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ABSTRACT This article introduces the Sliding Innovation Lattice Filter (SILF), a robust extension of
the Lattice Kalman Filter (LKF) that leverages sliding mode theory. SILF incorporates a sliding boundary
layer in the measurement update formulation, enabling the filter innovation to slide within predefined upper
and lower bounds. This enhances the robustness of SILF, making it resilient to model uncertainties and
noise. Additionally, a derivative-free formulation of SILF is developed using statistical linear regression,
eliminating the need for Jacobian calculations. To further improve accuracy, robustness, and convergence
behavior in the presence of abrupt changes in system model/parameters, SILF is reinforced with the Iterated
Sigma Point Filtering and Strong Tracking Filtering strategies, resulting in the Reinforced Lattice Kalman
Filter (RLKF). The experimental findings for the estimation of distorted power waveforms illustrate the
superior performance of SILF and RLKF over competing methods, especially when operating in scenarios
characterized by model uncertainties and noisy environments.

INDEX TERMS Lattice Kalman filter, variable structure filter, adaptive fading factor, iterated filtering
method, robust estimators.

I. INTRODUCTION
Estimation algorithms play an essential role in the smooth
and efficient operation and control of the system in many sci-
ence and engineering fields. In recent decades, many research
works have focused on the development of accurate and ro-
bust estimators based on the best-known Kalman filter (KF)
algorithm [1] in the presence of model nonlinearity and un-
certainty. KF is formulated as a predictor-corrector estimator,
in the framework of linear Bayesian filtering with Gaussian
assumption based on the derivation of the optimal solution for
Kalman gain (used in the correction stage) that minimizes the
trace of the posterior (updated) state error covariance matrix.
However, the real-world systems most often present model
nonlinearity that requires an efficient extension of KF in terms
of accuracy and complexity. The nonlinear extensions of KF
utilize either the derivative-based linearization method (based
on Jacobian matrix calculation) as per extended KF (EKF)

[2], [3] or the derivative-free methods (based on statistical
linear regression or numerical integration) as per the sigma
point KF (UKF) [4], [5], cubature KF (CKF) [6], Lattice KF
(KF) [7], etc. Other than model nonlinearity, in most practical
applications, the system is exposed to uncertainties originat-
ing in model changes (under different operating conditions)
and/or noise behavior, which directly yields a declined per-
formance or failure (divergence) of the KF-based algorithms.
To address this issue, a couple of strategies have been pro-
posed in the literature for improving the filter’s robustness
in the context of both linear and nonlinear Kalman filtering.
A robust version of KF is proposed in [8] by introducing
an adaptive fading factor that puts more weight on the most
recent observations in the presence of modeling mismatch.
Being inspired by the strategy proposed in [8], authors in [9],
[10] propose the strong tracking filtering method to increase
the robustness of nonlinear filtering algorithms including UKF
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and CKF. As another robust extension of KF algorithms, the
H-infinity filter [11] and its hybrid nonlinear variants [12],
[13], [14] are proposed in the framework of the minimax
estimation method in which the worst-case estimation error
is minimized (as opposed to minimization of mean squared
error (MSE) by KF). Although the H-infinity filter improves
the estimation results in an uncertain environment, the level
of improvement is highly sensitive to how its parameters are
tuned and it adds some computational complexity to the orig-
inal KF [11]. Inspired by the concept of sliding mode control
theory and sliding mode observer, the Variable structure filter
(VSF) was formulated to improve the robustness of the KF
[15], whose extension for nonlinear systems under Gaussian
assumption, including smooth variable structure filter (SVSF)
and time-varying SVSF [16], were later developed to maintain
states within a bounded tube in the presence of uncertainty
resources. Comparative results indicate that SVSF outper-
forms the well-known EKF, UKF, and CKF algorithms under
uncertain and noisy environments [17], [18], [19]. Moreover,
to further improve the performance of SVSF, authors in [19]
develops some hybridization of SVSF with nonlinear KF such
as UKF and CKF among the others, and the obtained results
show the better performance of CKF-SVSF. In order to reduce
the computational burden of SVFS and improve its accuracy
as well, a new variant of VSF called the sliding innovation
filter (SIF) along with its derivative-based nonlinear exten-
sion, namely as extended SIF (ESIF) have been formulated
for Gaussian linear and nonlinear systems under uncertain-
ties, respectively [20], [21]. To improve the performance of
SIF/ESIF against higher level of uncertainty and nonlinear-
ity, a hybridized version of SIF combined with particle filter
(PFSIF) and CKF (SICF) have been formulated in [22] and
[23], respectively. An adaptive formulation of Particle Filter
(PF) which carries out sampling based on randomized Quasi-
Monte Carlo (QMC) technique has been presented in [24]. A
robust and adaptive formulation of H-infinity filter utilizing
adaptive fading factor strategy has been proposed in [25].

In our previous work [7], we have proposed a new nonlinear
filtering strategy based on a class of QMC integration meth-
ods, called lattice rules, to approximate Gaussian-weighted
multi-dimensional integrals in the nonlinear KF framework
using low discrepancy lattice points. This nonlinear filtering
approach established is based on the Korobov type rank-1
lattice rule is referred to as lattice Kalman filter (LKF) [26].
The main superiority of the LKF over other sigma point fil-
tering methods has been recognised to be its relatively low
computational complexity (due to a reduced number of sam-
pling points) while maintaining accuracy at an asymptotically
same level. However, the accuracy and robustness of the LKF,
particularly with a low number of sampling points, diminish
when confronted with highly nonlinear and uncertain systems.
To address these challenges, this article proposes a novel
and robust formulation of the LKF specifically designed for
nonlinear systems operating under high levels of uncertain-
ties and nonlinearity. The main contributions of the proposed
algorithm can be listed as follows:

1) Exploitation of the sliding innovation strategy presented
in [21], combined with lattice-based generated sampling
points with an adjustable number of points. This inte-
gration gives rise to the sliding innovation lattice filter
(SILF), which significantly improves the robustness of
the original LKF.

2) Development of a derivative-free formulation of SILF
based on the statistical linearization approach. This
formulation enables SILF to effectively handle highly
nonlinear systems without the need for computationally
expensive Jacobian matrix calculations.

3) Integration of the iterated filtering algorithm [27], [28],
[29] to enhance the accuracy of SILF. The iterative na-
ture of this algorithm refines the estimation results and
improves their overall accuracy.

4) Incorporation of the adaptive fading factor introduced
by the strong tracking filter theory. This inclusion leads
to a reformulation of the measurement update equations,
resulting in improved convergence behavior and per-
formance of SILF, particularly in scenarios involving
abrupt changes in the system model/parameters.

The combination of iterated strategy and strong tracking
filter applied to the derivative-free SILF method is called rein-
forced lattice Kalman filter (RLKF). The proposed SILF and
RLKF are then employed to estimate the distorted electrical
waveforms of the power grids in four different scenarios in-
cluding static, dynamic, transient operation of the system, and
real-time application as well. Simulation and experimental
results demonstrate the superiority of the proposed methods in
terms of estimation accuracy and robustness against uncertain
system models and noise disturbances, with RLKF presenting
better results, especially for estimation under uncertainty, but
at a higher computational time. This complexity, however,
can be addressed by reducing the number of sampling points
(inherited by the lattice rule) of RLKF to some extent.

The rest of the article is organized as follows: In Section II,
we briefly overview the main concept and formulation of the
LKF method followed by the proposed robust formulation of
LKF in Section III. The sliding innovation lattice filter (SILF),
iterated version of SILF augmented with a strong tracking
filter method is presented in Section III, where at the end,
the proposed reinforced LKF (RLKF) is formulated. Different
simulations and experiments, which are designed in the frame-
work of harmonic estimation problems in power systems, to
evaluate the performance of the proposed filter along with
the corresponding results are discussed in Section IV. Finally,
Section V concludes the main outcomes of the article and
discusses future works.

II. LATTICE KALMAN FILTER
In [7], we employed the rank-1 lattice rule [30] to generate
low-discrepancy points to approximate multivariate integrals
in the nonlinear Kalman filtering framework to propose the
lattice Kalman filter (LKF) whose main concept and formula-
tion are briefly overviewed in this section.
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LKF is formulated in the Gaussian filtering framework for
a system with noisy nonlinear dynamics whose process and
measurement model are defined as follows:

xk = f
(
xk−1, uk−1

)+ wk (1)

zk = h (xk ) + vk (2)

where wk and vk represents the process and measurement
noises, respectively, and assumed to be independent and
have Gaussian distributions with zero mean and covariance
matrices Q and R, respectively. The main concept behind
LKF formulation is to approximate the multivariate Gaussian
weighted integrals, associated with the recursive calculation
of mean and covariance of conditional density at the current
time step, using lattice rule-based generated sampling points
[31], [32]. Consequently, LKF, as a predictor-corrector esti-
mator is formulated as per the following stages:

A. PREDICTION STAGE
The prior state estimate x̂k|k−1 and state error covariance ma-
trix Pk|k−1 at the kth recursion step can be calculated as per
the following equations, respectively:

x̂k|k−1 ≈ 1

N

N−1∑
j=0

f
(

X QGL
j,k−1|k−1, uk−1

)
(3)

Pxx,k|k−1 ≈ 1

N

N−1∑
j=0

[
f
(

X QGL
j,k−1|k−1, uk−1

)
− x̂k|k−1

]

∗
[

f
(

X QGL
j,k−1|k−1, uk−1

)
− x̂k|k−1

]T + Qk−1 (4)

where N is the number of sampling points, and X QGL
j,k−1|k−1;

j = 0, 1, . . . , N − 1 denotes quasi-Gaussian lattice points
that are generated using the procedure presented in (5):

Pxx,k−1|k−1 = ST
k−1|k−1Sk−1|k−1

X SN,QL
j = φ−1

(
xL,Shi f ted

j,d∗
)

; j = 0, 1, 2, . . . , N − 1

X QGL
j,k−1|k−1 = x̂k−1|k−1 + Sk−1|k−1X SN,QL

j ; j = 0, . . . , N − 1

(5)

In which x̂k−1|k−1 and Pk−1|k−1 are the previous posterior
mean and covariance matrix, respectively, and Sk−1|k−1 is
calculated by applying Cholesky factorization to the poste-
rior covariance matrix at the previous time step Pxx,k−1|k−1.
Also, φ−1(.) represents inverse normal cumulative distribu-
tion function evaluated at the shifted lattice points with a
random permutation xL,Shi f ted

j,d∗ ; j = 0, 1, 2, . . . , N − 1 that is
generated in the unit hypercube using the following proce-
dure. Firstly, randomly shifted lattice points are produced as
follows:

xL,Shi f ted
j =

(
G j mod N

N
+ �

)
mod 1 ; j = 0, . . . , N − 1

(6)

where � is a random shift vector, generated based on the
Cranely Patterson shift strategy [33], and is applied to the Ko-
robov type rank-1 lattice points; G represents the generating
vector, defined as follows as per the Korobov type lattice rule
[30]:

G =
[
1 c c2 . . . cd−1

]T
(7)

Moreover, mod 1 denoted in (6) produces modular 1 of
the term inside the round brackets and operates element-wise.
Note that in (7), we have to choose c so as to be a coprime
integer with N .

Additionally, in this article, to prevent the probable bias
originating in the dependency of a certain state/dimension on
the outcome of resampling (in different time steps), a random
permutation of lattice points over the dimensions is applied
to the points generated in (6) xL,Shi f ted

j which results in a

new point set xL,Shi f ted
d∗ where d∗ denotes the uniform and

random permutation of the points over the problem dimension
d (random permutation of integers in [12 . . . d]). This way
xL,Shi f ted

d∗ is generated in each recursion independently.

B. CORRECTION STAGE
In this stage, the quasi-Gaussian lattice points are updated
using the prior state estimate x̂k|k−1 and covariance matrix
Pxx,k|k−1 using the same procedure defined in (5) reformulated
as follows:

Pxx,k|k−1 = ST
k|k−1Sk|k−1

X SN,QL
j = φ−1

(
xL,Shi f ted

j,d∗
)

; j = 0, 1, 2, . . . , N − 1

X QGL
j,k|k−1 = x̂k|k−1 + Sk|k−1X SN,QL

j ; j = 0, 1, 2, . . . , N − 1

(8)

The updated points X QGL
j,k|k−1; j = 0, 1, . . . , N − 1 are then

used to calculate the predicted measurement vector, and in-
novation and cross-covariance matrices using the (9) through
(11), respectively:

ẑk|k−1 ≈ 1

N

N−1∑
j=0

h
(

X QGL
j,k|k−1, uk

)
(9)

Pzz,k|k−1 ≈ 1

N

N−1∑
j=0

[
h
(

X QGL
j,k|k−1, uk

)
− ẑk|k−1

]

∗
[
h
(

X QGL
j,k|k−1, uk

)
− ẑk|k−1

]T + Rk (10)

Pxz,k|k−1 ≈ 1

N

N−1∑
j=0

[
X QGL

j,k|k−1 − x̂k|k−1

]

∗
[
h
(

X QGL
j,k|k−1, uk

)
− ẑk|k−1

]T
(11)
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Eventually, the LKF gain Gk, the posterior state estimate
x̂k|k , and (state) error covariance matrix Pxx,k|k can be com-
puted using the following equations, respectively:

Gk = Pxz, k|k−1P−1
zz,k|k−1 (12)

x̂k|k = x̂k|k−1 + Gk
(
zk − ẑk|k−1

)
(13)

Pxx,k|k = Pxx,k|k−1 − GkPzz,k|k−1GT
k (14)

III. PROPOSED ROBUST REFORMULATION OF LKF
As per our previous work [7], LKF yielded asymptotically
similar results to UKF but with less computational effort.
This lower computational burden originates in the adjustably
lower number of sampling points (for the systems with a
lower level of nonlinearity and uncertainty) introduced by the
lattice-based integration method. However, the accuracy and
robustness of LKF decline in the presence of severe nonlinear-
ity, modeling uncertainty, and high-level noise disturbances.
This issue becomes even worse when a lower number of
sampling points compared to that of the other sigma-point
methods is used to approximate the nonlinear integrals. This
shortfall against highly nonlinear models and model uncer-
tainties and disturbances has motivated us to propose a robust
formulation of LKF which is presented and formulated in the
following subsections.

A. SLIDING INNOVATION LATTICE FILTER (SILF)
The first modification applied to LKF is founded on the sliding
innovation strategy that is inspired by the concept of sliding
mode observer and smooth variable structure filter (SVSF)
[21]. In this regard, the time update stage of the proposed SILF
algorithm is formulated similar to LKF; however, unlike LKF
(nonlinear KF, in general) whose gain is derived as a func-
tion of the state error covariances, the measurement update
equations of SILF are developed as if the gain is a function
of the innovation vector sliding within a targeted hyper-tube
(high-dimensional tube). If the innovation term is denoted as
z̃k|k−1 = zk − ẑk|k−1, the SILF gain at the current time step Gk

can be formulated as per the following equation:

Gsil f
k = H pinv

k Satdiag

(∣∣z̃k|k−1
∣∣

δ

)
(15)

In this formulation, H pinv

k represents pseudoinverse of the
measurement matrix Hk , Satdiag represents the diagonal ma-
trix of saturation function applied to the element-wise division
of the absolute value of the innovation vector by a control
vector δ; this keeps the gain inside the targeted boundary
layers (hyper-tube). Note that saturation function Sat yields
its output sliding between +1 and -1. Based on the level of
uncertainties in the estimation process, the sliding boundary
layer width δ can be determined [21].

Since the measurement equation is often nonlinear in the
real-world problems, the nonlinear measurement function
h(xk ) can be either approximated by analytical linearization
based on calculating the Jacobian matrix (derivative-based

formulation) or formulated using statistical linear regression
(derivative-free formulation); the latter is developed for the
proposed SILF in this article (derivative-free SILF) which is
further discussed in the following subsection:

1) DERIVATIVE-FREE SILF
It can be shown that for highly nonlinear measurement mod-
els, linearization using the first term of the Taylor series
around the operating point would lead to inaccurate ap-
proximation. On the other hand, although the approximation
of nonlinear models using the higher-order terms of Tay-
lor series expansion yields a more accurate result, its high
computational complexity is a substantial barrier in real-time
applications. Therefore, in order to relax the calculation of the
Jacobians matrix and the required smoothness of the nonlinear
functions, we employ the statistical linear regression method
[34] to develop a derivative-free SILF formulation.

If we use the lattice-based generated sampling points to
linearize the nonlinear measurement function using statistical
regression as per the following equation,

zk = Hkxk + bk + ek (16)

then, the parameters of the linearized model Hk and bk can be
obtained by minimizing the mean squared error (MSE) of the
linear regression model:

Hk = PT
xz,k|k−1 P−1

xx,k|k−1 (17)

bk = zk − Hkxk|k−1 + ek (18)

and deviation of statistical linear regression model ek is
a stochastic variable with zero mean and covariance of
Pzz,k|k−1 − HkPxx,k|k−1HT

k . In this framework, we can obtain
the pseudo-inverse of statistically linearized Hk by applying
the Moore-Penrose formula to (17):

H pinv

k = PT
xx,k|k−1

(
Pxz,k|k−1PT

xz,k|k−1

)−1
Pxz,k|k−1 (19)

Note that in this study, we use the derivative-free formula-
tion of H pinv

k presented in (19) to calculate the SILF gain Gsil f
k

(15) using which state estimates and state covariance matrices
are updated as per the following equations:

x̂k|k = x̂k|k−1 + Gsil f
k z̃k|k−1 (20)

Pxx,k|k = Pxx,k|k−1 − Gsil f
k Pzz,k|k−1Gsil f

k

T
(21)

For the rest of this study, when we use the term SILF, we
technically refer to the derivative-free formulation of SILF.

B. ITERATED SILF
To improve the estimation accuracy of the proposed SILF
algorithm, the iterated sigma-point filtering concept [27] is
utilized to formulate iterated SILF (ISILF). The main idea
of the iterated filtering strategy is behind the fact that the
updated state estimates x̂k|k is expected to provide a better
estimate than the predicted state estimates x̂k|k−1, because x̂k|k
is calculated once the most recent measured data at time step k
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is received. We exploit this fact to regenerate quasi-Gaussian
lattice points using the updated state estimate x̂k|k and error
covariance matrix Pxx,k|k , based on (8), which are then used to
recalculate statistical moments of the posterior state density
denoted as x̂(iter)

k|k and P(iter)
xx,k|k at the current time step k and iter-

ation count iter. This strategy may yield a decline in the errors
introduced by employed numerical integration and statistical
regression methods after a specific number of iterations. The
proposed ISILF adds additional stages to the original SILF
defined as follows.

After calculating x̂k|k and Pxx,k|k in each time step k, we ini-
tialize x̂(0)

k|k = x̂k|k−1, P(0)
xx,k|k = Pxx,k|k−1, x̂(1)

k|k = x̂k|k , P(1)
xx,k|k =

Pxx,k|k , and set iter = 2. We then calculate the new quasi-
Gaussian lattice points as follows:

P(iter−1)
xx,k|k = S(iter−1)

k|k
T

S(iter−1)
k|k

X SN,QL
j = φ−1

(
xL,Shi f ted

j,d∗
)

; j = 0, 1, 2, . . . , N − 1

X QGL
j,k|k

(iter) = x̂(iter−1)
k|k + S(iter−1)

k|k X SN,QL
j ; j = 0, . . . , N − 1

(22)

The newly generated sampling points are then used to cor-
rect the measurement update equations as follows:

x̂(iter)
k|k−1 ≈ 1

N

N−1∑
j=0

f
(

X QGL
j,k|k

(iter)
, uk−1

)
(23)

ẑ(iter)
k|k−1 ≈ 1

N

N−1∑
j=0

h
(

X QGL
j,k|k

(iter)
, uk

)
(24)

P(iter)
zz,k|k−1 ≈ 1

N

N−1∑
j=0

[
h
(

X QGL
j,k|k

(iter)
, uk

)
− ẑ(iter)

k|k−1

]

∗
[
h
(

X QGL
j,k|k

(iter)
, uk

)
− ẑ(iter)

k|k−1

]T
+ Rk (25)

P(iter)
xz,k|k−1 ≈ 1

N

N−1∑
j=0

[
X QGL

j,k|k
(iter) − x̂(iter)

k|k−1

]

∗
[
h
(

X QGL
j,k|k

(iter)
, uk

)
− ẑ(iter)

k|k−1

]T
(26)

Gsil f
k

(iter) = H pinv

k

(iter)
Satdiag

⎛
⎝
∣∣∣zk − ẑ(iter)

k|k−1

∣∣∣
δ

⎞
⎠ (27)

where

H pinv

k

(iter) = P(iter−1)
xx,k|k

(
P(iter)

xz,k|k−1

(
P(iter)

xz,k|k−1

)T
)−1

P(iter)
xz,k|k−1

(28)
Eventually, the state mean and error covariance matrix at

each iteration are updated as follows:

x̂(iter)
k|k = x̂(iter)

k|k−1 + Gsil f
k

(iter)
z̃(iter)

k|k−1 (29)

P(iter)
xx,k|k = P(iter−1)

xx,k|k − Gsil f
k

(iter)
P(iter)

zz,k|k−1

(
Gsil f

k

(iter))T
(30)

It can be easily proven that the convergence of ISILF is
guaranteed with the proceed of iterations, as per the discussion
presented in Section II-C of [27]. However, as the number
of iterations increases to achieve better accuracy, the compu-
tational complexity introduced by the iterative strategy also
increases. Note that for most real-world problems a noticeable
improvement in accuracy is obtained after only a few numbers
of iterations (in most cases one or two iterations) [29].

C. STRONG TRACKING FILTERING STRATEGY
To further improve the robustness of the proposed SILF
against abrupt changes in the system dynamics, the strong
tracking filtering strategy, originally proposed in [10], is used
to introduce an adaptive fading factor to the predicted covari-
ance matrix Pxx,k|k−1 of SILF algorithm. This strategy, in fact,
reduces the weight of the old measurements against that of the
recent ones. The adaptive fading factor, denoted as λk , can be
calculated as follows (recall z̃k|k−1 = zk − ẑk|k−1):

λk = max {ck, 1} (31)

ck = trace (Nk )

trace (Mk )
(32)

Nk =Ez̃
k − PT

xz,k|k−1 P−1
xx,k|k−1Qk−1Pxx,k|k−1PT

xz,k|k−1 − βRk

(33)

Mk = Pzz,k|k−1 − Ez̃
k + Nk + (β − 1) Rk (34)

Ez̃
k = E

{
z̃k|k−1 z̃T

k|k−1

}

=
{

z̃k|k−1 z̃T
k|k−1 ; k = 0

ρEz̃
k−1+z̃k|k−1 z̃T

k|k−1
1+ρ

; k > 0
(35)

where ρ is the forgetting factor and β is the softening factor
which are usually set to 0.95 and 4.5, respectively. Then, λk is
applied to correct Pxx,k|k−1 at time step k as per the following
equation [10]:

PST
xx,k|k−1 = λk

(
Pxx,k|k−1 − Qk−1

)+ Qk−1 (36)

in which subscript ST stands for strong tracking. PST
xx,k|k−1 is

then used to calculate new quasi-gaussian lattice points based
on (8), which are used to reformulate the update stage of SILF.

D. REINFORCED LATTICE KALMAN FILTER (RLKF)
Eventually, we employ the three abovementioned algorithms
simultaneously to propose a new accurate and robust version
of LKF, named reinforced LKF (RLKF), which exploits the
guaranteed stability of the sliding innovation strategy, boosted
robustness against abrupt changes in system dynamics of the
strong tracking filtering strategy (by defining adaptive fading
factor applied to the predicted state error covariance), and im-
proved accuracy guaranteed by iterative sigma-point filtering
algorithm. The stages and flowchart of the proposed RLKF
algorithm are presented in Table 1 and Fig. 1, respectively.
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TABLE 1. The Stages of the Proposed RLKF Algorithm
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FIGURE 1. Flowchart of the proposed RLKF algorithm.

IV. SIMULATIONS AND EXPERIMENTAL SETUP
In this section, the accuracy, robustness, and computational
complexity of the proposed filters, SILF and RLKF (strong
tracking strategy combined with iterative SILF), are evalu-
ated. For this purpose, the proposed filtering methods are
applied to estimate the harmonic parameters (amplitudes and
phases of the harmonic contents) of distorted waveforms in
power grids. Sate vector for the harmonic estimation problems
is generally defined as follows:

x = [
ϕ1, ϕ2, . . . , ϕr, Amp1, Amp2, . . . Ampr

]T
(37)

where Ampr and ϕr are the amplitude and phase of the r-th
harmonic order, respectively. Note that the dimension of the
vector state is n = 2∗r. Then, the system and measurement
models are defined as per the following equations, respec-
tively:

xk = In×n ∗ xk−1 + wk−1 (38)

zk =
(

r∑
i=1

Ampi ∗ sin (ϕr )

)
+ vk (39)

where In×n is n × n identity matrix that represents the system
transition matrix. In this study, the nonlinear measurement
model contains r = 5 harmonic orders (including 1st, 3rd,
5th, 7th, and 11th order) that matches with the harmonic
contents (with considerable amplitudes) of power signals in
smart power grids in most cases.

To demonstrate the strength of the proposed filtering strat-
egy in various operating modes, different scenarios of sim-
ulations along with experiments have been implemented. As
per software simulations, two harmonic estimation problems
are defined for estimating the harmonic parameters of static

and dynamic (with time-varying amplitude) signals. As per
practical applications of the proposed method, an experimen-
tal setup has been mounted to evaluate the performance of
the proposed filters under the switching operating mode of the
power system (abrupt changes of the power signal). In fact, the
proposed methods are applied to process the transient logged
data set so that their harmonic parameters are estimated. Then,
the estimated waveform is constructed using the estimated
harmonic contents. Finally, the proposed algorithms are im-
plemented in a real-time hardware-in-the-loop (HIL) setup for
evaluating their robustness and accuracy in practical applica-
tions. The performance of the proposed RLKF and SILF in
terms of accuracy, robustness, and computational complexity
is compared to those of conventional UKF, EKF, Extended
SIF (ESIF), and original LKF as well.

Note that for all scenarios, the initial state vector and
state error covariance matrix are set to x̂0 = [0]n×1 and P0 =
103 × In×n, respectively; also, system and measurement noise
covariance are set to Q = 10−10 × In×n and R = 4 × 10−4,
respectively. The sliding boundary layer δ for all simulations
and experiments is between 0.02 and 0.2, whose value has
been selected according to the theoretical bound presented by
[20]. The forgetting factor ρ and softening factor β (related to
strong tracking strategy) are set to 0.95 and 4.5, respectively.
Moreover, the sampling frequency of 1200 Hz (24 samples
per cycle of power signal) has been considered for all simula-
tions. Note that in all scenarios the iterated stage of RLKF is
executed only for one iteration.

A. SCENARIO 1: STATIC POWER SIGNAL ESTIMATION
In this section, the reference signal is considered as a distorted
waveform defined as a series of 5 common harmonic contents,
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TABLE 2. Statistical Comparison of Filters in Estimating Static Signal

which matches with the electrical current of arc furnaces and
high-intensity discharge electronic devices [35]:

zk = 1.5 sin
(
ωt + 80◦)+ 0.5 sin

(
3ωt + 60◦) . . .

+ 0.2 sin
(
5ωt + 45◦)+ 0.15 sin

(
7ωt + 36◦) . . .

+ 0.1 sin
(
11ωt + 30◦)+ vk (40)

wherein ω denotes the angular frequency of the fundamental
harmonic component of the power signals whose frequency is
50 Hz in our study. The static signal defined in (40) is used
to assess the capabilities of the proposed filtering methods
(RLKF and ISILF) in tracking the original signal corrupted
with noise vk (white noise). Accordingly, two different levels
of noise with signal-to-noise ratios (SNRs) of 30 dB and
20 dB are added to the reference signal to investigate the
performance of the proposed algorithms in noise rejection.
The estimation results of the proposed RLKF and ISILF are
compared with those obtained by the UKF, ESIF, and original
LKF. Note that the initial parameters of all filters are set to the
same values for all noisy conditions. Due to space limitations,
only the graphical representations of the estimation results
obtained by the filtering methods for the highest noise level
(SNR = 20 dB) are presented. The standard deviation of the
Gaussian noise i.e., vk injected to the static waveform in (40)
is set to be 0.022.

Regardless of the relatively lower convergence rate of the
proposed algorithms in estimating parameters of the higher-
order (harmonic) components (as seen in Fig. 2), RLKF
and ISILF track the overall waveform with a convergence
time of around half a cycle of the power signal, as shown
in Fig. 3(a). Note that RLKF presents a better convergence
behavior than SILF. Moreover, the proposed estimation al-
gorithms show stability after being converged to the final
values of the parameters as shown in Fig. 3. Then, the sig-
nal estimation errors introduced by the different algorithms
are statistically analyzed and the mean squared error (MSE)
and variance (Var) are computed using which the algorithms’
accuracy and robustness can be evaluated, respectively. These
statistical indices are generated using the estimation results

FIGURE 2. (a) Amplitude and (b) phase estimation results obtained by
different algorithms for the static waveform.

obtained between 0.06 s and 0.5 s (as discussed, this range
is selected to compare the performance of all algorithms af-
ter transient behavior of all filters) for all algorithms under
various noisy conditions. The results of the first three cycles
are not considered to let all algorithms converge to their fi-
nal values (although this convergence rate of LKF and UKF
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FIGURE 3. (a) Estimated waveform and (b) the corresponding error of
different algorithms for static signal.

is not acceptable from the power system operation point of
view). Results presented in Table 2 demonstrate that RLKF
and ISILF track the true signal with high accuracy at different
noise levels, with RLKF presenting a slightly better result
due to the strong tracking strategy integrated with ISILF. As
observed from the last column of Table 2, the computational
complexity of proposed algorithm is dominated by the number
of states (n) and the number of lattice points (N), as can be
seen from the term n2N . This means that as the number of
states and the number of lattice points increase, the computa-
tional burden of the approach rises quadratically with respect
to the number of states and linearly with respect to the number
of lattice points. Therefore, this approach might face scalabil-
ity issues when applied to very high-dimensional systems or
when a very large number of lattice points is required. How-
ever, many of the computations can potentially be parallelized
in practical applications, which could significantly reduce the
actual computational time if parallel computing resources are
available.

Although SILF shows almost the same behavior as the
RLKF in tracking the static signal (see Fig. 3), the indices,
mean squared error (MSE) and variance (Var), presented in
Table 2, reveal the lower performance of SILF compared to

RLKF. The corresponding results obtained by ESIF are no-
ticeably worse in terms of accuracy and robustness. This is
mainly because of the drawback of approximating a highly
nonlinear measurement function using the first term of Tay-
lor series expansion. Furthermore, estimation results obtained
by UKF and LKF are the worst ones with UKF present-
ing slightly a better result. As discussed earlier, the required
number of sampling points used by LKF increases for ap-
proximating functions with a higher level of nonlinearity in
the presence of uncertainty (this is why N is set to 21 for
LKF). Meeting this requirement is facilitated by an adjustable
number of sampling points introduced by the lattice-based
filtering strategy. Note that we exploit this capability origi-
nated in LKF formulation and improved the performance of
the proposed RLKF and ISILF by increasing their number of
sampling points (see the results of RLKF and ISILF in Table 2
where N = 21).

B. SCENARIO 2: DYNAMIC POWER SIGNAL
Time-varying operating conditions in the power systems yield
some dynamic changes in the electrical waveforms. These
dynamics cause time-varying harmonic parameters whose es-
timation would be more challenging. In this subsection, we
define a dynamic power signal by injecting time-variant terms
into the signal (40), using which the performance of the pro-
posed algorithms is further investigated for dynamic signal
tracking. The following equation represents the dynamic sig-
nal with the corresponding time-variant parameters:

Zk = (1.5 + a1 (t )) sin
(
ωt + 80◦)

+ . . . (0.5 + a3 (t )) sin
(
3ωt + 60◦)

+ . . . (0.2 + a5 (t )) sin
(
5ωt + 45◦)

+ . . . 0.15 sin
(
7ωt + 36◦)+ 0.1 sin

(
11ωt + 30◦)+vk

(41)

where

a1 (t ) = 0.15 sin (2π f1t ) + 0.05 sin (2π f3t ),

a3 (t ) = 0.05 sin (2π f2t ) + 0.02 sin (2π f3t )

a5 (t ) = 0.025 sin (2π f1t ) + 0.005 sin (2π f3t )

f1 = 0.25 + 1.875t Hz

f2 = 0.75 + 5.625t Hz

f3 = 1.5 + 11.25t Hz

As seen, the amplitudes of 1st, 3rd, and 5th harmonics are
considered to be time-varying signals with time-dependent
frequencies as well which makes the harmonic estimation
problem even more complex. Additionally, a 20 dB Gaussian
noise (zero-mean with standard deviation = 0.022) is added
to make the model represents real-world conditions.

Figs. 4 and 5 demonstrate the harmonic parameters and
the associated dynamic signal estimated by the filtering al-
gorithms along with their corresponding estimation errors.
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FIGURE 4. (a) Amplitude and (b) phase estimation results obtained by
different algorithms for the dynamic waveform.

although the filters are blind to these dynamic changes of the
signal due to the fact that their process model formulation is
kept similar to one defined for the static signal in (41), as
can be observed, the proposed SILF and RLKF maintained
their estimation quality in the presence of model dynamics.
However, the convergence rate of the estimation problem in
this scenario is slightly lower than that of the static signal
case.

It should be noted that the performance of UKF and
LKF estimators significantly declined in tracking the dynamic
signal; on the other hand, ESIF results remain acceptable ben-
efiting from the sliding innovation strategy in its formulation.
Table 3 presents the performance of the proposed algorithms
in comparison with other filtering methods in terms of statis-
tical indices: MSE and Var. These indices are again computed
using the estimated value of the dynamic waveform obtained
between 0.06 s and 0.5 s for all algorithms. As per the es-
timation results given in this table, UKF and LKF present
the highest errors among the others. Although ESIF perfor-
mance is comparable to that of SILF and RLKF with 11
sampling points, the proposed algorithms with 21 sampling

FIGURE 5. (a) Estimated waveform and (b) the corresponding error of
different algorithms for the dynamic signal.

TABLE 3. Statistical Comparison of Filters in Tracking Dynamic Signal

points clearly outperform ESIF but at a higher computational
cost. Note that PFSIF also present comparable results to those
obtained by proposed algorithms with 11 points but with
significantly higher computational burden (1000 particles).
This superiority of the SILF and RLKF originates in the fact
that the sliding innovation strategy (used by both) and strong
tracking theory (adaptive fading factor used in RLKF) place
more weight on the measurements than the process model
when encountering model uncertainties.
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FIGURE 6. Experimental setup for testing abrupt changes in the signal.

C. SCENARIO 3: POWER SIGNAL WITH ABRUPT CHANGES
Transient phenomena in power systems yield abrupt changes
in the power signals with an effective time in the range of a
few microseconds to milliseconds. Such a sudden change in
the power signal introduces some challenges to the filtering
algorithms in maintaining their robustness while tracking the
transient waveform.

In this section, an experimental setup (shown in Fig. 6) is
developed to extract data under a transient phenomenon, i.e.,
load switching. We then apply the SILF, RLKF, and ESIF
algorithms to estimate the voltage magnitudes with transient
changes measured from the test setup.

The mounted circuit consists of a 0.1 H inductor connected
in series with two parallel transformers whose named power
are 100 VA and 200 VA, respectively. The 100 VA transformer
operates under the no-load condition and is directly supplied
via an AC power source; however, the 200 VA transformer is
fed through a switch to supply a 48 W LED driver load. A fast
response voltage transducer, i.e., LV 25-P, is used to measure
the analog voltage of the series inductor. The analog data is
then digitized using an A/D NI USB-6009 data acquisition
(DAQ) card at a sampling rate of 1200 Hz. Transient voltage
change of the series inductor is generated by switching the
200 VA transformer (supplying LED load on its secondary
winding) at the time of 2.759 sec. Fig. 6 also depicts the
transient changes of inductor voltage after switching time.
Note that the filtering algorithms are used in the off-line mode
to process the logged data of transient voltage waveform.

Fig. 7 shows the graphical representation of their corre-
sponding estimated signals. As observed, RLKF tracks the
measured transient waveform within an acceptable range of
error compared to other algorithms. Since transient changes
in the signal are not modeled in the process model of the
filtering algorithms, their predicted results in the time update
phase present a significant error. Using UKF and LKF al-
gorithm, this error is propagated to the measurement update
phase which yields low-quality updated estimates. On the
other hand, SILF and RLKF exploit the sliding innovation
strategy in their measurement update phase to compensate

FIGURE 7. (a) Estimated waveform and (b) the corresponding error of
different algorithms for transient signal.

TABLE 4. Statistical Comparison of Filters in Tracking Signal With Abrupt
Change

TABLE 5. Statistical Comparison of the Proposed Filters in Real-Time
Application

for the errors of the time update phase. This robust behavior
against sudden changes is reinforced for RLKF by exploiting
an adaptive fading factor term applied to the predicted error
covariance. Thus, RLKF provides even more reliable estima-
tion results for transient changes in the system model. The
estimation results obtained by estimators are compared nu-
merically in Table 4. As discussed above (and even could be
predicted from dynamic case results), UKF and LKF poorly
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FIGURE 8. Real-time HIL experimental setup.

track the abrupt changes, and this is why we exclude them in
reporting the results in this section.

D. SCENARIO 4: REAL-TIME IMPLEMENTATION
In this section, a Hardware-In-the-Loop (HIL) setup is devel-
oped to evaluate the real-time operation of the proposed SILF
and RLKF methods. Since MATLAB-based implemented
scripts present some processing delays while reading data
from DAQ cards, the C++ programming language, which
provides strong traction in real-time applications, is used in
the current scenario for the implementation of the proposed al-
gorithms. The codes are processed in a real-time manner using
an embedded hardware system, i.e., PC/104 micro-computer
set, equipped with a VDX-6354 processor card (Vortex86DX
800 MHz CPU module) and a PCM-5114 DAQ card. Further-
more, we employ a fast response current sensor using which
the current of an AC feeder line supplying a total of 6KW LED
luminaires is measured. This current is then read by the DAQ
card at the sampling rate of 1200 Hz. The harmonic contents
of the measured current are 3rd, 5th, and 7th harmonic orders
with noticeable amplitude. Fig. 8 shows the diagram of the
real-time experimental setup.

Once a measurement is received by the DAQ card, a 5V
digital activation pulse is submitted to the General-Purpose
Input Output (GPIO) port of the processor card and one recur-
sion of the filtering method (SILF or RLKF) is simultaneously
executed to provide the estimates associated with the current
recursion. The digital pulse is then set to 0V at the end of
each recursion of the corresponding estimator. The train of
pulses detected by a digital scope is then used to analyze the
computational performance of the proposed algorithms. To
guarantee the real-time performance of the proposed methods,
the duration of the digital activation pulse (processing time) is
required to be less than (1/1200) s (since the sampling rate is
1200 Hz). As Fig. 9(a) and (b) depicts, the processing time of
all recursions (not exactly the same though) is always less than
(1/3000) s and (1/2500) s for SILF and RLKF, respectively,
which confirms the performance of the proposed algorithms in
real-time applications. Note that the number of lattice-based
sampling points for both algorithms is set to 21. It is worth
mentioning that the relatively low computational burden of
SILF originates in using a simple integration method (Lattice

FIGURE 9. Processing time of (a) SILF and (b) RLKF along with (c) their
real-time estimation results.

rule) to approximate nonlinear multivariate integrals (inher-
ited from LKF), and a simple gain formulation inherited from
SIF. Having the SILF formulation reinforced by the iterative
filtering strategy and strong tracking filtering method, RLKF
provides more robust and accurate estimation results but at a
higher computational complexity (see Table 5).

The estimated waveform is outputted by the DAQ card to
its analog output channel (for each proposed filter). Then, the
measured and estimated waveforms are cabled to the scope.
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Note that for the sake of a more efficient graphical represen-
tation, the data logged for 1-minute execution of the SILF
and RLKF algorithms is used in the MATLAB environment
to present the measured and estimated waveforms in one plot,
as shown in Fig. 9(c).

V. CONCLUSION
This article presented a derivative-free robust formulation
of the LKF algorithm, namely SILF, by applying the slid-
ing innovation strategy to the update stage of the original
method with the aim of enhancing its performance against
different uncertainty resources. The proposed algorithm was
then reinforced by an adaptive fading factor and iterated
filtering method to battle transient changes in the system
model/parameters. The resulting filter has been formulated as
a predictor-corrector estimator and is called RLKF. Different
simulation and experiment scenarios have been carried out to
investigate the performance of the proposed SILF and RLKF
under uncertain system dynamics perturbed with high-level
noises as well. The obtained results have shown the superi-
ority of the RLKF compared to SILF, ESIF, UKF, and the
original LKF in terms of accuracy and robustness, and con-
vergence rate as well. Furthermore, the results obtained from
a HIL setup based on real-time coding and an embedded
hardware system have confirmed the performance of the pro-
posed filtering strategy in the real-time application in terms
of estimation accuracy and processing time. Although RLKF
requires more computational burden compared to SILF and
other well-known filtering methods, its adjustable number of
sampling points inherited from the LKF formulation gives us
the opportunity of reducing the number of points for the sys-
tems with a lower level of nonlinearity and uncertainty while
maintaining the estimation accuracy in an acceptable range.
The development of the proposed filter in the non-Gaussian
framework and its interacting multiple models (IMM)-based
formulation for fault tolerance and detecting model changes
are considered for future research works.
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