ (zT
rm

ẑim − zT
im ẑrm )2]1/2

,

(III.8)

where 	 = [θ(0), . . ., θ(T −1)] is the set of network’s param-
eters, and θ(t ) = [θ (t )

0 , θ
(t )
1 ]. This loss function measures the

alignment between the ground truth and predicted group ele-
ments, and it is invariant to a global phase shift (the symmetry
of the problem).

C. ARCHITECTURE AND LOSS FUNCTION FOR SO(3)
SYNCHRONIZATION
The projection operation in (II.14), which consists of SVD
factorization, is non-differentiable, and thus gradients cannot
be back-propagated through it during the learning process.
Therefore, in order to unroll the projected power method into a
differentiable neural network, this projection operation should
be replaced. To derive a differentiable projection operation,
we start with an alternative method that expresses the nearest
orthogonal matrix of a matrix A, denoted by Q, explicitly us-
ing the matrix square root: Q = A(AT A)−

1
2 . This method can

be combined with the Babylonian method, and a first-order
approximation suggests the following iterations after setting

Q0 = A/‖A‖F [48]:

Ni = QT
i Qi

Pi = 1

2
QiNi

Qi+1 = 2Qi + PiNi − 3Pi. (III.9)

Numerical experiments suggest that this recursion typically
converges after 4 iterations. We thus use Q4 as an estimation
for the nearest orthogonal matrix of A, through which gradi-
ents can be backpropagated.

The unrolled synchronization algorithm for SO(3) is com-
posed of stacked learned synchronization blocks, followed by
a projection block as the last layer. Each learned synchroniza-
tion block takes on the form:

R(t+1) = fθ1 (HR(t ) ) + φθ2 (R(t−1)). (III.10)

The function implementation consists of the following layers:
Reshape input (M, 3N, 3) to (M, N, 9) → Dense(hidden neu-
rons) → BatchNorm() → ReLU() → Dense(9) → Batch-
Norm() → tanh() → Reshape into (M, 3N, 3), where M is the
batch size. The first layer reshapes the input such that each
3 × 3 block is flattened into 9 elements, resulting in a shape
of (M, N, 9). The following layers apply the same non-linear
functions to each 9-element vector and reshape them back into
the dimensions of the input. The function f uses 32 hidden
neurons and φ uses 9 hidden neurons. The function φ acts as
the Onsager correction term and slightly improves the results.

The implementation of the projection block is as follows:
1) reshape the input (M, 3N, 3) to (M, N, 3, 3);
2) normalize each 3 × 3 matrix by its Frobenius norm and

apply the four iterations of (III.9);
3) reshape the output of the last stage to (M, 3N, 3).
Given a batch of samples of size M, with ground truth and

predicted group elements {Rm}M
m=1 and {R̂m}M

m=1, respectively,
we use the following loss function to optimize the weights:

L(	) = 1 − 3

NM

M∑
m=1

‖RT
mR̂m‖2

F, (III.11)

where 	 = [
θ(0), . . ., θ(T −1)] is the set of network’s param-

eters, and θ(t ) = [θ(t )
1 , θ

(t )
2 ]. The suggested loss measures the

alignment between the ground truth and the predicted group
element matrices and is invariant under a global rotation.

D. MULTI-REFERENCE ALIGNMENT (MRA)
MRA models differ from group synchronization in two im-
portant aspects. First, the goal of the MRA problem is not
to estimate the group elements, but the signal itself. Second,
the pairwise ratios are not directly available and are estimated
from the observations. Therefore, the learning phase of MRA
models is slightly different from group synchronization, as
described below. We draw M signals from some distribution.
Then, for each signal, we generate N noisy measurements
according to the MRA statistical model and estimate the pair-
wise ratio between the corresponding group elements. Given
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the pairwise ratio matrix, we solve a group synchronization
problem and aim to estimate the signal itself, up to a group
action. As we will see below, this process suggests different
loss functions than the ones used for group synchronization.

1) MRA OVER Z/2
A direct application of the Z/2 architecture described in Sec-
tion III-A, when the pairwise ratios are estimated from the
noisy measurements, only leads to a small improvement, as
will be presented in Section IV. Therefore, we suggest to
incorporate the measurements themselves in the loss function
of the neural network.

Let Ym ∈ RL×N be the measurement matrix of the m-th
signal xm ∈ RL, so that Ym[:, n] ∈ RL is the n-th observation
of the m-th signal. We suggest the following reconstruction
loss:

LR(	) = 1

LM

M∑
m=1

min
s∈{−1,1}

∥∥∥∥∥xm − s

N

N∑
n=1

Ym[:, n]ẑm[n]

∥∥∥∥∥
2

,

(III.12)
where ẑm ∈ RN is the predicted group elements of the network
described in Section III-A. The loss function depends on the
parameters 	 through the group elements {ẑm[n]}N,M

n,m=1. Note
that the reconstruction loss is invariant to the inherent sign
symmetry.

2) MRA OVER THE GROUP Z/L OF CIRCULAR SHIFTS
Similar to the MRA model described above, when the relative
shifts were estimated from the MRA measurements, only a
minor improvement in signal estimation was achieved using
the architecture of U (1) synchronization from Section III-B.
Thus, we aim to work with the measurements directly.

It is more convenient to express the loss function in the
Fourier domain, where a circular shift is mapped to a com-
plex exponential. Let Xm ∈ CL be the Fourier transform of
the m-th signal, and let Ym ∈ CL×N be the corresponding
measurement matrix, where Ym[:, n] is the Fourier transform
of the n-th measurement of the m-th signal. Let Yrm and Yim
denote the real and imaginary parts of Ym, and let ẑm ∈ U (1)
be the estimated rotation using the synchronization algorithm
described in Section III-B. Note that ẑm lies on the unit circle,
whereas the circular shifts are discrete. The real and imaginary
parts of the aligned data matrix of the m-th sample can be
written as:

Ỹrm [k, n] = cos (k∠ẑm)Yrm [k, n] − sin (k∠ẑm)Yim [k, n],

Ỹim [k, n] = cos
(
k∠ẑT

m

)Yim [k, n] + sin
(
k∠ẑT

m

)Yrm [k, n],
(III.13)

for k = 0, . . ., L − 1. The signal is then estimated by averag-
ing:

X̂m = 1

N

N∑
n=1

(Ỹrm [:, n] + ιỸim [:, n]
)
. (III.14)

Therefore, we use the following loss function:

LR(	) = c
M∑

m=1

min
φ∈�P

∑
k

(
Xm[k] − e jkφX̂m[k]

)2
, (III.15)

where c = 1
L2M

and �P = { 2π
LP , 2 2π

LP , . . . , 2π}. In the numeri-
cal experiments below, we set P = 10.

IV. NUMERICAL EXPERIMENTS
The following experiments examine the average error of the
unrolled algorithms and the iterative algorithms described in
Section II. In all experiments, we set N = 20, and the number
of test samples is equal to the number of training samples.
The code to reproduce all experiments is publicly available at
https://github.com/noamjanco/unrolling_synchronization.

A. Z/2 SYNCHRONIZATION
For a vector of ground truth group elements z ∈ {±1}N and a
prediction ẑ, the alignment error is defined as:

error(z, ẑ) = 1 − |zT ẑ|
N

. (IV.1)

We note that error(z, ẑ) = 0 for a perfect estimation, where
ẑ = ±z. In addition, the error is invariant to a global sign, i.e.,
error(z,−ẑ) = error(z, ẑ).

Each observation of length N = 20 was generated accord-
ing to (II.1), where each entry was drawn i.i.d. from a uniform
distribution over ±1. The network was trained using a dataset
of size M = 20000, with 300 epochs, and a learning rate of
10−3, using the Adam optimizer with a batch size of 128.

The alignment error as a function of depth is presented in
Fig. 2, for SNR values of λ = 1.2, λ = 1.5, and λ = 2. We
compared the performance of the unrolled algorithm against
the alternative algorithms described in Section II-A, where the
number of iterations is equal to the depth of the network. The
results demonstrate that the unrolled synchronization network
achieves better error performance, and the performance gap
increases as the SNR decreases.

Fig. 3 shows the alignment error as a function of SNR,
with a network of a fixed depth of 9, while the alternative
algorithms used 100 iterations. We see that the neural network
outperforms the alternative methods in terms of alignment
error with much fewer iterations.

B. U (1) SYNCHRONIZATION
We define the error between the vector of the ground truth
group elements z ∈ CN

1 and a prediction ẑ ∈ CN
1 by:

error(z, ẑ) = 1 − |z∗ẑ|
N

. (IV.2)

We note that error(z, ẑ) = 0 when ẑ = zeιφ for any φ ∈
[0, 2π ). The error is invariant to a global phase, since
error(z, eιφ ẑ) = error(z, ẑ) for any φ ∈ [0, 2π ).

The network was trained using a data set of dimension
N = 20 and M = 20000 samples generated according to the
U(1) Gaussian model. We used the Adam optimizer with batch
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FIGURE 2. Alignment error (IV.1) as a function of depth for the Z/2 synchronization problem with different λ values. The unrolled algorithm is compared
against the power method (PM), projected power method (PPM), and the AMP algorithm described in Section II-A. The unrolled synchronization network
outperforms the alternative algorithms, and the gap increases as the SNR decreases.

FIGURE 3. Alignment error (IV.1) as a function of the SNR for Z/2
synchronization. The depth of the unrolled algorithm is fixed to 9, while
the alternative algorithms ran for 100 iterations. Nevertheless, the
unrolled algorithm clearly outperforms the iterative methods.

size of 128, 300 epochs, and a learning rate of 10−4. The
results are presented in Fig. 4 for λ = 1.2, λ = 1.5 and λ = 2.
As in the Z/2 synchronization, the unrolled synchronization
network outperforms the alternative algorithms, especially as
the SNR decreases.

C. SO(3) SYNCHRONIZATION
For a ground truth matrix R ∈ R3N×3 (composed of N, 3 ×
3 rotation matrices) and a prediction R̂ ∈ R3N×3, the error is
defined as:

error(R, R̂) = 1 − 3

N

∥∥RT R̂
∥∥2

F . (IV.3)

This error metric is invariant to a right multiplication by an
orthogonal matrix, and is equal to zero if R̂ is equal to R (up
to a global rotation).

The network was trained using a dataset of dimension N =
20 and M = 10000 samples generated according to the model
in (II.12). We used the Adam optimizer with batch size of 128,
300 epochs, and a learning rate of 10−2. The spectral method

TABLE 1 Run-Time for SO(3) Synchronization With a Batch of 10000
Samples, λ = 1.5 N = 20 and L = 9 Layers, Compared Against PPM With
100 Iterations and the Spectral Method

computed the first three eigenvectors of the measurement ma-
trix using SVD factorization as described in II-C1. Therefore,
its error is not a function of the number of iterations. The
results are presented in Fig. 5, demonstrating a substantial gap
between the unrolled algorithm and the competitors.

Fig. 6 shows the error as a function of the SNR, when the
depth of the network was fixed to 9, while the projected power
method ran for 100 iterations. Nevertheless, the unrolled algo-
rithm clearly outperforms the other methods.

In addition, we measured the inference run-time of a batch
of 10000 samples with λ = 1.5, N = 20 and L = 9 layers, and
compared it against PPM with 100 iterations and the spectral
method. The results are summarized in Table 1. The unrolled
algorithm outperforms both methods in terms of alignment
error and total run-time due to its low number of layers, with
only a slight increase in run-time per layer.

D. MULTI-REFERENCE ALIGNMENT OVER Z/2
We generated measurements according to (II.15) with a signal
length of 21, where each entry was drawn i.i.d. from N (0, 1),
and N = 20. The relative ratios were estimated according
to (II.16). In the first part, we evaluate the alignment error
(IV.1) using the network described in Section III-A. In the next
part, we evaluate the reconstruction error, defined as:

error(x, x̂) = min
s∈{−1,1}

‖x − sx̂‖2 , (IV.4)

where x̂ is the estimated signal, computed by aligning the
measurements according to the estimated group elements and
averaging, as described in (II.17). In this case, we used a
modified loss function as described in Section III-D1.
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FIGURE 4. Alignment error (IV.2) as a function of depth for the U (1) synchronization problem with different λ values. The unrolled algorithm is compared
against the power method (PM), projected power method (PPM), and the AMP algorithm described in Section II-B.

FIGURE 5. Alignment error (IV.3) as a function of depth for the SO(3) synchronization problem with different λ values. The unrolled algorithm is
compared against the spectral method and the projected power method (PPM) as described in Section II-C. We note that the spectral method computes
the eigenvectors using SVD factorization, and thus the error is not a function of the number of iterations.

FIGURE 6. Alignment error (IV.3) as a function of the SNR for SO(3)
synchronization. The depth of the unrolled algorithm is fixed to 9, while
the alternative algorithms ran for 100 iterations. Nevertheless, the
unrolled algorithm clearly outperforms the iterative methods.

1) WITH ALIGNMENT LOSS (III.5)
The network was trained using a dataset of M = 10000 sam-
ples, a batch size of 128, with 300 epochs, and a learning rate
of 10−4, using the Adam optimizer. The average alignment
error as a function of depth is presented in Fig. 7, for λ = 0.2

and λ = 0.3. The experiment shows that the unrolled synchro-
nization network usually achieves better error performance,
but the gap is insignificant.

2) WITH RECONSTRUCTION LOSS (III.12)
The network was trained using a dataset of M = 10000 sam-
ples, a batch size of 128, with 300 epochs, and a learning
rate of 10−3, using the Adam optimizer. The average recon-
struction error as a function of depth is presented in Fig. 8 for
λ = 0.4 and λ = 0.8. The experiment shows that the unrolled
synchronization network achieves better reconstruction error
performance per depth, and outperforms the existing methods
for a large number of iterations.

E. MULTI-REFERENCE ALIGNMENT OVER THE GROUP Z/L
OF CIRCULAR SHIFTS
We generated measurements according to (II.19) with a sig-
nal of length 21, where each element was drawn i.i.d. from
N (0, 1), and N = 20. The relative ratios were estimated ac-
cording to (II.20) and (II.21). In the first part, we evaluate
the alignment error (IV.2) using the network described in
Section III-B. In the next part, we evaluate the signal recon-
struction error, defined as:

error(X , X̂ ) = min
φ∈{ 2π

LP ,2 2π
LP ...,2π}

‖X − e jk̄φ · X̂‖2, (IV.5)
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FIGURE 7. Alignment error (IV.1) as a function of depth for the multi-reference alignment over Z/2 problem with different λ values. The unrolled
algorithm is compared against the power method (PM), projected power method (PPM), and the AMP algorithm described in Section II-D1.

FIGURE 8. Reconstruction error (IV.4) as a function of depth for the multi-reference alignment over Z/2 problem with different λ values. The unrolled
algorithm, trained using the reconstruction loss function described in Section III-D1, is compared against the power method (PM), projected power
method (PPM), and the AMP algorithm described in Section II-D1.

where k̄ is the frequency vector at each entry, · is an entry-
wise product, and X̂ is the estimated signal in Fourier space,
computed by aligning the measurements according to the esti-
mated group elements and averaging, as described in (III.13)
and (III.14). In this case, we used a modified loss function as
described in Section III-D2. We set P = 10.

1) WITH ALIGNMENT LOSS (III.8)
The network was trained using a dataset of M = 10000 sam-
ples, a batch size of 128, with 300 epochs, and a learning rate
of 10−4, using the Adam optimizer. The average alignment
error as a function of depth is presented in Fig. 9 for λ = 0.7.
The experiment shows that the error of the unrolled synchro-
nization network improves with the depth of the network, but
does not outperform the existing methods for a large number
of iterations.

2) WITH RECONSTRUCTION LOSS (III.15)
The network was trained using a dataset of M = 10000 sam-
ples, a batch size of 128, with 300 epochs, and a learning rate
of 10−1, using the Adam optimizer. The average alignment er-
ror as a function of depth is presented in Fig. 10 for λ = 1. The
experiment shows that the unrolled synchronization network
clearly outperforms the existing methods for a large number
of iterations.

F. COMPARING THE UNROLLING ALGORITHM TO PURELY
DATA DRIVEN NEURAL NETWORK IN MULTI-REFERENCE
ALIGNMENT OVER Z/2 PROBLEM
In this experiment, we compared the suggested unrolled algo-
rithm to an end-to-end trained multi-layer perceptron (MLP),
without the inductive bias that we derived from the similarity
to the AMP solution. Specifically, we tested the MRA prob-
lem over Z/2 using the alignment loss, with N = 20, data

VOLUME 4, 2023 433



JANCO AND BENDORY: UNROLLED ALGORITHMS FOR GROUP SYNCHRONIZATION

FIGURE 9. Alignment error (IV.1) as a function of depth for the
multi-reference alignment over Z/L with λ = 0.7. The unrolled algorithm is
compared against the power method (PM), projected power method
(PPM), and the AMP algorithm described in Section II-D2.

FIGURE 10. Reconstruction error (IV.5) as a function of depth for the
multi-reference alignment over Z/L problem with λ = 1. The unrolled
algorithm, trained using the reconstruction loss function described in
Section III-D2, is compared against the power method (PM), projected
power method (PPM), and the AMP algorithm described in Section II-D2.

set of 104 samples, depth of 5 layers, 2000 epochs, λ = 0.2
and L = 21. Both architectures use a mini-batch size of 128
samples with a learning rate of 10−4. The unrolled network is
compared against an MLP network, which receives as an input
the relative measurements matrix, reshapes it into a vector of
length N2, projects it into an embedding of length 20 using a
basic layer comprises of Dense(20) → BN () → ReLU . The
basic layer is then repeated 5 times, and then projected back
with another basic layer to the output dimension of size N .
Finally, the output is passed through a tanh activation. Fig. 11
demonstrates how the unrolled algorithm converges faster to
a lower loss, and presents smaller difference between the train
and validation losses, which suggests that it is not overfitting.
We emphasize that the MLP is only one possible architecture,

FIGURE 11. Train and validation losses for MRA over Z/2, for the
suggested unrolled architecture, compared against a standard MLP
architecture.

so the conclusion of this experiment should be taken with
cautious.

V. DISCUSSION
In this article, we have presented a new computational
framework for the group synchronization problem, based on
unrolling existing synchronization algorithms, and optimizing
them using training data. We introduced unrolling strate-
gies to a wide variety of group synchronization problems,
trained using a differentiable invariant synchronization loss
function that measures the alignment of the ground truth
and the predicted group elements. We have shown that the
designed algorithms outperform existing methods for group
synchronization. For SO(3) synchronization, we suggested a
differentiable feed-forward approximation for the projection
operation, which enables training the unrolled algorithm. For
the MRA problem, the proposed algorithm incorporates sig-
nal prior into the unrolling synchronization algorithm, since
the training data consists of relative rotations estimated from
noisy measurements drawn from a known distribution.

In the Z/2 synchronization problem, we have demonstrated
how the suggested method achieves lower alignment error in
the low and moderate SNR regimes, with fewer iterations. In
the high SNR regime, the performance of all algorithms is
comparable, but the unrolled algorithm still achieves a smaller
error per iteration. We then conclude that the proposed method
is beneficial for lower SNR regimes, and when running time
is a major concern. While existing methods have asymptotic
error guarantees, our experiments demonstrate that for a fixed
and small number of samples the unrolled synchronization is
favorable. We believe that the improved performance stems
from our general strategy to optimize existing algorithms
(such as AMP) using training data. Moreover, the unrolling
synchronization can be readily applied to other noise models,
beyond the Gaussian model.
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An interesting question is to examine whether a similar
technique can be designed for the non-unique games problem:
a general optimization framework over groups that can be
interpreted as a generalization of the group synchronization
problem [42].

Our ultimate goal is to apply our unrolled SO(3) algorithm
to cryo-EM experimental data sets. To train the network, in
addition to simulated data as in this article, we intend to use
experimental data of previously resolved structures available
in public repositories [49], and structures resolved using com-
putational tools such as AlphaFold [50].

Another possible future research thread is replacing the
unrolling strategy with deep equilibrium (DEQ) to enable a
forward model corresponding to an infinite number of lay-
ers [51]. Although DEQ models were developed for sequence
modeling, they may fit the group synchronization problem: the
input sequence is analog to the relative measurement matrix H
that is shared among the layers, and the hidden sequence is
analog to the estimated group elements.
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