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ABSTRACT In this article, we address the problem of ill-conditioning of the Wiener filter, the optimal linear minimum
mean square error estimator. Computing the Wiener filter involves the inverse of the observation covariance matrix. In
practice, the observation covariance matrix has a large condition number, resulting in unreliable numerical computation of
the Wiener filter. To address this issue, we develop four approximate Wiener filter formulas using a truncation technique
based on the principal components of a composite covariance matrix. Our approximate filter formulas do not directly
involve the inverse of the observation covariance matrix. As a result, our filters are well-conditioned and numerically
reliable to compute. We also present an asymptotic analysis of our approximate filter formulas and show that they
converge to the Wiener filter as certain approximating terms vanish. Using real data, we evaluate the performance of
our filters in terms of accuracy and computation time against the Wiener filter. Our performance-computation tradeoff
results show that, unlike the Wiener filter, our filters have stable performance without significantly more computation,
even when the covariance matrix is ill-conditioned.

INDEX TERMS Estimation, optimization, random matrix theory, Wiener filters.

I. INTRODUCTION
Estimating a signal of interest based on an observable related signal
is of crucial importance. An optimal estimator or filter (we use these
terms interchangeably) is an algorithm that processes the observ-
able signal to yield an estimate such that a certain error criterion
between the estimated and desired signal is minimized. The Wiener
filter is the optimal linear minimum mean square error (LMMSE)
estimator. However, computing the Wiener filter involves inverting
the observation covariance matrix. In practice, the dimension of
the observation signal might be large, or the number of available
observation samples might be small relative to the dimension of
the observation signal. This results in the observation covariance
matrix having a large condition number. Computing Wiener fil-
ters with ill-conditioned covariance matrices may be numerically
unreliable.

We can circumvent the problem of ill-conditioning by approx-
imating the Wiener filter. One approach is by reconditioning the
covariance matrix using various well-known techniques: ridge re-
gression [2], the minimum eigenvalue method [3], etc. Another
approximation approach is to constrain the rank of the Wiener filter to

reduce the computation complexity and enhance the performance [4],
[5], [6], [7], [8], [9], [10], [11]. However, this does not address
the issue of ill-conditioning [12]. More recently, [12] described an
alternative approach that explicitly addresses the ill-conditioning in-
stead of constraining the filter rank. The approach described in [12]
involves “truncation” based on principal components of a compos-
ite covariance matrix, leading to two well-conditioned approximate
Wiener filters.

To explore the possibility of a more computation-efficient filter
without significantly sacrificing performance, in this article, we sim-
ilarly use truncation to formulate our first two approximate Wiener
filters. We approximate our filter formulas even further using the
Neumann series expansion and eliminate matrix inversion altogether.
The resulting approximate filters are well-conditioned and therefore
numerically reliable to compute. The approximations developed here
enable a tradeoff between computation and accuracy. We analyze the
asymptotic performance of our approximate filters and show that they
converge to the Wiener filter as certain approximating terms vanish.
To demonstrate the efficacy of our approximation formulas and il-
lustrate the possible computation-accuracy tradeoff, we evaluate the
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performance of our filters using an empirical dataset: historical daily
closing values of the CBOE Amazon VIX Index [13].

The number of principal components of the composite covariance
matrix plays a crucial part in truncation and effectively determines
the quality of the approximation. To determine the optimal number
of principal components used for approximating the filter, [12] uses
a line-search procedure to minimize the mean square error. In this
article, we use the method of [14], based on results from random
matrix theory (RMT), to determine the number of principal com-
ponents of the covariance matrix. We compare the results for the
number of principal components computed using the RMT-based
method against the method of [12]. It turns out that the number of
principal components, and effectively the performance of our filters,
computed using both methods are comparable, while the RMT-based
method is more efficient in terms of the computation time than the
method of [12].

Even though the practical limitations caused by ill-conditioning
are not new to signal processing, and similar problems are faced
in other fields, such as statistics and machine learning, only a few
known solutions are available, and even fewer solutions that di-
rectly address the issue at hand. In signal processing, ill-conditioned
covariance matrices can produce filters exhibiting significant er-
rors [15]. In statistics, linear least squares (LLS) problems are
often ill-conditioned. In [16], the authors study the stability and
accuracy of least squares approximations. In [17], the authors in-
vestigate the efficacy of a self-adaptive iterative algorithm for
solving severe ill-conditioned LLS problems. In machine learning,
ill-conditioning problems occur when dealing with convolutional
neural networks [18]. Because the solution to Wiener filters closely
relates to the above-mentioned problems, our method of developing
well-conditioned filters will be useful for dealing with a variety of
ill-conditioned problems.

Our contributions are summarized as follows:
1) To address the problem of ill-conditioning of the Wiener filter,

we describe a method based on which we introduce four new
approximate Wiener filter formulas that do not directly involve
inverting the observation covariance matrix (Section III). We
also exploit the peculiar distribution of eigenvalues observed
in large covariance matrices using the method of principal
component analysis. The approximations developed in this
article are justified whenever inverting the observation covari-
ance matrix is ill-conditioned.

2) We prove that the approximate formulas converge to the
Wiener filter as certain approximating terms vanish. We also
characterize the asymptotic scaling laws (Section IV). Our
asymptotic analysis is based on elementary tools accessible
to anyone familiar with the application of linear algebra to
statistical signal processing problems and will help the reader
not accustomed to these types of analyses to develop an intu-
itive understanding of how to make calculations more tractable
without using any esoteric or heavy machinery.

3) We describe two methods for determining the optimal num-
ber of principal components used in the approximate filter
formulas (Sections V-D). Furthermore, we evaluate how the
performance of our approximate filters varies with the number
of principal components used for truncation and characterize
the tradeoff between the numerical unreliability of filter com-
putation and power loss due to truncation.

4) We evaluate the performance of our approximate Wiener filter
formulas using daily closing values of the CBOE Amazon
VIX Index (Sections V-E). Our quantitative results with the

empirical data demonstrate that the performance of our filters
remains stable as we increase the dimension of the associated
covariance matrix, while the performance of the Wiener filter
deteriorates significantly as expected.

II. THE WIENER FILTER
We wish to estimate a zero-mean random signal X ∈ C

M based on
a related zero-mean random observation Y ∈ C

N , where M, N ∈ N.
We use E[·] as either the expectation or empirical mean from data,
‖ · ‖ as the standard complex 2-norm, and A as a matrix representing
a linear filter or estimator. Then the LMMSE estimation problem can
be stated as follows:

minimize
A

E[‖AY − X‖2]. (1)

The optimal solution, called the Wiener filter, is given as

AW := CXYC−1
YY , (2)

where CYY = E[YY ′] ∈ C
N×N is the covariance matrix of the obser-

vation Y , and CXY = E[XY ′] ∈ C
M×N is the crosscovariance matrix

of the desired signal X and the observation Y . Throughout this arti-
cle, we use the superscript prime to denote the Hermitian transpose.

Even though the Wiener filter solves the LMMSE estimation
problem, the numerical computation of AW is unreliable because it
involves the inverse C−1

YY . If the condition number of CYY —the ratio
of its largest eigenvalue to its smallest eigenvalue—is large, then the
computation of C−1

YY is numerically unreliable. Notice that we do not
need to compute the inverse explicitly. We can simply solve (for AW)
the normal equation AWCYY = CXY . Unfortunately, irrespective of the
way we compute AW, the reliability of a numerical solution for AW

depends on the condition number of CYY . A matrix is ill-conditioned
if it has a large condition number; otherwise, it is well-conditioned.
Our primary motivation is to present a solution to the LMMSE esti-
mation problem that is reliable to compute regardless of the condition
number of CYY .

Now, there are two major factors that cause CYY to have a large
condition number. In many practical problems in signal processing,
finance, physics, etc., the dimensions of the observation vectors and
their corresponding covariance matrices are very large. According
to [19], [20], the mean condition number of a random covariance
matrix increases with its size. The second reason, which is closely
related to the first, is the ratio of the total number of observation sam-
ples to the dimension of the observation vector is small (e.g., because
the number of observation samples is limited). In such cases, the few
largest eigenvalues of the covariance matrix are significantly larger
than the remaining eigenvalues [21], [22], [23], [24], [25], [26]. This
results in the condition number of the covariance matrix being large
as well. Empirical evidence shows that the condition numbers of
covariance matrices can easily exceed 104 [12], [27]. In practice,
these ill-conditioned covariance matrices can cause significant errors
when used to solve linear equations.

To address this problem of ill-conditioning, in the next section,
we describe approximate Wiener filter formulas that do not directly
involve the inverse C−1

YY . These approximations are justified whenever
inverting CYY is ill-conditioned. We introduce multiple filter formulas
with varying computational requirements to allow trading off perfor-
mance for computation. Following that, we show the convergence of
these approximate filters to the Wiener filter in terms of their asymp-
totic scaling laws. Then, we describe two methods for choosing the
best approximations to optimally trade off between computation and
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accuracy. Finally, we evaluate the performance of these filters using
empirical data.

III. WIENER FILTER APPROXIMATIONS
To describe our method for approximating the Wiener filter, we
start with the method of [12]. First, define Z ∈ C

(M+N ) to be the
concatenation of the vectors X and Y :

Z =
[

X

Y

]
. (3)

Let CZZ ∈ C
(M+N )×(M+N ) be its covariance. Then, the signal X and the

observation Y share the composite covariance matrix

CZZ =
[

CXX CXY

C′
XY CYY

]
. (4)

Define the eigendecomposition CZZ = V SV ′, where V ∈
C

(M+N )×(M+N ) is the orthogonal eigenvector matrix composed
of eigenvectors of CZZ as its columns, and S ∈ C

(M+N )×(M+N ) is
the diagonal eigenvalue matrix with diagonal elements λ1 ≥ λ2

≥ . . . ≥ λM+N . The matrices V and S depend jointly on CXX , CYY ,
and CXY . Next, partition V into VX (top M rows) and VY (bottom N
rows). The following identities are easy to verify:

CYY = VY SV ′
Y , CXY = VX SV ′

Y . (5)

The eigendecomposition, or singular-value decomposition (SVD),
here is different from the ones usually associated with Wiener filters.
For example, in deriving a low-rank version of the Wiener filter, [4]
uses the SVD of CXYC−1/2

YY ; see also [7], [8], and [10].

A. TRUNCATION APPROXIMATION
In many real-world problems, such as stock price prediction and
direction-of-arrival estimation, we have to deal with large covariance
matrices [21], [22], [23], [24], [25], [26], [27]. In these types of prob-
lems, the dimension N of Y can be as large as one thousand or even
more. The corresponding covariance matrix CYY is of size N × N
and can be transformed using various techniques. The technique of
eigendecomposition for transforming a large covariance matrix is of
particular interest because the covariance matrix is symmetric by
definition, and for a large N , the eigenvalues of covariance matri-
ces vary widely in magnitude. For example, in financial covariance
matrices, the first few eigenvalues are often well-separated from the
rest of the eigenvalues and account for the bulk of the information,
while the remaining eigenvalues decay rapidly toward zero [21], [22],
[23], [24], [25], [26], [27]. As the dimension N of Y increases, the
proportion of the number of eigenvalues corresponding to this bulk
of the information decreases.

As the separation between the first and the last eigenvalue in-
creases, so does the ill-conditioning of the corresponding covariance
matrix CYY . In such situations, computing a numerical solution in a
linear system involving the ill-conditioned CYY becomes unreliable.
However, as only the first few eigenvalues carry most of the informa-
tion, we can safely approximate the relatively small eigenvalues of
CYY as 0. To elaborate, suppose the first L ≤ N eigenvalues account
for the bulk of the eigenvalues of CYY ; we call these the principal
eigenvalues. Next, partition VX , VY , and S as

VX =
[
VX,L VX,L

]
,

VY =
[
VY,L VY,L

]
,

S =
[

SL OL×(M+N−L)

O(M+N−L)×L SL

]
, (6)

where VX,L ∈ C
M×L , VY,L ∈ C

N×L , SL ∈ C
L×L , and O is the all-zero

matrix (with dimensions shown in the subscript). Since these L
principal eigenvalues constitute the bulk of all the eigenvalues of
CYY , we can safely approximate SL by O(M+N−L)×(M+N−L), called
truncation (see, e.g., [7], [12], [27]). Equivalently, we approximate
the decomposition by CYY ≈ VY,LSLV ′

Y,L .
Consider the following transform of Z:

Z̃ = V ′Z = V ′
X X + V ′

YY . (7)

Then, the inverse transform is Z = V Z̃, giving X = VX Z̃ and Y =
VY Z̃. We now apply the truncation approximation to get the approx-
imate formulas

Z̃a = V ′
X,LX + V ′

Y,LY , (8)

and

X = VX,LZ̃a. (9)

Combining (8) and (9), we get

X ≈ VX,LV ′
X,LX + VX,LV ′

Y,LY

⇒ X ≈ (IM − VX,LV ′
X,L )−1VX,LV ′

Y,LY . (10)

This suggests the following filter:

A1 = (IM − VX,LV ′
X,L )−1VX,LV ′

Y,L. (11)

Notice that C−1
YY or its eigenvalues do not appear in (11).

Next, we combine the Neumann series expansion

(IM − VX,LV ′
X,L )−1 =

∞∑
k=0

(VX,LV ′
X,L )k (12)

with the identity (VX,LV ′
X,L )kVX,L = VX,L (V ′

X,LVX,L )k to get (IM − VX,L

V ′
X,L )−1VX,L = VX,L (IL − V ′

X,LVX,L )−1. This leads to an alternative fil-
ter formula:

A2 = VX,L (IL − V ′
X,LVX,L )−1V ′

Y,L. (13)

Though (11) and (13) are equivalent formulas, their computational
burden might differ. We investigate this difference later.

The filters A1 and A2 are similar to the LSJPC filter in [12],
which was derived using a similar truncation operation and is well-
conditioned. The LSJPC filter was shown to have stable performance,
even when the covariance matrix is ill-conditioned [12]. This indi-
cates propitious performance for A1 and A2.

B. INVERSE APPROXIMATION
Though we do not limit ourselves to any particular matrix norm,
we assume that the matrix norm is submultiplicative. Many matrix
norms, such as the 1-norm, the infinity-norm, and the Frobenius
norm, have the submultiplicative property. However, there are some
other matrix norms, such as the max norm, that do not pos-
sess the submultiplicative property. Furthermore, we assume that
‖IM‖ = 1 (otherwise we need to normalize by ‖IM‖). Considering
VX,LV ′

X,L + VX,LV ′
X,L = IM , we see that ‖VX,LV ′

X,L‖ < 1. This means
that ‖VX,LV ′

X,L‖k can be made arbitrarily small with sufficiently
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large k. Hence, we can approximate the Neumann series expansion

(IM − VX,LV ′
X,L )−1 =

∞∑
k=0

(VX,LV ′
X,L )k (14)

by a finite sum:

(IM − VX,LV ′
X,L )−1 ≈

K∑
k=0

(VX,LV ′
X,L )k . (15)

Applying this approximation to (11), we get the filter

A3 =
(

K∑
k=0

(VX,LV ′
X,L )k

)
VX,LV ′

Y,L. (16)

Similarly, from (13), we get

A4 = VX,L

(
K∑

k=0

(V ′
X,LVX,L )k

)
V ′

Y,L. (17)

Finally, note that computing the estimate X̂ = A3Y based on (16)
can be done iteratively using

X̂ (k + 1) = (VX,LV ′
X,L )X̂ (k) + VX,LV ′

Y,LY ,

k = 0, 1, . . . , K − 1, X̂ (0) = 0. (18)

Because ‖VX,LV ′
X,L‖ < 1, (18) is a contractive fixed-point iteration,

guaranteeing convergence of X̂ to (11) as K → ∞. Similarly, com-
puting the estimate A4Y based on (17) can be done iteratively
using

U (k + 1) = (V ′
X,LVX,L )U (k) + V ′

Y,LY ,

k = 0, 1, . . . , K − 1, U (0) = 0,

X̂ = VX,LU (K ). (19)

We use the notation A3(K ) (or A4(K )) to indicate the K th
Neumann-approximation order for the filter A3 (or A4, respectively).
The special case of K = 0 gives the simple formula VX,LV ′

Y,L , which
is difficult to imagine simplifying any further.

In the cases where CYY is ill-conditioned and its eigenvalues
decrease very quickly, it is possible to find an appropriate L for trun-
cation. Similar truncations have been used in low-rank versions of the
Wiener filter [4], [5], [7], [8], [10], [12], [28]. Naturally, in choosing
L there is a tradeoff between the quality of the approximation and the
computational burden. Therefore, there is no universally applicable
value for L. Indeed, this tradeoff affords flexibility in implementing
filters under different computational constraints.

It is not yet entirely clear how well our approximate filters perform
in practice. Our derivations for the approximate filters described
above are found in simple heuristics. To ensure the viability of
these filters, we need to carefully analyze and evaluate them fur-
ther. In Section IV, we show how these approximations converge
to AW as the truncation and inverse approximations become exact.
Later, in Section V, we evaluate these formulas using empirical
data.

Our approach to addressing the problem of ill-conditioning in-
volves dimension reduction. An added benefit of dimension reduc-
tion is that we can expect the computational burden of applying the

filters to be reduced relative to the Wiener filter. Our empirical results
in Sections V-E corroborate this expectation.

IV. ASYMPTOTIC PERFORMANCE
We now show how each of the approximation formulas derived in
Section III converges to AW using the Bachmann-Landau notation
O(·). To explain, consider a matrix M(ρ ) that depends on some
parameter ρ → 0. If, for some c, ‖M(ρ )‖ ≤ cρ for sufficiently
small ρ, then we write M(ρ ) = O(ρ ). If C and D are bounded as
ρ → 0, then the following algebraic rules help us to simplify the
calculations:

CO(ρ ) = O(ρ ), (20)

(C + O(ρ ))−1 = C−1 + O(ρ ), and (21)

(C + O(ρ ))(D + O(ρ )) = CD + O(ρ ). (22)

Whenever we use the truncation operation for some values of
L and K , we essentially lose some of the power in the observed
signal Y . We measure this truncation-power loss as ρL . The amount
of power lost due to truncation is small by design. The parameter
ρL is a measure of this amount of power being discarded. The ex-
act expression for the power being discarded depends on the filter.
For A1 and A2, ρL = ‖SL‖. For A3, ρL = ‖SL‖ + ‖VX,LV ′

X,L‖K+1.
And, for A4, ρL = ‖SL‖ + ‖V ′

X,LVX,L‖K+1. The truncation approx-
imation relies on ‖SL‖ ≈ 0. Moreover, the inverse approximation
relies on either ‖VX,LV ′

X,L‖ ≈ 0 or ‖V ′
X,LVX,L‖ ≈ 0. Thus, in our anal-

ysis, we consider SL and VX to be variables such that ‖SL‖ → 0,
‖VX,LV ′

X,L‖ → 0, and ‖V ′
X,LVX,L‖ → 0. We treat SL as fixed. Note

that VX and VY , and their submatrices VX,L and VY,L , are bounded as
‖VX,LV ′

X,L‖ → 0 and ‖V ′
X,LVX,L‖ → 0. This is relevant for applying

the Bachmann-Landau rules.
Theorem 1: Given a positive integer L ≤ N ,

AW − A2 = O(‖SL‖). (23)

Proof: We first write

CXY = VX SV ′
Y = VX,LSLV ′

Y,L + VX,LSLV ′
Y,L

= VX,LSLV ′
Y,L + O(‖SL‖)

CYY = VY SV ′
Y = VY,LSLV ′

Y,L + VY,LSLV ′
Y,L

= VY,LSLV ′
Y,L + O(‖SL‖). (24)

Therefore, using the Bachmann-Landau rules,

AW = VX,LSLV ′
Y,L (VY,LSLV ′

Y,L )−1 + O(‖SL‖)

= VX,L (V ′
Y,LVY,L )−1(V ′

Y,LVY,L )SLV ′
Y,L

(VY,LSLV ′
Y,L )−1 + O(‖SL‖)

= VX,L (V ′
Y,LVY,L )−1V ′

Y,L + O(‖SL‖)

= VX,L (IL − V ′
X,LVX,L )−1V ′

Y,L + O(‖SL‖), (25)

which completes the proof. �
Corollary 1: Given a positive integer L ≤ N ,

AW − A1 = O(‖SL‖). (26)

Theorem 2: Given positive integers L ≤ N and K ,

AW − A4 = O(‖SL‖) + O(‖V ′
X,LVX,L‖K+1). (27)
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Proof: Using the Neumann series expansion

(IL − V ′
X,LVX,L )−1 =

∞∑
k=0

(V ′
X,LVX,L )k

=
K∑

k=0

(V ′
X,LVX,L )k

+ O(‖V ′
X,LVX,L‖K+1). (28)

Combining this with (23), we get the desired result.
Corollary 2: Given positive integers L ≤ N and K ,

AW − A3 = O(‖SL‖) + O(‖VX,LV ′
X,L‖K+1). (29)

The results above, stated in terms of the Bachmann-Landau no-
tation, provide only an asymptotic characterization of the difference
between each filter and AW, not an exact expression for it. However,
inspecting the calculations above gives some idea of how impractical
an exact analysis would be.

V. RESULTS AND DISCUSSION
We now compare, in terms of accuracy and computation time
with real data, the performance of the different approximate fil-
ters developed in Section III relative to the Wiener filter. Our
performance-complexity evaluation has two parts. First, we test the
approximate filters as we vary the conditioning of the observation
covariance matrix. Second, we quantify the price paid for well con-
ditioning of A1, A2, A3, and A4 in the preprocessing steps relative
to the Wiener filter. We expect the performance of the Wiener filter
to deteriorate as the conditioning of the associated observation co-
variance matrix worsens while the performance of the approximate
filters does not deteriorate. Further, we expect the approximate filters
to be computationally more efficient than the Wiener filter because
of the reduced dimensions involved. We also describe and compare
two methods for selecting the optimal filter orders. The results from
the computational comparison elucidate how the complexities of the
approximate filters scale with different dimensions of the associated
covariance matrices and approximation orders. Although some of
the specific numerical values are data-dependent, they illustrate the
general qualitative features of our methods.

A. DATASET
To demonstrate the performance-complexity tradeoff of each of our
approximate filters relative to the Wiener filter, we use the CBOE
Amazon VIX index (VXAZN) daily closing values. The historical
VXAZN data used in this article is freely available at [13]. To check
for stationarity in time of the VXAZN data, following the method
in [29], [30], we implemented the augmented Dickey-Fuller (ADF)
test [31] for up to 40 lags. The ADF test checks for the null hypoth-
esis that the process follows a unit root, i.e., it is non-stationary. Our
ADF test results for the VXAZN data, produced using the Hypothe-
sisTests package in Julia [32], strongly reject the null hypothesis with
a maximum p-value of 0.0006. Therefore, we can safely assume that
the VXAZN data sequence is stationary.

B. DATA PROCESSING
For the purpose of our estimation problem, we use a sequence of
2974 daily closing values of the VXAZN dataset, starting on January
7, 2011, and ending on November 4, 2022. Our estimation problem
can be stated as follows: given the VXAZN values for N consecutive

FIGURE 1. Condition number of CYY vs. N and γ .

days, predict the values for M consecutive days immediately after.
To do this, we consider vector-valued samples of M + N consecutive
days. We get a total of T = 2974−(M+N )+1 such vector-valued
samples, each one shifted by one lag from the previous one. We
center the data by subtracting the empirical mean of the data matrix
from each sample. We then construct a data matrix

W =
[
W 1 W 2 · · · W T

]

=

⎡
⎢⎢⎢⎢⎣

W (1) W (2) · · · W (T )

W (2) W (3) · · · W (T +1)
...

...
. . .

...

W (M+N ) W (M+N +1) · · · W (2974)

⎤
⎥⎥⎥⎥⎦ , (30)

where W (i) represents the centered closing value of the VXAZN
dataset for the day i. Because the dataset is stationary, the columns
of W have a common (M + N )-variate mean and covariance. Then,
we compute the sample covariance matrix CWW as

CWW = 1

T − 1

T∑
i=1

W iW ′
i. (31)

We use 80% of the data samples for computing the sample
covariance matrix and reserve the remaining 20% for conducting
out-of-sample test experiments. We obtain the 80% above randomly
from the data matrix.

C. ILL-CONDITIONING OF CYY

Our aim for the performance-complexity analysis is to test how the
different approximate filters derived in Section III perform relative to
the Wiener filter when the conditioning of the observation covariance
matrix is varied. To test this, we fix M = 7 and vary N from 100 to
1300. Because the total number of data values is fixed (2974 in our
case), as we increase the dimension of our vector-valued data sample,
the total number of available data samples T decreases. We use γ =
(M + N )/T to denote their ratio. As the dimension of the data sample
approaches the total number of available data samples (i.e., γ → 1),
the resulting covariance matrix becomes more ill-conditioned. Fig. 1
shows how the condition number of CYY changes as γ → 1. We can
see that, as γ rises from 0.04 to 0.97, the resulting condition number
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FIGURE 2. Change in filter performance as L varies.

of CYY increases by more than three orders of magnitude. This allows
performance evaluation across many scenarios.

To keep the performance metric directly comparable as we vary
N , we evaluate the performance according to the normalized root-
mean-square error (nRMSE), calculated as

√
1

T

∑T

i=1
‖AW i(Y ) − W i(X )‖2

/√
1

T

∑T

i=1
‖W i(X ) + W‖2,

where W i ∈ R
(M+N ) (i = 1, . . . , T ) is the vector-valued sample,

W i(Y ) is the N-subvector of W i corresponding to Y , W i(X ) is the
M-subvector corresponding to X , and W is the average M-vector.
Better performance values are closer to 0.

D. BEST L
The performance of A1, A2, A3 and A4 varies with the number of
principal components L used for truncation. To illustrate the ef-
fect of different values of L on the performance, Fig. 2 depicts
the performance of A3(5) for different values of N as we vary L.
Here, the thickness of each column rung for different values of N
indicates the performance in terms of nRMSE, with the maximum
thickness of a column rung showing an nRMSE value of 0.28. We
can see that the performance of A3(5) first improves as we increase
L and then deteriorates as we keep increasing L. Clearly, there is
some optimal value of L for which the filter performs best. This
optimal value is governed by the tradeoff between the numerical
unreliability of filter computation and the truncation-power loss as
we increase L. The filter performance is more sensitive to this
optimal value of L for smaller values of N , but for larger values
of N , we can vary L by a relatively wide margin without affect-
ing its performance by much. The performance of A3 and A4 also
varies with the Neumann-approximation order. In our experiments,
their performance is essentially constant beyond K = 5. Even when
we change the dimension of M, K = 5 is the smallest Neumann-
approximation order of A3 and A4 that matches the best performance
of A1 and A2, beyond which there is little to separate between their
performance.

Next, we describe two methods for computing the best L value to
get the optimal filter performance.

1) LINE-SEARCH METHOD
Our objective function value, the mean square error, for any given A
can also be expressed as

E[‖AY − X‖2] = tr(CXX − 2CXY A′ + ACYY A′). (32)

Following the method in [12], we can find a suitable value of L for
any filter A using a simple line-search (LS) procedure [28] together
with the mean-square-error formula in (32).

The LS method for choosing the best L is computationally costly
because we need to compute A multiple times for different values
of L.

2) MARCHENKO-PASTUR METHOD
Following the method in [14], we can find the best L from the
data matrix without the explicit need for computing A. Recall that
W ∈ R

(M+N )×T is the mean-subtracted data matrix and CWW is its
covariance matrix. Without loss of generality, we assume (M + N ) <

T . If W is a random matrix, i.e., W has independent and identi-
cally distributed (i.i.d.) entries with mean 0 and variance σ 2, we
can view the eigenvalues λ1, . . . , λM+N of CWW as random variables.
Then, in agreement with an asymptotic universal law from RMT,
the eigenvalues of CWW have the Marchenko-Pastur (MP) probability
density function [33], which is fully characterized by the dimensions
of the data matrix ((M + N ) and T ) and the variance (σ 2). Accord-
ing to [34], if CWW has a non-zero number of eigenvalues that are
well-separated from the rest of the eigenvalues, then we can infer
that the entries of W are not i.i.d. According to [14], [34], [35],
[36], [37], [38], if a data matrix can be synthesized by L < (M + N )
principal components, then the MP distribution still applies to the
remaining M + N − L eigenvalues of its covariance matrix. In many
real-world problems, the largest L eigenvalues, corresponding to the
principal components of the covariance matrix, are well-separated
from the remaining eigenvalues. The latter are packed together within
the support of the MP density [34], [38], [39], [40], [41], [42], [43],
[44], [45], [46]. For such covariance matrices, we can jointly estimate
L and σ 2 by determining the minimum value of L such that the
λL+1 to λM+N eigenvalues are well described by the MP distribution.
Following the method in [14], we can easily find the minimum L that
satisfies the inequality

λL+1 − λM+N

4
√

(M + N − L)/T
≤ 1

(M + N − L)

M+N∑
i=L+1

λi. (33)

This method works because if at least one of the eigenvalues
corresponding to the principal components is part of the eigenval-
ues grouped together in the support of the MP density, then the
range (left-hand side of (33)) will exceed the mean (right-hand side
of (33)). Once we identify the minimum L for which the test in-
equality in (33) is satisfied, we can substitute λL+1, . . . , λM+N with
0 and approximate the Wiener filter using the formulas derived in
Section III.

Fig. 3 shows the best L values for A1 and A3(5) as we vary N ,
calculated using the LS and MP methods. Because the LS method
depends on the individual filter, we need to calculate the best L
values for A1 and A3(5) separately. In contrast, the MP method is
independent of the filter and only depends on the data matrix. From
Fig. 3, we can see that the best L values for both the LS and MP
methods are relatively close to each other.

To better differentiate these methods, we analyze the computation
time required for each in calculating the best L values. Table 1 shows
the computation times for the LS and MP methods for calculating
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FIGURE 3. Best L value vs. N.

TABLE 1. Computation Time for the Line Search (LS) Method and the
Marchenko-Pastur (MP) Method for Calculating the Best L as N Varies

FIGURE 4. nRMSE vs. N.

the best L value. We can see that the MP method is approximately
three orders of magnitude faster than the LS method. As seen earlier
in Fig. 3, the optimal L values computed using both of these methods
are comparable. Therefore, henceforth we will use the MP method
for computing the optimal L value without compromising the filter
performance.

E. PERFORMANCE-COMPLEXITY TRADEOFF
Fig. 4 compares the performance of A1, A3(5), and AW in terms of
nRMSE as N increases and CYY becomes more ill-conditioned (see

TABLE 2. Condition Numbers of Matrices Involved in Computing AW, A1,
and A2, Respectively

Fig. 1). For A1 and A3(5), we used the best L values computed ac-
cording to the MP method. All filters have comparable performance
for smaller values of N , or until the total number of samples is more
than double the dimension of the data vector. After N = 700, when
the ill-conditioning of CYY starts to increase rapidly, the computation
of AW becomes more unreliable. This is evidenced by the deteriorat-
ing performance of AW after N = 700. But the same is untrue for
filters A1 and A3(5). The nRMSE values for A1 and A3(5) never
exceed 0.15. This demonstrates that our filters have consistently
stable performance even when CYY is ill-conditioned.

We also implemented the recursive least squares (RLS) algorithm
with a growing window, which is a well-known adaptive filter and
employs an iterative approach for filter computation. However, the
resulting RLS filter converges to AW and has the same deteriorating
performance as the Wiener filter after N = 700, as illustrated in
Fig. 4.

Note that, although there are matrices that involve inverses in com-
puting filters A1 and A2 (namely IM − VX,LV ′

X,L and IL − V ′
X,LVX,L),

these matrices are well-conditioned. Table 2 compares the condition
numbers of these matrices in computing filters AW, A1, and A2.
We can see that, as we increase N from 100 to 1300, the resulting
condition number of CYY increases by more than three orders of
magnitude while the condition numbers of matrices IM − VX,LV ′

X,L

and IL − V ′
X,LVX,L remain relatively small, which shows that these

matrices are well-conditioned.
Using the approximated filters A1 to A4 requires some prepro-

cessing, which includes computing the eigendecomposition of the
covariance matrix and selecting the best L using the LS or MP meth-
ods. Indeed, this preprocessing involves some computational costs.
Fortunately, the preprocessing has to be done upfront only once, after
which we can repeatedly use the formulas for A1 to A4 with very little
extra computation. i.e., once we obtain VX,L and VY,L , computing the
approximate filters A1 to A4 is more efficient than computing AW

due to the reduced dimensions of VX,L and VY,L . Table 3 shows the
computation times for A1 with and without the preprocessing. We
can see that the computation times for A1 with the preprocessing
are greater than that of AW, while the computation times for A1

without the preprocessing are two orders of magnitude smaller than
AW. These results show that A1 is computationally more expensive
than AW when we need to use the filters just once, but their marginal
computational burden quickly diminishes over multiple filtering op-
erations. In our experiments, it never takes more than 7 applications
of A1 to break even with AW. As shown later, the computation times
for A2 to A4 are comparable to A1. Because the best L values are
approximately 10% of the corresponding N values, computing the
approximate filters post-processing is more efficient compared to
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TABLE 3. Computation Time for A1 and AW as N Varies

TABLE 4. Computation Time for All Approximate Filters as N Varies

AW. It is worth emphasizing that our primary purpose is to address
the ill-conditioning of CYY . The computation times in Table 3 along
with the nRMSE performance of the filters in Fig. 4 demonstrate that
our filters are numerically reliable to compute without significantly
increasing the computational burden (and even decreasing it in some
use cases).

Finally, Table 4 compares the computation times for all four
approximate filters as we increase N . Table 4 does not include the
times to compute eigendecompositions and the MP method to select
L. Even though A1 and A3(5) are algebraically equivalent to A2

and A4(5), respectively, they differ in terms of their computational
burden. We can attribute this added computation to the extra floating
point operations (FLOPs) needed to compute A2 and A4(5) compared
to their respective algebraic counterparts. The number of FLOPs for
A1 and A3(5) increases with M, while the number of FLOPs for A2

and A4(5) increases with only L. For smaller values of N , the values
of L and M are comparable. This is demonstrated by their comparable
computation times for small values of N . As N increases, so does L,
whereas M remains constant throughout. Therefore, for large values
of N , the computation times for A1 and A3(4) are much lower than
their respective counterparts. This ordering would reverse whenever
L < M. The perceptive reader will have noticed that we can easily
estimate how the computation cost for the approximate filters would
change as M increases by comparing the computation costs for A1

and A3 with those of A2 and A4. The difference between A1 and
A3(5) remains relatively small for all values of N , as illustrated more
clearly in Fig. 5. With additional order of approximation (meaning
additional computation), A3 becomes more like A1. But recall that
computing A1 involves an inversion of a matrix, albeit of a smaller
size, whereas computing A3 does not involve inversion of any kind.
This tradeoff is beneficial in many cases.

FIGURE 5. Computation time vs. N.

VI. CONCLUSION
In this article, we derive four approximate Wiener filter formulas
using a truncation technique based on the principal components of a
composite covariance matrix. Our approximate filters do not directly
involve the inverse of the covariance matrix. This results in the stable
performance of our filters even as the covariance matrix becomes
increasingly ill-conditioned, as demonstrated by our results with real
data. These results show deteriorating performance for the Wiener
filter, demonstrating its numerical unreliability for covariance matri-
ces with large condition numbers. We describe two methods with
varying complexity for optimally trading off computation for ac-
curacy using our filters. We also show that the approximate filter
formulas converge to the Wiener filter in terms of asymptotic scaling
laws. The numerical comparison of computation times demonstrates
that the computation of our filters comes at a small extra cost com-
pared to the Wiener filter and is even more efficient in some use
cases.

Finally, it has not escaped our notice that our method of ap-
proximating Wiener filters in eigensubspaces spanned by the joint
principal components (i.e., those of the composite covariance matrix)
suggests a comparison with reduced-rank Wiener filters in Krylov
subspaces composed by CYY and CYX [9], [10]. Their performance rel-
ative to our filters, as well as the two well-conditioned approximate
filters derived using the joint principal components in [12], warrants
further investigation.
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[28] E. K. P. Chong and S. H. Żak, An Introduction to Optimization, 4th
ed.Hoboken, NJ, USA: Wiley, 2013.

[29] A. Saha, B. G. Malkiel, and A. Rinaudo, “Has the VIX index been
manipulated?,” J. Asset Manag., vol. 20, no. 1, pp. 1–14, 2019.

[30] A. Hasanzadeh, X. Liu, N. Duffield, and K. R. Narayanan, “Piecewise
stationary modeling of random processes over graphs with an appli-
cation to traffic prediction,” in Proc. IEEE Int. Conf. Big Data, 2019,
pp. 3779–3788.

[31] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” J. Amer. Statist. Assoc.,
vol. 74, no. 366a, pp. 427–431, 1979.

[32] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
fresh approach to numerical computing,” SIAM Rev., vol. 59, no. 1,
pp. 65–98, 2017. [Online]. Available: https://epubs.siam.org/doi/10.
1137/141000671
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