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ABSTRACT We develop non-linear optimization algorithms for attenuation compensation of rapidly time-
varying microwave signals in the context of breast imaging. The breast tissues attenuate the energy of the
scattered wavefield as it travels within the medium. Compensating the attenuation effect is a challenging and
typically unstable task. To address this issue, we develop inversion-based algorithms that take advantage of
prior knowledge about the system. We formulate the attenuation compensation as a regularized non-linear
cost function and introduce two efficient algorithms. The first algorithm assumes that the reflectivity series
is smooth and follows a Gaussian distribution, i.e., �2 norm, and the second algorithm assumes that it can
be cast as a sparse series, i.e., �1 norm. Also, both algorithms force the inverted quality factor to be close
to an expected value based on previous evaluations of different models and datasets. Through testing of
the algorithms on simulated and experimental datasets, we show that the proposed algorithms successfully
compensate for attenuation. The images after attenuation compensation provide more accurate localization
of the tumors and superior resolution when compared with conventional imaging practice.

INDEX TERMS Microwave imaging, optimization, sparsity, attenuation, breast tumor detection.

I. INTRODUCTION
Microwave imaging has been explored for the detection of
breast cancer, as recently reviewed in [1], [2]. Approaches
to medical microwave imaging include tomography and radar.
With tomography, measurements of signals passing through
the tissue are used to estimate the microwave frequency prop-
erties (permittivity and conductivity) by iteratively updating a
model until simulations agree with measured data (e.g. [3],
[4]). With radar, reflections from the tissues are collected
at one or several locations, and focused to create an image
indicating the locations of changes in properties (e.g. [5],
[6], [7]). With both tomography and radar, a key challenge
is detecting the tumor response in the background of the
responses from the surrounding breast tissues. With radar, re-
flections from the skin and glandular tissues tend to dominate
the responses from tumors [8]. Numerous signal processing
and imaging approaches have been proposed to reduce these

reflections (e.g. [9], [10], [11], [12]), however, these tech-
niques often result in a reduction of the tumor response as
well. In addition, signals experience significant attenuation
due to radial spreading and travel through lossy tissues. Com-
pensation for this attenuation may permit improved detection
of tumors.

Efforts have been made to address the attenuation effect
in the imaging process [13], [14], [15]. These methods ei-
ther compensate attenuation with pre-filtering the data or
incorporate a frequency-dependent propagation effect inside
the imaging algorithm. However, including attenuation in the
imaging process may introduce instability in the imaging
algorithm. An alternative approach decreases compensation
of attenuation at greater depths, reducing noise [16]. In this
article, we aim to provide a general and comprehensive at-
tenuation model and efficient compensation algorithms to
compensate for attenuation.
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Posing attenuation compensation as an inverse problem
results in the model that fits the data and also provides an
opportunity to add a priori information about the desired
outputs. Previous contributions model the data as a non-
stationary time series (i.e., convolution of attenuated source
signature with reflectivity series) [17] where the medium
attenuates the signal with a constant quality factor (Q). In
this model, attenuation is defined as a function of frequency
and assumptions include source signature is minimum phase
and the reflectivity series is white (i.e., Gaussian) [18]. The
Gabor transform is applied, incorporating filters designed to
compensate for attenuation. However, the source signature
may not be a minimum phase and the reflectivity series is
typically not white. In this article, we use the non-stationary
model with constant Q, however, we do not impose constraints
on the phase of the source signature and we assume that
the reflectivity series is sparse (i.e., it has a limited num-
ber of non-zero coefficients). We also pose the problem as
an inversion, instead of a filtering approach, and incorporate
different regularization parameters to constrain our solution
space. In Section II, we describe the data model and de-
velop an alternating minimization algorithm to estimate the
reflectivity series and Q, simultaneously. Possible choices
of regularization terms in the inversion process are also
discussed. The by-product of the algorithm is the attenuation-
compensated data. In Section III, the proposed algorithms are
tested on simulated and experimental datasets and images are
formed, demonstrating the potential for this approach. Finally,
Section IV summarizes key results.

II. METHODS
A. DATA MODEL
We assume that reflections of ultra-wideband pulses of mi-
crowave signals are available at a set of receiver locations. To
form radar-based microwave images, a delay-and-sum (DAS)
beamforming approach may be used. First, the clutter and
reflections from the skin layer must be reduced. We use the
neighborhood-based algorithm proposed in [19] to facilitate
the reduction of skin reflections and this also results in a
time-domain signal. The DAS algorithm may be written as:

I(x) =
∑

x′

∑
t

dsb (
t, x′

)
G

(
x; t, x′

)
(1)

where dsb is the data after reduction of clutter and the skin
response, x′ is the position of receiver antennas in space,
x is the spatial position inside the imaging volume and G
is Green’s function. In the case of conventional DAS, the
Green’s function is

G(x; t, x′) = δ
(
t − τ

(
x − x′

))
(2)

where τ (x − x′) = 2|x−x′|
vp

is the time delay, and vp is the
phase velocity of the medium of interest.

To improve the performance of DAS imaging, we propose
to compensate for attenuation before skin-interface suppres-
sion and then apply the DAS method to provide images

I(x) =
∑

x′

∑
t

dsb
Q

(
t, x′

)
G

(
x; t, x′

)
(3)

where dsb
Q is attenuation compensated and skin-interface sup-

pressed data.
The recorded microwave data at each receiver antenna can

be modeled as a non-stationary time series. Attenuation of
waves propagating through the breast tissues causes non-
stationary behavior in the data [8]. We model the input-output
relationship for this system, in the frequency domain, as

dn( f ) = w( f )
∫ ∞
−∞

β(t, f ) [r(t )+ rn(t )]

× exp(− j2π f t ) dt + n( f ), (4)

where dn( f ) is the noisy recorded signal, w( f ) is the excita-
tion pulse, r(t ) is the impulse response of the breast interior,
rn(t ) is the impulse response of clutter and the layer of skin
surrounding the breast, β represents the time-frequency re-
sponse of the attenuation, n( f ) is measurement noise, f is
temporal frequency, t is time, and j = √−1 is the imag-
inary unit. Equation (4) is a non-stationary convolution of
reflectivity series with frequency-dependent attenuation term
β and the pulse w [20]. The simplest form of the attenuation
response is

|β(t, f )| = exp(−αt ), (5)

where α = π | f |
Q is frequency-dependent constant quality fac-

tor, Q is quality factor, and | · | denotes absolute value. Here,
attenuation is defined as the inverse of the quality factor. Also,
the α term defines the overall damping factor of energy in the
time domain, which is greater for higher frequencies. The β

term is complex, hence, we also need to define its phase. The
notation here follows conventions from geophysics, so α and
β are defined differently than is typical for electromagnetics.
It is worth noting that in our approach we assume that the
pulse is known. However, the algorithm is not restricted to
only minimum phase pulses.

In matrix-vector notation, (4) reads

d =WA r, (6)

where r = (r[0], r[1], . . . , r[M − 1])T is reflectivity series,
W is a convolution matrix of transmitted pulse w =
(w[0],w[1], . . . ,w[L − 1])T , A is attenuation matrix, and
d = (d[0], d[1], . . . , d[N − 1])T is the recorded microwave
data. We stress that N = M + L − 1. It is also worth mention-
ing that W with dimensions N ×M has a Toeplitz structure
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and can be written as

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w[0]

w[1] w[0]

w[2] w[1] w[0]

...
. . .

w[L − 1] w[L − 2]

w[L − 1]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7)

Using this framework, three different approaches to atten-
uation compensation are developed, as detailed in the next
sections.

B. LEAST-SQUARES ATTENUATION COMPENSATION (LSQ)
To compensate for attenuation, we propose to solve the gen-
eral cost function of

{r̂, Â} = argmin
r,A

‖WAr − d‖22 +Rr (r)+RA(A). (8)

where Rr (r) and RA(A) are regularization terms for reflec-
tivity and quality matrix, respectively. In this section, for the
sake of simplicity, we ignore the regularization terms and pose
the problem as

{r̂, Â} = argmin
r,A

‖WAr − d‖22. (9)

We solve the cost function of (9) with an alternating minimiza-
tion method. First, we fix the A matrix, by using a realistic Q
as an initial estimation, and solve

r̂k = argmin
r

‖WAkr − d‖22, (10)

where k is iteration number. Equation (10) has a closed form
solution

r̂k = (
WT

QWQ
)−1

WT
Qd. (11)

where WQ =WAk . Note that we assume that the transmitted
pulse is known. Next, we use the updated reflectivity series
and update the A matrix by solving

Âk+1 = argmin
A

‖WArk − d‖22. (12)

Equation (12) is a non-linear least-squares minimization prob-
lem. It is worth mentioning that the A matrix is a non-Toeplitz
matrix. To efficiently solve (12), we change the cost function
to a non-linear parameter estimation problem for Q

Q̂k+1 = argmin
Q

‖F
(

Q, w, rk
)
− d‖22. (13)

Non-linear parameter estimation techniques [21] can be used
to solve (13). Because the evaluation of (13) for each Q can-
didate is fast, i.e., simple matrix-vector multiplication, and
the possible model domain for Q is reasonably bounded, we
can simply implement a parabolic search method with three
values of Q in each iteration. The initial Q values are chosen
to be Q1 < Q2 < Q3. In each iteration, we evaluate (13) using

Algorithm 1: Alternating Minimization Algorithm for At-
tenuation Compensation.
Require: W, d

Initialize: A0, k = 0
While not converged

1: Solve for rk by using (11)
2: Solve for Qk+1 by minimizing (13)
3: Update Ak+1 byusing Qk+1

4: Update k← k + 1
If converged
Output
r← rk

Q← Qk

these three Q values and define the new minimum and its
corresponding Q value (Qnew) with parabolic interpolation. In
the next iteration, if Qnew < Q2 then the new three candidates
are Q1 < Qnew < Q2. On the other hand, if the Qnew > Q2

then the new three candidates are Q2 < Qnew < Q3. We repeat
the process until convergence. Finally, matrix Âk+1 is built
from estimated Q̂k+1.

Equations (11) and (13) are solved alternatively until the
algorithm converges to the desired solution. The pseudo-code
of the algorithm is represented in Algorithm 1. In Algorithm 1,
A0 is built from our initial estimation of Q which can be
the quality factor of fatty breast tissue. The output of the
algorithm is the estimated reflectivity series r and the average
quality factor Q for each channel. Convolving the estimated
reflectivity series with the excitation pulse results in estimat-
ing the attenuation-compensated data.

C. DAMPED LEAST-SQUARES ATTENUATION
COMPENSATION (DLSQ)
Posing attenuation compensation as an inverse problem pro-
vides an opportunity to include a priori information about
the reflectivity and quality factor. For example, if the quality
factor of fatty breast tissues is approximately known, then we
can add a regularization term that minimizes the difference
between the estimated quality factor and the quality factor
of the tissues. Also, one possible regularization term for the
reflectivity series is to assume that the reflectivity series has
a minimum norm in �2 sense. Considering these constraints
changes the general cost function of (8) to
{
r̂, Â

} = argmin
r,A

‖WAr − d‖22 + λr‖r‖22 + λQ‖Q− Q0‖22,
(14)

where λr and λQ are regularization parameters, and Q0 is the
approximate quality factor for the fatty tissues in the breast.
There are several interesting algorithms that can provide a
good approximation for Q0 [17], [20], [22], [23], [24]. Equa-
tion (14) can also be solved with Algorithm 1. However, in
this case, (10) changes to

r̂k = argmin
r

‖WAkr − d‖22 + λr‖r‖22. (15)
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Algorithm 2: FISTA Algorithm for Solving (19).
Require: d, B, λr , η

Initialize: r0 = 0, r0
thresh = r0, t0 = 1, k = 1, T = λr

2η

While not converged
y = rk−1

thresh − 1
η

BT (Brk−1 − r)

rk = (|y| − T )+ � sign(y)

tk = 1
2 (1+

√
1+ 4 t2

k−1)

rk
thresh = rk + (tk−1−1)(rk−rk−1)

tk
k← k + 1
If converged
Output
r← rk

Equation (15) has a closed form solution

r̂k = (
WT

QWQ + λrI
)−1

WT
Qd, (16)

where I is an identity matrix with appropriate dimensions.
One advantage of (15) compared to (10) is that it guarantees
that the inverse of the WT

QWQ + λrI matrix exists. Moreover,
(13) changes to

Q̂k+1 = argmin
Q

‖F
(

Q, w, rk
)
− d‖22 + λQ‖Q− Q0‖22.

(17)
Equation (17) can also be solved with the parabolic line search
method similar to (13). Hence, for the cost function of (14), in
Algorithm 1 instead of solving (11) and (13) we need to solve
(16) and (17), respectively.

D. SPARSITY REGULARIZED LEAST-SQUARES
ATTENUATION COMPENSATION (SLSQ)
The reflectivity series can also be cast as a sparse time series.
This assumption is extensively implemented in different fields
of studies [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. We use �1 norm to promote sparsity in the reflectivity
series. Replacing this regularization term with the �2 norm
assumption for the reflectivity series changes (14) to

{r̂, Â} = argmin
r,A

‖WAr − d‖22 + λr‖r‖1 + λQ‖Q− Q0‖22.
(18)

Equation (18) can also be solved with Algorithm 1. However,
in this case, (10) changes to

r̂k = argmin
r

‖Br − d‖22 + λr‖r‖1. (19)

where B =WAk . Equation (19) is an �2 − �1 minimization
problem and any �2 − �1 norm solver can be used to solve
this cost function. In the interim, we use the fast iterative
shrinkage-thresholding algorithm (FISTA) [35]. Details of the
FISTA algorithm are represented in Algorithm 2.

In Algorithm 2, η is equivalent to the maximum eigenvalue
of the BT B matrix, and � stands for the Hadamard product.
We use a power iteration algorithm [36], [37] to calculate η.
Also, for the cost function of (18), the update equation for the

Q is the same as (17). Hence, in Algorithm 1, instead of solv-
ing Equations (11) and (13), we need to solve Equations (19)
and (17), respectively.

Note that in all three variations on the attenuation com-
pensation algorithms, we recover the attenuation compensated
data by convolving the excitation pulse with the estimated
reflectivity series. The algorithm designed to reduce the re-
flection from the skin layer [19] is then applied to these
attenuation-compensated signals prior to the application of
the DAS algorithm. Note that the images are calculated with
2 mm pixels.

E. PARAMETER SELECTION CRITERIA
There are different strategies for tuning the input parameters
for LSQ, DLSQ, and SLSQ methods, namely λr , λQ, and Q0.
In this article, for simplicity, we use a trial and error approach
to tune the regularization parameters λr and λQ. We assume
values for Q0 based on experience with the datasets.

In the DLSQ method, increasing the value of λr provides
smoother reflectivity (i.e., minimum norm solution). By in-
creasing the value of λQ, the estimated Q will be closer to
Q0. In the SLSQ method, increasing the value of λr pro-
vides sparser reflectivity (i.e., a smaller number of non-zero
coefficients). By increasing the value of λQ, the estimated Q
will be closer to Q0. To automate the algorithm and fine-tune
the regularization parameters, we can use Generalized Cross
Validation (GCV) method [38], [39], [40]. The GCV method
has been used in the past to tune inputs in cost functions
with several regularization parameters. The method works on
�2 − �2 and �2 − �1 cost functions [40]. The GCV method has
been successfully used in tuning the regularization parameters
for the deconvolution problem [41], [42]. Several interesting
algorithms can provide a good approximation for Q0 [17],
[20], [22], [23], [24]. Since the evaluation of the cost function
for different values of Q is not costly, we can use non-linear
algorithms such as fast simulated annealing to define the Q
without providing the Q0 [43]. In other words, we use Q0 to
search for the Q in the neighborhood of Q0, and we use λQ to
define how close the solution is to Q0.

F. DATASETS AND METRICS
Initially, the proposed algorithms are tested with a synthetic
example. Next, simulated and experimental datasets of in-
creasing complexity are examined. All datasets have been
previously reported, so are summarized briefly here.

Dataset D1 is a simple breast model that consists of a 10-cm
hemispherical skin layer filled with canola oil and containing
a tumor (similar to [44]). Simulations of the breast model
are performed with the finite difference time domain method
(SEMCAD, SPEAG, Switzerland); the model is illuminated
with an ultrawideband pulse using a custom antenna (BAVA-
D) and reflections are collected as the antenna is scanned
to 140 locations around the model. Dataset D2 is the corre-
sponding experimental data, however, 3 scans of the model
are collected to assess consistency [45]. Here, reflections of
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ultra-wideband signals are collected using a prototype imag-
ing system [46]. Datasets D1 and D2 test the algorithms in
a simple scenario and allow for the comparison of simulated
and experimental data.

Dataset D3 contains simulated reflections collected from a
realistic breast model created from a magnetic resonance scan
of a patient [47]. Here, the ultrawideband antenna is scanned
to 300 locations around the model. This model has realistic tis-
sue distributions and shape, providing a more complex testbed
for the proposed algorithms.

Dataset D4 is a scan of a breast cancer patient who had a
tumor located in her right breast. As reported in [48], patient
scans were part of a study approved by the University of Cal-
gary Conjoint Health Research Ethics Board (study E-24098);
patients provided written informed consent. Reflections of the
breast are collected at 140 locations by scanning a single
antenna around the tissue, again using the prototype described
in [46].

For datasets D1-D3, the response of only the tumor is ex-
tracted at single receivers by subtracting the data acquired
with and without the tumor present in the model. This iso-
lation of the tumor response is repeated for signals after
attenuation compensation. In the case of patient data (D4), we
do not have access to the tumor-free case; however, we ana-
lyze the skin-suppressed data before and after compensation.

To quantitatively compare the performances of algorithms
on images, we use two metrics. The first metric compares
the estimated tumor locations in the images to the known
location. The second metric evaluates the focusing of tumors
in the normalized 3D images. For a fair comparison, we first
normalize the intensity values of the images, and values higher
than 0.75 are categorized as tumor response. Then, we define
the number of pixels in the images as Total and the number
of pixels in tumor regions as Tumor and the localization ra-
tio as Lr = 100× Tumor

Total . The smaller the number, the more
localized the tumor region.

III. RESULTS
A. SYNTHETIC EXAMPLE
We generate a synthetic time series that mimics the recorded
microwave data received by the antenna by convolving a trans-
mitter’s signature with a sparse reflectivity series. Two time
series with and without attenuation are considered. Fig. 1(a)
and (b) show the transmitter’s signature, which is a 40-degree
phase rotated Ricker wavelet and the sparse reflectivity series,
respectively. Fig. 1(c) is the stationary data without attenu-
ation, i.e., d =Wr, and Fig. 1(d) is the non-stationary time
series with attenuation, i.e., d =WAr. We use Q = 25. We
simply convolve the transmitter’s signature with the estimated
reflectivity to recover the attenuation compensated dataset.

Fig. 2 shows the estimated reflectivity and attenuation com-
pensated data by using LSQ, DLSQ, and SLSQ methods. In
DLSQ method we use Q0 = 20, λr = 0.01, and λQ = 0.001,
and in SLSQ method we use Q0 = 20, λr = 0.001, and λQ =
0.004. The results show that the SLSQ approach outperforms

FIGURE 1. Synthetic data for testing attenuation compensation. Each line
is offset for clarity and labelled as (a) Transmitter’s signature. (b) Sparse
reflectivity series. (c) Data without attenuation. (d) Data with attenuation.

FIGURE 2. Performances of attenuation compensation algorithms on the
synthetic data shown in Fig. 1(d). In the upper plot, lines a), b), and c) are
offset for clarity and correspond to the estimated reflectivity series
obtained with LSQ, DLSQ and SLSQ. In the lower plot, lines d), e), and f) are
offset for clarity and correspond to the estimated data after attenuation
compensation by using LSQ, DLSQ, and SLSQ methods, respectively.

LSQ and DLSQ methods in estimating the reflectivity series
and quality factor. The estimated quality factors for LSQ,
DLSQ, and SLSQ are 40, 31, and 24, respectively. Moreover,
in the LSQ method, the WT

QWQ matrix is close to singu-
lar, and the inverse of a such matrix can be erroneous and
can introduce instability in the inversion. As mentioned in
the parameter selection section, the GCV function can opti-
mally define the regularization parameters. For example, in
the method of SLSQ, the tuneable regularization parameters
are λr and λQ. To automatically define the optimal parameters,
we use the GCV function that is designed for the �2 − �1 cost
functions [40]. The GCV function for the SLSQ cost function
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FIGURE 3. Logarithm of normalized GCV function with the stability
coefficient C = 2 for fine tuning the regularization parameters within SLSQ
method for the synthetic data represented in Fig. 1.

in (18) is as follows

GCV (λr, λQ) = ‖WA(λr )r(λr )− d‖22 + λQ‖Q− Q0‖22
(N −C‖r‖0)2

,

(20)
where C ≥ 1 is the stability coefficient, ‖r‖0 is the �0-norm
that counts the number of nonzero elements in the reflectivity
series r, and N is the length of r. The optimal regulariza-
tion parameters correspond with the minimum of the GCV
function in (20). To define the parameters, we define possi-
ble ranges for λr and λQ. Then, for each combination of λr

and λQ, we run the SLSQ algorithm and evaluate the GCV
function. Fig. 3 shows the normalized GCV function on a
logarithmic scale. When the log(GCV ) is less than −2.5,
the algorithm provides satisfactory results. It is clear that the
fine-tuned regularization parameters with trial and error nicely
reside within the acceptable ranges for the parameters. The
minimum of the GCV function provides optimal values for the
regularization parameters automatically. However, we must
run the algorithms several times to evaluate the GCV function.
To reduce the computational cost of the algorithms, we tune
the parameters with a trial-and-error approach.

B. DATASET D1
Dataset D1 contains a circular tumor with 16 mm diameter
centered at X= 25 mm, Y= 0 mm, Z= −17.3 mm. Fig. 4(a)
shows the time series corresponding to channel 22 in the
dataset, as well as the response of only the tumor (this channel
has a strong tumor response). After attenuation compensa-
tion, the response of channel 22 along with the tumor-only
response are represented in Fig. 4(b)–(d), respectively. Table 1
summarizes the parameters used for the attenuation com-
pensation algorithms. The compensated data using all three
methods show an amplitude boost in the later arrivals and
phase changes in the data.

FIGURE 4. Performances of attenuation compensation algorithms on the
simulated data D1. (a) measured dataset at channel 22. The offset red
trace is the tumor only response of the original data. (b), (c), and (d) are
the estimated data and tumor only response after attenuation
compensation by using LSQ, DLSQ, and SLSQ methods on a), respectively.

TABLE 1. Input Parameters for Compensation Algorithms Using Simulated
Datasets D1 and D3

To provide accurate images, data should have reliable
low, mid, and high-frequency contributions. After attenuation
compensation, the energy lost due to attenuation is recovered;
the tumor response differs in amplitude and phase from the
tumor response before attenuation compensation. The result
of the LSQ method shows a ringing effect, and in most chan-
nels gives unstable solutions as the algorithm tries to invert a
singular matrix. On the other hand, DLSQ and SLSQ methods
successfully recover the signal.

Next, we use the data with and without attenuation com-
pensation to provide DAS images.

Fig. 5 shows the 2D image at the location corresponding
to the maximum response in the axial plane that is extracted
from the 3D imaging volume. The images show that the con-
ventional approach provides two tumor responses where the
ideal response is a single tumor. As expected, the LSQ-DAS
image shows an unstable result. However, the DLSQ-DAS and
SLSQ-DAS images show promising results and match well
with the ideal response in the model.

To compare the performances of the algorithm, we calculate
the maximum amplitude location of the tumor in the images
and compare it with the ideal location. Table 3 shows the esti-
mated tumor location by using DAS, LSQ-DAS, DLSQ-DAS,
and SLSQ-DAS methods. Table 4 shows the localization ratio
values of the 3D images. After attenuation compensation,
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FIGURE 5. Axial images of simple synthetic dataset (D1). (a) DAS image.
(b) LSQ-DAS image. (c) DLSQ-DAS image. (d) SLSQ-DAS image.

TABLE 2. Input Parameters for Compensation Algorithms Using the
Experimental Datasets D2 and D4

TABLE 3. Ground Truth and Estimated Locations of Tumor in Simulated
and Experimental Datasets

TABLE 4. Localization Ratios (Lr ) in Normalized 3D Images of the
Simulated and Experimental Datasets

images show at least 1% higher localization compared to that
of the DAS image. Since, the LSQ method does not provide
stable solutions, for other datasets, we do not show and discuss
the results of LSQ and LSQ-DAS methods.

C. D2 DATASET
Dataset D2 contains a circular tumor with 16 mm diameter
centered at X= 20 mm, Y= 0 mm, Z= −49 mm. The data

FIGURE 6. Performance of attenuation compensation algorithms on the
original and skin-suppressed experimental data D2-type3 channel 52.
(a) measured dataset at channel 52 (blue color) after skin removal (red
color). (b) and (c) are the estimated data after attenuation compensation
of (a) by using DLSQ and SLSQ methods, respectively.

FIGURE 7. Axial images of measured dataset D2-type3. (a) DAS image.
(b) DLSQ-DAS image. (c) SLSQ-DAS image.

is acquired three times to analyze the repeatability of the
experiment (D2-type1, D2-type2, and D2-type3).

Fig. 6(a) shows a channel of one dataset before and after
skin attenuation. The dataset shows less attenuation compared
with the D1 dataset. The inversion parameters are summarized
in Table 2.

Fig. 6(b) and (c) show the data after attenuation compen-
sations by using the DLSQ and SLSQ methods. Data after
attenuation compensation show more balanced energy be-
tween early and late arrival times.

Next, DAS images are created. Fig. 7 shows the axial sec-
tions of the images computed by the DAS, DLSQ-DAS, and
SLSQ-DAS methods. The images computed by DLSQ-DAS
and SLSQ-DAS methods show better localization compared
to the DAS image.
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FIGURE 8. Performance of attenuation compensation algorithms on the
simulated data D3. (a) original data after low-pass filtering at channel 280.
The red color trace is the tumor only response of the original data.
(b) and (c) are the estimated data and tumor only response after
attenuation compensation by using DLSQ and SLSQ methods on
(a), respectively.

The algorithms are applied to all 3 datasets and results
demonstrate consistency for the DLSQ-DAS and SLSQ-DAS
algorithms. Table 3 summarizes the location of tumors cal-
culated with different attenuation algorithms, and Table 4
shows the localization ratios. Both DLSQ-DAS and SLSQ-
DAS methods successfully locate the tumor in the images. The
localization ratios, after attenuation compensation, show ≈
1.5% more focusing of tumor response on all three datasets.

D. D3 DATASET
The D3 dataset contains a region of glandular tissue, along
with a single circular tumor of 15 mm diameter centered at
X=−19 mm, Y=0 mm, Z=−27 mm. The data show similar
attenuation behavior to that of the D1 dataset.

Fig. 8(a) depicts the data at channel 280, where the data
contains a significant tumor response. The data has no signif-
icant scattered energy after 1.5 ns, similar to the D1 dataset.
Hence, we constrain the search space for the quality factor
to be in the same range as the D1 dataset. The parameters are
summarized in Table 1. Fig. 8 shows that the DLSQ and SLSQ
methods successfully compensate for attenuation in this data.

Next, we use the data with the skin response removed, both
with and without attenuation compensation, to create DAS
images.

Figs. 9 and 10 show the coronal and sagittal sections of
the images where the tumor amplitude is maximum. Table 3
reports the estimated and true location of the tumor, demon-
strating that the SLSQ-DAS method gives the best solution.
Table 4 shows the tumor localization values. After attenuation
compensation, images have ≈ 1.5% more focusing of tumor
response compared to that of the DAS image.

FIGURE 9. Coronal images of realistic simulated dataset D3. (a) DAS
image. (b) DLSQ-DAS image. (c) SLSQ-DAS image.

FIGURE 10. Sagittal images of realistic simulated dataset D3. (a) DAS
image. (b) DLSQ-DAS image. (c) SLSQ-DAS image.

E. D4 DATASET
This dataset is acquired from the patient’s right breast. To
provide a reliable DAS image. we apply a lowpass filter with
a cutoff frequency of 4.5 GHz [48]. Fig. 11(a) shows the
data before and after skin removal at channel 70. The data
show similar attenuation behavior to that of the D2 dataset
in Fig. 6(a), so we choose similar regularization parameters
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FIGURE 11. Performance of attenuation compensation algorithms on the
patient (D4- right breast) data before and after skin removal. (a) measured
dataset after low-pass filtering at channel 70 (blue color) and its
corresponding data after skin removal (red color). (b), and (c) are the
estimated data after attenuation compensation by using DLSQ and SLSQ
methods on (a), respectively.

FIGURE 12. Axial images of patient D4- right breast dataset. (a) DAS
image. (b) DLSQ-DAS image. (c) SLSQ-DAS image.

(Table 2). The data after attenuation compensation are repre-
sented in Fig. 11(b)–(c).

Fig. 12 shows the axial images of the right breast with
the DAS, DLSQ-DAS, and SLSQ-DAS methods. The subtle
differences in the amplitude and phase of the data before and
after attenuation compensation are responsible for the resolu-
tion and localization of the tumor in the images. Compared to
the result of conventional DAS, the DLSQ-DAS, and SLSQ-
DAS methods provide better-localized tumor responses. The
coronal images of this dataset are shown in Fig. 13. Note that
in DLSQ-DAS and SLSQ-DAS images, the maximum ampli-
tude of the tumor is located in slightly different locations. The
maximum locations of the tumor on the patient’s right breast
are summarized in Table 3. The locations show consistent re-
sults for DLSQ-DAS and SLSQ-DAS methods. Table 4 shows
the tumor localization values. After attenuation compensation,

FIGURE 13. Coronal images of patient D4- right breast dataset. (a) DAS
image. (b) DLSQ-DAS image. (c) SLSQ-DAS image.

images have 1.6% more focused tumor response compared to
that of the DAS image.

IV. CONCLUSION
We introduced a non-stationary convolutional model, based
on frequency-dependent attenuation, and developed an alter-
nating minimization algorithm that simultaneously solves for
the reflectivity series and the quality factor. We showed that
to efficiently compensate for attenuation, adding regulariza-
tion terms in the inversion process is necessary. After adding
regularization terms, the algorithms were demonstrated to effi-
ciently compensate for attenuation with simulated and experi-
mental datasets. The attenuation-compensated data available
from the algorithms were used to form images with DAS
beamforming. The attenuation compensation provided better
images in terms of the location of the tumor and tumor local-
ization metrics.

Our future work aims to solve for varying quality factors
instead of the constant Q model. In this work, we used con-
stant frequency independent Q factor to define the attenuation
in the breast tissue, where the Q0 value in the algorithms was
an approximate estimate of the average attenuation factor for
the breast. The Q0 value is different for fatty and fibroglan-
dular tissues. Since the breast tissue is not a homogenous
medium, ideally, we should consider the medium complexities
in our Q modeling. For example, this may include consider-
ing frequency-dependent Q factor model, dielectric parameter
changes for different tissues, and different Q factors for dif-
ferent sections of the breast. To provide a realistic Q model,
we need to apply tomography to provide velocity informa-
tion within the breast tissues and use an advanced Q model
to change the velocities to Q factor values that can vary
within the breast medium. Such a model can better define
the medium, but it makes the algorithm very non-linear and
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increases the number of unknowns. However, based on our
extensive tests, we concluded that a constant Q model with
a priori knowledge of Q0 corresponding to the background
medium provides promising results. Also, in practice, we
can control the signal transmitted from the antenna. Since
we could control the source, we assumed that we knew the
signature of the transmitted pulse. However, if there is an
error in the assumed signature, we need to modify the cost
function and treat the transmission pulse signal as an unknown
parameter. It is worth noting that the proposed processing
algorithms can also be applied to any non-stationary data such
as seismic, ground-penetrating radar, and ultrasound.
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