
Received 19 March 2023; accepted 10 May 2023. Date of publication 22 May 2023;
date of current version 14 June 2023. The review of this article was arranged by Associate Editor Danilo Orlando.

Digital Object Identifier 10.1109/OJSP.2023.3278593

Sparse Billboard and T-Shaped Arrays for
Two-Dimensional Direction of Arrival

Estimation
SALEH A. ALAWSH 1 (Member, IEEE), MOHAMED H. MOHAMED2, IBRAHIM ABOUMAHMOUD2,
MOHAMMAD ALHASSOUN 3 (Member, IEEE), AND ALI H. MUQAIBEL 3 (Senior Member, IEEE)

1Center for Communication Systems and Sensing, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

3Electrical Engineering Department and Center for Communication Systems and Sensing, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi
Arabia

CORRESPONDING AUTHOR: SALEH A. ALAWSH (e-mail: salawsh@kfupm.edu.sa).

This work was supported by the Deanship of Research Oversight and Coordination at King Fahd University of Petroleum & Minerals through the Interdisciplinary
Research Center for Communication Systems and Sensing.

This article has supplementary downloadable material available at https://doi.org/10.1109/OJSP.2023.3278593, provided by the authors.

ABSTRACT In two-dimensional direction of arrival (2D-DOA) estimation, planar arrays can estimate the
elevation and azimuth angles simultaneously. However, many planar array topologies such as billboard,
L-shaped, T-shaped, and 2D nested arrays suffer from mutual coupling that results from the small separation
between the physical sensors (antennas), which limits the estimation capability of the sensor array. In an
attempt to reduce mutual coupling between sensors, this article proposes sparse billboard and T-shaped
arrays in which the number of closely separated sensors is significantly reduced. In addition to extending the
CRB for fourth order coarray, this article also derives closed-form expressions for the sensor locations and
the number of consecutive lags or the uniform degrees of freedom (uDOF), in the fourth-order difference
coarray (FODC). Simulation results demonstrate the robustness of the proposed sparse arrays against mutual
coupling.

INDEX TERMS 2D-DOA estimation, billboard arrays, fourth-order difference coarray, mutual coupling,
second-order difference coarray, sparse arrays, T-shaped arrays, uniform degrees of freedom.

I. INTRODUCTION
Direction of arrival (DOA) estimation has many applications
in array processing and communication systems. A key as-
pect of a DOA system is the antenna array topology that
fits the required specifications. Antenna arrays can be clas-
sified into one-dimensional (1D), two-dimensional (2D), or
three-dimensional (3D) arrays, and each type can be further
classified into sparse or uniform. Uniform 2D arrays include
the uniform rectangular array (URA) [1], uniform circular
array (UCA) [1], cross-shaped array [2], [3], [4], and the
L-shaped array [5], [6], [7], [8]. The L-shaped array is widely
investigated in the literature and some authors proposed to
replace the two uniform linear subarrays (legs) with sparse
arrays [6], [7], [8], [9], [10], [11].

There are several metrics to compare 2D sparse ar-
rays, including but not limited to: number of virtual lag

locations, required aperture size, resolution, and mutual cou-
pling. Researchers focused on proposing configurations that
have closed-form expressions for antenna locations and the
achieved degrees of freedom (DOF), which is defined as a
measure of the maximum number of sources that can be con-
currently estimated. The DOF in 1D arrays is upper bounded
by the number of virtual lags in the second order difference
coarray (SODC) [12].

In the literature, various 2D-DOA estimation algorithms
were formulated based on the SODC [6], [13], [14], [15],
[16], sum coarray, or a combination of both [2], [17]. Few
references, however, have exploited higher-order difference
coarrays (4th-order) [4], [18], [19], [20], [21]. Some DOA
estimation algorithms require a hole-free URA in the coarray
domain. Billboard arrays [22], 2D nested arrays [23],
open-box arrays [24], partially open-box arrays [25], and
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FIGURE 1. Sensor locations for (a) billboard (b) T-shaped arrays,
(c) coprime array, and (d) nested array.

hourglass arrays [25] satisfy this property. If a coarray has
missing virtual lag locations (holes), the DOF cannot be fully
exploited. A comprehensive study for 2D antenna arrays
can be found in [26]. The important L-shaped arrays can be
modified by adding a third leg at 45◦ to form the billboard
array as in Fig. 1(a) or by extending one leg to form the
T-shaped array as in Fig. 1(b).

Joint polarization and 2D-DOA estimation algorithms were
proposed using polarization sensitive array which consists of a
co-centered orthogonal loop and dipole (COLD) sensors [27],
[28], [29], [30]. The authors in [27], [28] proposed a paral-
lel coprime array which can increase the DOF and improve
the estimation accuracy. Four parallel sparse linear subar-
rays [30] and sparse nonuniform rectangular array (SNRA)
were considered in [31]. The authors studied nested, coprime,
and minimum redundancy sparse subarrays [30]. Other re-
searchers used electromagnetic vector sensor (EMVS) [31],
[32], [33]. A spatially spread acoustic vector sensor consisting
of a tri-axial velocity vector sensor and an isotropic pressure
sensor was examined in [34].

In this article, the L-shaped array is modified by adding a
third leg either at 45◦ between the other two legs or along
one of the legs, where three similar 1D sparse arrays are
used. The candidate sparse arrays are the conventional co-
prime [35], rotated conventional nested [36], and super nested
arrays [37]. The rotated T-shaped structure can be considered
as a modified version of [21]. It has been shown that large
DOF can be realized by exploiting the fourth-order difference
coarray (FODC). In addition to extending the CRB for fourth
order coarray, closed-form expressions for sensor locations
and number of consecutive lags, or uniform-DOF (uDOF),
in the FODC are derived for all arrays. The maximum DOF
is achieved when the coprime pairs N1 and N2 are selected
as close as possible. Additionally, the maximum DOF of
nested and super nested based structures is achieved follow-
ing the approach in [36]. All proposed configurations have
better uDOF compared with hourglass array (HA) [25] and
2D nested planar array (2DNA) [23]. The proposed T-shaped
nested array has comparable uDOF with the L-shaped nested
array (ALNA) [20] which requires very large aperture size.

The weight functions are also derived and investigated. The
most significant weights have constant values irrespective of
number of sensors, except for nested based structure. The HA
has a hole-free difference coarray. However, the weight values
are larger compared with the proposed configurations. The
proposed arrays have promising performance for 2D-DOA
estimation in the presence of mutual coupling compared with
state of art.

The rest of the article is organized as follows: Section II
introduces the structure of the proposed arrays. Section III
presents the model for 2D-DOA estimation. Section IV ex-
plains the performance metrics used to evaluate the proposed
arrays. Section V presents the derived Cramér-Rao bound
(CRB). Section VI presents the results and discussions about
the weight function, number of consecutive lags, and estima-
tion accuracy. Finally, Section VII concludes the article.

II. PROPOSED ARRAY AND 2D-DOA MODELS
The developed arrays are derived from the prototype billboard
and the T-shaped (rotated-T) arrays shown in Fig. 1(a) and (b),
respectively. All ULAs are replaced with 1D sparse arrays at a
time, including coprime array [35], nested array [36], and the
super nested array [37].

A. BILLBOARD ARRAYS
The first sparse billboard design is achieved by replacing
each subarray in Fig. 1(a) by the conventional coprime array
[35]. Coprime arrays consist of two uniform linear subarrays
having N1and N2 elements, where N1 and N2 are two coprime
integers, and N2 > N1. The elements of the subarray that has
N1 elements are spaced by N2d , while the elements of the
subarray that has N2 elements are spaced by N1d , with d being
the minimum separation between any two elements which is
set as half the wavelength λ

2 . The sensor locations are given as
the union of the two sets,

Pc = { N1n2d |0 ≤ n2 ≤ N2 − 1} ∪ {N2n1d|0
≤ n1 ≤ N1 − 1} (1)

Coprime array has a total of Nc = N1 + N2 − 1 sensors
(one sensor is shared between the subarrays). Fig. 1(c) shows
an example of coprime array with N1 = 4 and N2 = 5. The set
of the elements of the billboard array is

SB = Gx ∪ Gy ∪ Gxy (2)

where

Gx = {(nd, 0) |nd ∈ g} (3)

Gy = {(0, nd ) |nd ∈ g} (4)

Gxy = {(nd, nd ) |nd ∈ g} (5)

and the set g = Pc describes the linear array used to construct
the 2D array. The total number of elements is N = 3Nc − 2 =
3(N1 + N2 − 1) − 2.

To generate the billboard nested array, the coprime ar-
ray is replaced by the nested array introduced in [36]. The

VOLUME 4, 2023 323



ALAWSH ET AL.: SPARSE BILLBOARD AND T-SHAPED ARRAYS FOR 2D DOA ESTIMATION

conventional nested array consists of two collinearly placed
subarrays with different interelement spacing. Assume that
subarray1 has N1 elements with interelement spacing of d .
Subarray2 has N2 elements, but with interelement spacing of
(N1 + 1)d . Sensor locations are given as follows

Pn = {n1d |0 ≤ n1 ≤ N1 − 1} ∪ {(n2 (N1 + 1) − 1) d |1
≤ n2 ≤ N2 } (6)

Nested array has a total of Nn = N1 + N2 sensors. Fig. 1(d)
shows an example of nested array with N1 = 4 and N2 =
4. The 2D billboard nested array is constructed in the
same way using (2)–(5) by setting g = Prn, where Prn =
(N2(N1 + 1) − 1)d − Pn. Note that the nested array is rotated
by swapping the positions of the dense subarray and the
sparse subarray to improve the DOF and reduce the mutual
coupling. The total number of elements is N = 3Nn − 2 =
3(N1 + N2) − 2.

The billboard super nested array is constructed using the
super nested array introduced in [37]. Super nested array is a
modified version of the nested array that significantly reduces
mutual coupling by relocating some of the elements of the
nested array. The super nested array is used to define the
billboard super nested array as in (2)–(5) with g = Psn. Super
nested array with Ns elements can be constructed with N1 ≥ 4
and N2 ≥ 3 [37]. Note that the definition of the set Psn is
eliminated for brevity, and interested readers are referred to
[37]. Similar to the nested case, the total number of elements is
N = 3Ns − 2 = 3(N1 + N2) − 2, where Ns is the total number
of sensors in the super nested array.

B. T-SHAPED ARRAYS
The T-shaped arrays are constructed using three sparse arrays
similar to the billboard case, but the third subarray is located
along the negative side of the x-axis, see Fig. 1(b). The set of
elements in the T-shaped 2D array is given as

ST = Gx ∪ Gy ∪ G−x (7)

where Gx and Gy are as defined in (3) and (4), respectively,
and:

G−x = {(−nd, 0) |nd ∈ g} (8)

To construct the T-shaped coprime, nested, and super nested
arrays, both (7) and (8) are used with the set g being equal to
Pc, Prn, and Psn, respectively. The total number of elements is
the same as their counterparts using billboard structures.1

III. 2D-DOA ESTIMATION
Assume that K uncorrelated signal sources located in the
far-field of the sensor array generate narrowband signals that
impinge on a 2D array. The kth source has an azimuth angle
θk ∈ [0, π ] and an elevation angle φk ∈ [0, 2π ]. The received

1A MATLAB code available in https://github.com/alawsh21/Sparse-
Billboard-and-T-Shaped-Arrays-for-Two-Dimensional-Direction-of-
Arrival-Estimation.git can be used to construct the proposed arrays for any
arbitrary N .

signal at the output of the array over T samples or snapshots
can be expressed as

y (t ) = A
(
θ̄, φ̄

)
s (t ) + n (t ) , t = 1, 2, . . . , T (9)

where y(t ) = [y1(t ), y2(t ), . . . , yN (t )]T , n(t ) = [n1(t ),
n2(t ), . . . , nN (t )]T is white Gaussian noise with zero
mean and uncorrelated with the transmitted signal,
s(t ) = [s1(t ), s2(t ), . . . , sK (t )]T , [.]T is the transpose
operator, and A(θ̄, φ̄) = [a(θ̄1, φ̄1), a(θ̄2, φ̄2), . . . , a(θ̄K , φ̄K )]
is the manifold matrix of size N × K , with ak (θ̄k, φ̄k ) being
a steering vector that has an element (nx, ny ) ∈ SB or ST

given by e j2π (θ̄knx+φ̄kny ), where θ̄k = d
λ

sin θk cos φk and
φ̄i = d

λ
sin θk sin φk are the normalized DOAs. The 2D-DOA

estimation is based on the fourth-order cumulant. The
fourth-order cumulant matrix is given as [38]:

C4 = E
{(

Y ⊗ Y∗) (
Y ⊗ Y∗)H

}
− E

{(
Y ⊗ Y∗)} E

{(
Y ⊗ Y∗)H

}
− E

{
YYH} ⊗ E

{(
YYH )∗}

= (
A 	 A∗) Cs

(
A 	 A∗)H

= �
ACs

�
AH (10)

where [.]∗ and [.]H represent the complex conjugate

and Hermitian operators, respectively,
�
A = A 	 A∗ with

⊗ and 	 being the Kronecker product and Khatri-

Rao product,
�
a(θ̄k, φ̄k ) = a(θ̄k, φ̄k ) ⊗ a∗(θ̄k, φ̄k ),

�

A and Y =
[y1(t1), y2(t2), . . . , yN (tT )] are matrices of size N2 × K and
N × T , respectively, and Cs = diag[g1, g2, . . . , gK ] is a di-
agonal matrix with gk = 𝒞(sk (t ), s∗

k (t ), sk (t ), s∗
k (t )) being the

kurtosis of the kth source signal and 𝒞(.) denotes the cumu-
lants operator. Vectorizing C4 yields [18]:

c = vec (C4) = Āρ (11)

where vec(.) is the vectorization operator which turns a matrix

into a column vector, A = �
A 	 �

A
∗

is a matrix of size N4 × K
and ρ = [g1, . . . , gK ]T . The new extended steering matrix, Ā,
is a function of the FODC, which has a total of lu unique lags
(the number of unique entries in each column of Ā). Though,
the number of consecutive lags generated by the FODC is
lc < lu. The measurements associated with consecutive lags
are extracted and sorted to form a new vector as:

r = Bρ (12)

where B is a matrix of size lc × K , with bi(θ̄i, φ̄i ) being a
steering vector that has an element (n

′
x, n

′
y) ∈ U4 given by

e j2π (θ̄in
′
x+φ̄in

′
y ), U4 is the largest URA segment in the FODC

[20], [39]. By considering the consecutive segment of virtual
lags (largest symmetric URA around the origin [20], [39]),
2D-DOA estimation can be performed finally based on r using
2D unitary ESPRIT algorithm [40].
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TABLE 1. Number of Virtual Lags and Aperture

In the presence of mutual coupling, sensors are influ-
enced by their neighboring elements, and (9) becomes Y =
CA(θ̄, φ̄)S + N, where C is the mutual coupling matrix mod-
eled as in [25], [37]. This matrix can be approximated by a
B-banded symmetric Toeplitz matrix depending on the sepa-
ration between the elements as [41]:

〈C〉n1,n2

{
c‖n1 − n2‖2, ‖n1 − n2‖2

≤ B
0, otherwise

(13)

where n1, n2 ∈ S, ‖.‖2 is the l2-norm of a vector, and
c0, c1, . . . , cB are the mutual coupling coefficients with
1 = c0 > |c1| > |c√

2| . . . > |cB| > |cB+1| = 0, where | cl
ck

| =
l
k for l, k > 0 [2], [25], [37].

IV. PERFORMANCE MEASURES
This section presents some performance measures used to
evaluate and compare the proposed arrays. This includes: the
number of unique/consecutive lags in the FODC, the aperture
size, and the weight function in general.

A. DEGREES OF FREEDOM AND DIFFERENCE COARRAY
When using 4th-order statistics for estimation, the number of
unique elements in the FODC is directly related to the DOF,
which is the maximum number of detectable uncorrelated
sources. This is significant for algorithms that exploit all the
elements in the difference coarray even if it is not hole-free.
If the used algorithm requires continuous segment, then the
number of consecutive lags is more significant.

Definition: Difference Coarray: Let a 2D array be specified
by a set S, the SODC, D, is the difference between sensor
positions as:

D = {n1 − n2 | n1, n2 ∈ S} (14)

The FODC, D4, can be calculated by taking the differences
again but between the virtual positions generated by the set D
as:

D4 = {p1 − p2 | p1, p2 ∈ D} (15)

In other words, p1 = n1 − n2 and p2 = n3 − n4 for any
arbitrary sensor locations n1, n2, n3, n4 ∈ S. The 4th-order
difference coarray can be rewritten as: D4 = p1 − p2 =
(n1 − n2) − (n3 − n4) = (n1 + n4) − (n2 + n3), or D4 =
(n4 − n2) + (n1 − n3). Therefore, the FODC is also equiva-
lent to the difference coarray of the second order sum coarray
or the sum coarray of the SODC. The number of unique
lags, lu, of the FODC is equal to the cardinality of D4, that
is lu = |D4|. On the other hand, the number of consecutive
lags, lc, is equal to the cardinality of U4, that is lc = |U4|,

where U4 is the largest URA segment in the FODC [20], [39].
The variables lu and lc are also known as the DOF and the
uDOF [39]. An example is shown in Fig. 2 for the FODC
for all proposed arrays, where N1 = 4 and N2 = 5 for coprime
case, and N1 = N2 = 4 for both nested and super nested cases.
Therefore, the total number of elements is N = 22. The red
dots in Fig. 2 represent the virtual lag locations, while the blue
triangles represent the physical locations of the elements.2 Ta-
ble 1 summarizes the number of virtual lags and the required
apertures. The achievable uDOF of these configurations are
examined in Section VI-B in terms of 2D-DOA estimation.

The objective is to find closed-form expressions for the
maximum achievable uDOF. Let’s consider first a 1D co-
prime. Its SODC has 2(N1 + N2) − 1 consecutive lags in
the range of −(N1 + N2 − 1) : (N1 + N2 − 1) and > N1N2

unique lags. The holes affect the FODC, though the structure
guarantees that the FODC realizes at least −2(N1 + N2 − 1) :
2(N1 + N2 − 1) = 4(N1 + N2) − 3 consecutive lags. In case
of nested and super nested arrays, the SODC and the FODC
have −(N1 + 1)N2 + 1 : (N1 + 1)N2 − 1 = 2N2(N1 + 1) − 1
and −2(N1 + 1)N2 + 2 : 2(N1 + 1)N2 − 2 = 4N2(N1 + 1) −
3 unique lags (all are consecutive), respectively.

Focusing only on one array along any axis, relating the
example above to this discussion and considering the FODC,
coprime array has 33 consecutive lags, while nested and super
nested arrays have 77 consecutive lags. Now if there is another
identical array along the negative side of the same axis, as in
the T-shaped arrays, this number will be doubled. Finally, this
number will be squared, 𝒪(.2), if this happens across all axes.
Actually, larger URA is expected to be generated due to the
contribution between the utilized three sparse arrays to form
the billboard or the T-shaped configurations.

Extensive analysis was conducted to derive closed-form
expressions for the uDOF, lc, of the proposed arrays. Under-
standing the underlying structures was incorporated to finalize
the derivation. The resultant FODCs always have symmetric
URA around the origin. Thus, the idea starts by finding the
(x, y) coordinate of any virtual lag on one of the four corners
within the resultant URA (generated by the FODC). Then an
expression, X , is drafted for the coordinates for different cases
of N1 and N2. This expression is confirmed by intensive sim-
ulation. After that, the expression is doubled and incremented
by one to account for the zero axis, that is 2X + 1. Finally,

2A MATLAB code available in https://github.com/alawsh21/Sparse-
Billboard-and-T-Shaped-Arrays-for-Two-Dimensional-Direction-of-
Arrival-Estimation.git is provided to construct the proposed arrays and
generate the FODC for any arbitrary N .
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FIGURE 2. The FODC for (a), (c), (e) billboard-based arrays and (b), (d), (f) T-shaped-based arrays.

the result is squared to account for all consecutive lags as:
(2X + 1)2.

Table 2 illustrates all closed-form expressions used to find
the maximum achievable lc or uDOF. Apart from super nested
array, the formulas are applicable for arbitrary N1 and N2,
provided that the greatest common divisor (GCD) is 1, i.e.,
GCD(N1, N2) = 1, and N2 > N1 for coprime case. The ex-
pressions related to super nested arrays are valid for the
optimal selection of N1 and N2. 3

3A MATLAB code available in https://github.com/alawsh21/Sparse-
Billboard-and-T-Shaped-Arrays-for-Two-Dimensional-Direction-of-

When N1 and N2 are selected as close as possible in case
of coprime, the maximum uDOF is achieved, similar to the
1D case [35]. Table 2 illustrates that the billboard coprime ar-
ray has 𝒪(4N4

2 ) uDOF, when N1 = N2 − 1, that is 2N1 > N2.
On the other hand, if we substitute N1 = N2 − 1 for N1 > 2
(optimal selection) in the corresponding formula of the T-
shaped coprime array from Table 2, we end up with lc =
(2(N2

2 + N2) − 3)
2
. Therefore, the array has 𝒪(4(N2

2 + N2)
2
)

Arrival-Estimation.git is developed to compare the derived and the simulated
expressions for any arbitrary N .
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TABLE 2. Derived Formulas for lc Based on Billboard and T-Shaped

uDOF, which is larger than that of the billboard coprime array
by 4N2

2 (2N2 + 1).
The proposed nested and super nested arrays realize the

maximum performance when N1 and N2 are selected as in the
1D case [36]. That is N1 = N2 = Nn

2 if Nn is even, whereas
N1 = Nn−1

2 and N2 = Nn+1
2 if Nn is odd [36]. Remember that

N1 and N2 are either equal or N2 = N1 + 1. This is also
applicable for super nested array-based structures. Nested
structures have one expression for any arbitrary N1 and N2,
see Table 2. The billboard and T-shaped nested arrays re-
alize 𝒪( 1

4 N2
n (Nn + 4)2) = 𝒪( 4

362 (N + 2)2(N + 14)2) uDOF

FIGURE 3. The uDOF or number of consecutive lags, lc , versus N.

FIGURE 4. The number of unique lags, lu, versus N.

and 𝒪(N2
n (Nn + 2)2) = 𝒪( 1

92 (N + 2)2(N + 8)2) uDOF, re-
spectively.

There are different scenarios for super nested arrays,
as indicated in Table 2. When N1 is even and N1

2 , N2

are both odd (N and Ns are both odd), for billboard
case, lc = (2(N1N2 + 2N1) + 1)2 and the array attains 𝒪

( 1
4 (Ns − 1)2(Ns + 5)2) = 𝒪( 1

182 (N + 2)2(N + 14)2) uDOF.
The T-shaped super nested array has lc =
(2(N1N2 + 2N1 + N2) + 1)2, when N1, N2 : odd or N1 :
odd, N2,

N2
2 : even or N1,

N2
2 : odd, N2 : even. The first con-

dition implies even Ns and N , so lc = ( 1
2 (N2

s + 6Ns) + 1)
2
.

While Ns and N are odd based on the other conditions,
consequently lc = ( 1

2 (N2
s + 6Ns) − 5)

2
. These were achieved

by replacing N1 and N2 by the optimal selection [36]. Super
nested-based structures attain 𝒪( 1

182 (N + 2)2(N + 20)2)
uDOF.

Considering the FODC, a comparison between the different
billboard and T-shaped variants in terms of uDOF (lc) and lu,
is illustrated in Figs. 3 and 4, respectively. The optimal con-
ventional arrays are used for all configurations. Specifically,
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N1 and N2 are selected as close as possible for coprime case
[35] and N1 = N2 = Nn

2 or N1 = Nn−1
2 and N2 = Nn+1

2 if Nn

is even or odd, respectively, for nested and super nested cases
[36]. Super nested array can be constructed for N1 ≥ 4 and
N2 ≥ 3 [37]. This is why the traces in Figs. 3 and 4 start from
N = 3Ns − 2 = 3(N1 + N2) − 2 = 22 elements, where Ns is
the number of sensors of the underlaying super nested array. In
case of coprime (N1 = 2, N2 = 3) and nested (N1 = N2 = 2)
based structures, it starts at N = 10 elements.

Fig. 3 shows the uDOF or number of consecutive lags
versus the total number of elements, N , for all derived expres-
sions in Table 2. All expressions were verified by simulation.
The T-shaped nested array achieves the largest number of
consecutive lags. The billboard coprime and nested structures
achieve comparable performance. The T-shaped coprime and
super nested structures achieve comparable performance. The
billboard super nested array realizes the smallest number of
consecutive lags among all configurations. Redistributing the
elements of the dense array to reduce mutual coupling is the
main reason. The uDOF, lc, of the proposed configurations
are compared with the HA [25], 2DNA [23], and ALNA [20]
based on the FODC. All proposed configurations have better
performance compared with HA and 2DNA, as demonstrated
in Fig. 3. The ALNA and the T-shaped nested array have
comparable uDOF.

The number of simulated unique lags, lu, versus the total
number of elements, N , are shown in Fig. 4. The T-shaped
structures enjoy larger lu compared with billboard, except for
super nested array. The T-shaped nested array shows a clear
superiority compared with others. This structure also enjoys
few holes. Note how close are the two traces of nested case in
Figs. 3 and 4. Though this is at the expense of mutual coupling
and aperture size. The billboard coprime, super nested, and
T-shaped coprime arrays achieve almost comparable perfor-
mance. The billboard super nested array realizes the smallest
number of consecutive lags among all configurations.

B. APERTURE SIZE
Due to the use of sparse arrays instead of ULAs in each
leg, the proposed structures require larger aperture size than
the already existing billboard and T-shaped arrays. This gives
higher estimation accuracy but increases at the physical size
and space requirements. Expressions for the aperture size are
summarized in Table 3. Note that the aperture size of the T-
shaped array is twice its counterpart using billboard structure.
Nested and super nested structures have equal aperture.

The achieved uDOF is directly proportional to the aperture
of the array. Large aperture size is considered a disadvantage
when small form-factor is required. Fig. 5 shows the required
aperture size for the considered 2D array configurations. Due
to the introduced shift between the two nested subarrays, the
ALNA, which has the largest uDOF, requires the largest aper-
ture. The proposed T-shaped-based structures require larger
aperture than billboard-based structures. HA and 2DNA have
comparable apertures.

TABLE 3. Aperture Size

FIGURE 5. The required aperture size versus the total number of
elements.

C. 2D WEIGHT FUNCTION
The weight function is a popular measure used to quantify
the performance of antenna arrays for DOA estimation in the
presence of mutual coupling. It is known that the closer the
sensors are to each other, the more significant the effect of
mutual coupling is. The definition of the weight function of
the difference coarray for 2D arrays is given as

Definition: Weight Function of the Difference Coarray: Let
a 2D array be specified by the set S, and let its SODC be D.
The weight function of the difference coarray describes how
many pairs of elements in S generate each element in D. In
other words, how many sensor pairs in S are separated by
mx and my in x and y directions, respectively, [25]:

w (m) = |{(n1, n2) ∈ S
2|n1 − n2 = m}| (16)

where |.| denotes the cardinality operation and m = (mx, my)
is a vector of two components. The most significant weights
that affect mutual coupling are the smallest ones. Particu-
larly, w(0, 1), w(1, 0), w(1, 1), and w(1, −1) are the most
important [25]. Further discussion of the obtained values is
available in the next section. In addition to increasing the
distance between consecutive elements to reduce mutual cou-
pling, the mutual impedance, which depends on the type of
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antennas, must be properly calibrated and computed [41],
[42], [43], [44], [45].

V. THE CRAMÉR-RAO BOUND FOR FOURTH ORDER
COARRAY
Few researchers derived the CRB for second order coarray
model [46], [47], [48]. In this section, we derive the Cramér-
Rao bound (CRB) for 2D-DOA for the constructed 2D arrays
based on the fourth order coarray. The parameter vector in (9)
and (10) is defined as:

η = [
θ̄1, . . . , θ̄K , φ̄1, . . . , φ̄K

]T
(17)

The (m, n)-th element of the Fisher information matrix,
FIM, is given by:

FIMmn = T tr

[
∂C4

∂ηm
C−1

4
∂C4

∂ηn
C−1

4

]
(18)

where tr[.] denotes the trace of a matrix. Because tr(AB) =
vec(AT )

T
vec(B) and vec(AXB) = (BT ⊗ A)vec(X), the pre-

vious formula can be expressed as:

FIMmn = T

[
∂c
∂ηm

]H (
CT

4 ⊗ C4
)−1 ∂c

∂ηn
(19)

with ∂c
∂η

being the derivative of c with respect to η given as:

∂c
∂η

=
[

∂c
∂θ̄1

. . .
∂c
∂θ̄K

∂c
∂φ̄1

. . .
∂c

∂φ̄K

]
(20)

As a matrix, the FIM can be further expressed as:

FIM = T

[
∂c
∂η

]H (
CT

4 ⊗ C4
)−1 ∂c

∂η
(21)

The derivatives in (20) can be calculated based on (11) as:

∂c
∂η

= [
Ād θ̄ Cs Ādφ̄Cs

]
(22)

where Ā = �
A 	 �

A
∗
,

�
A = A 	 A∗, Ād θ̄ = �

Ad θ̄ 	 �
A

∗
+ �

A 	
�
A

∗
d θ̄ , Ādφ̄ = �

Adφ̄ 	 �
A

∗
+ �

A 	 �
A

∗
dφ̄ ,

�
Ad θ̄ = Ad θ̄ 	 A∗ + A 	

A∗
d θ̄

,
�
Adφ̄ = Adφ̄ 	 A∗ + A 	 A∗

dφ̄
, and [46], [47]:

Ad θ̄ =
[

∂a
(
θ̄1, φ̄1

)
∂θ̄1

,
∂a

(
θ̄2, φ̄2

)
∂θ̄2

. . .
∂a

(
θ̄1, φ̄1

)
∂θ̄K

]
(23)

Adφ̄ =
[

∂a
(
θ̄1, φ̄1

)
∂φ̄1

,
∂a

(
θ̄2, φ̄2

)
∂φ̄2

. . .
∂a

(
θ̄1, φ̄1

)
∂φ̄K

]
(24)

Here C4 and (CT
4 ⊗ C4)

−1
are positive definite, and

its square root (CT
4 ⊗ C4)

−1/2
exists. Let’s define M =

[Mθ̄ , Mφ̄], with [46], [47]:

Mθ̄ = (
CT

4 ⊗ C4
)− 1

2 Ad θ̄ Cs

Mφ̄ = (
CT

4 ⊗ C4
)− 1

2 Adφ̄Cs (25)

Therefore, the FIM becomes FIM = T MH M. The CRB
matrix for 2D-DOA is calculated by block-wise inversion as:

CRBηi = [FIM]ii = 1

T

(
MH M

)−1
(26)

VI. RESULTS AND DISCUSSION
The performance results related to the weight function, 2D-
DOA estimation, and CRB are discussed in this section.

A. THE WEIGHT FUNCTION
From mutual coupling perspective, the most significant
weights in the 2D weight function are w(0, 1), w(1, 0),
w(1, 1), and w(1, −1). Apart from nested-based structure,
the proposed array structures offer significantly low values,
see Table 4. Details on coprime based arrays and nested based
arrays are presented, and then extended to super nested con-
figurations.

1) BILLBOARD COPRIME ARRAY
For billboard coprime array, the weight w(1, 0) describes the
number of elements spaced by 1 in x and 0 in y. The minimum
spacing in the cross differences between any two legs is N1,
which is greater than 1. Therefore, we are only left with
the self-differences of the leg that lays on the x-axis. It was
proved in [49] that a 1D coprime array has only two pairs of
sensors separated by d , i.e., w(1, 0) = 2. The same argument
holds true for the case of w(0, 1). However, this time, the
only contribution to this weight is from the self-differences
generated by the y-axis leg. Therefore, w(0, 1) = 2.

To have a separation of 1 in x and y, w(1, 1), the cross
differences are all eliminated because the minimum separation
between any two legs is N1. Moreover, the self-differences of
the legs laying on the x and y axes are eliminated as well,
because they have either the same x or y coordinates. The only
contribution left is from the self-differences of the third leg
that lays on the x = y straight line. The elements in this leg
have equal x and y coordinates. Therefore, if we consider each
coordinate separately, we can use the fact for the 1D coprime
array to show that this leg has 2 pairs of elements separated
by d in x and y. Hence, w(1, 1) = 2 and the overall spacing
between the two elements is

√
2d .

Regarding w(1, −1), consider two elements and assume
that the first element has less x coordinate value than the
second element. The y coordinate of the first element must be
greater than that of the second element to be counted in this
weight. However, this is impossible; because as you increase
x, y either increases, or stays unchanged, thus, w(1, −1) = 0.

2) T-SHAPED COPRIME ARRAY
To explain the result, consider the weight w(1, 0), the el-
ements that generate this weight must have the same y
coordinate. This is not possible except for elements on the
x-axis. Therefore, the part of the array that lays on the y-axis
does not contribute to this weight. Furthermore, we can elimi-
nate the cross differences generated from the two legs that lay
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TABLE 4. 2D Weight Function Values

on the x-axis; because the minimum distance between the two
legs that lay on the positive and negative x-axis, is N1 which is
greater than 1. What is left now to contribute to this weight are
the self-differences generated by each leg in the x-axis. It was
proved in [49] that a 1D coprime array has only two pairs of
sensors separated by d . Therefore, each leg on the x-axis will
have 2 elements separated by (1, 0) and the whole 2D array
will have w(1, 0) = 4.

The same argument can be used for w(0, 1). This time,
the elements present on the x-axis do not contribute to the
weight. Therefore, the only contribution is due to the leg
that lays on the y-axis which results in a value of 2 for
this weight, w(0, 1) = 2. For w(1, 1), all elements in the
T-shaped structure are either placed in the x or y axes. More-
over, the minimum distance between any two legs is N1

which is greater than 1. Therefore, w(1, 1) = 0. Regarding
w(1, −1), a single leg cannot generate this weight because
all legs lay on either x-axis or y-axis. Furthermore, the min-
imum distance between any two legs is N1 > 1. Therefore,
w(1, −1) = 0.

3) BILLBOARD NESTED ARRAY
For the billboard nested array, the important values for the
weight function are summarized in Table 4. Only the self-
differences generated from the elements within the dense
subarray along the x-axis (subarray 1) contribute to w(1, 0),
because the elements should have equal y coordinates. So
w(1, 0) = N1. Similarly, w(0, 1) = N1. The self-differences
generated form subarray 3 contribute to w(1, 1) = N1. All
self-differences generated from the three subarrays don’t con-
tribute to w(1, −1). This is because when the elements are
separated by 1 in the x coordinates, they will be separated
by 0 or 1 when subarray 1 or subarray 3 are considered,
respectively. In addition, separation by 1 in y coordinates
implies 0 separation in x coordinates in case of subarray 2, so
w(1, −1) = 0. The cross-differences don’t contribute to any
of these weights because the minimum spacing between the
closest two elements in the three subarrays is (N1 + 1) > 1.

4) T-SHAPED NESTED ARRAY
For the T-shaped nested array, only the self-differences gen-
erated from the elements within the dense subarrays along
the x-axis (subarray 1 & 3) contribute to w(1, 0), because
the elements should have equal y coordinates. As a result,
w(1, 0) = 2N1, and similarly w(0, 1) = N1. The other two
weights w(1, 1) = w(1, −1) = 0 can be proved based on
w(1, 0) or w(0, 1). If two elements are separated by 1 in
x coordinates, then their separation in y coordinates become
0, not 1 or −1, and vice-versa. The cross-differences don’t
contribute to any of them because the minimum spacing
between the closest two elements in the three subarrays is
(N1 + 1) > 1.

The discussion can be extended to the arrays based on the
1D super nested array. The 1D super nested array has different
weights for odd and even values of N1 [37], that is for odd
N1, w(1) = 1, and for even N1, w(1) = 2. The obtained values
for the coprime, nested, and super nested based arrays are
presented in Table 4. Note that the nested array-based struc-
tures do not possess small or constant values for the weight
functions due to the presence of the dense ULA segment in
each leg.

The self-differences of each leg have a direct impact on
w(0, 1), w(1, 0), w(1, 1), and w(1, −1), if n2 − n1 > 1,
where n1 and n2 are the locations of the first and second
elements in each 1D subarray, respectively. In other words,
the separation of the first two elements in each leg is greater
than d . Using this, we can write the discussed weights as:
� Billboard

w (1, 0)=n, w (0,1)=n, w (1, 1)=n, w (1, −1)=0

� T-shaped

w (1, 0)=2n, w (0,1)=n, w (1, 1)=0, w (1, −1)=0

where n is the number of sensor pairs with a unit separation in
the 1D leg.

The values are compared to those achieved by the hourglass
array [25], 2DNA [23], and ALNA [20]. Apart from nested
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FIGURE 6. The true source directions (in circles) and the estimated
directions (in dots) for billboard (upper) and T-shaped (lower) structures
with noise free, no mutual coupling, and T = 500 samples.

based structures, the proposed arrays always have smaller
weights except for w(1, 0). Due to the dense subarrays, the
2DNA and ALNA have large weight functions, which increase
linearly with the number of elements in the dense subarrays.
The HA has larger weights compared with the proposed con-
figurations, see Table 4.

B. PERFORMANCE IN DOA ESTIMATION
This subsection presents 2D-DOA estimation based on the
FODC with 2D unitary ESPRIT algorithm [40]. To carry out
the estimation, only the central URA, U4, contiguous part
of D4 is utilized by ESPRIT. The number of snapshots is
T = 500 and the SNR = 0dB. A total of K = 4 uncorrelated
sources are assumed and their normalized direction-cosines
are equally-spaced as in [25] but without any rotation. The
configurations presented in Section IV-A are assumed where
the total number of elements of each array is N = 22, with
N1 = 4 and N2 = 5 for coprime, and N1 = N2 = 4 for nested
and super nested based structures. The mutual coupling pa-
rameters are c1 = 0.3, B = 5, and cl = c1

l e jπ (l−1)/4 [25]. The
root-mean-squared error (RMSE) is used to assess the perfor-
mance, which combines both azimuth and elevation as:

RMSE=
√

1

IK

∑I

i=1

∑K

k=1

(
θ̄k −̂̄θ k (i)

)2+
(
φ̄k −̂̄φk (i)

)2

(27)
where ̂̄θ k (i) and ̂̄φk ( j) are the estimate of θ̄k and φ̄k , respec-
tively, at the ith Monte Carlo trial, i = 1, 2, . . . , I , and K
is the number of sources to be localized. A total of I = 100
Monte-Carlo trials are used. All these parameters are fixed
unless otherwise stated.

To examine the achievable DOF, a total of K = 64 sources
are assumed in noise free environment and in the absence of
mutual coupling. Fig. 6 shows the actual and the estimated
cosine-directions marked in circles and dots, respectively. Due
to the large uDOF (see Table 1), all arrays resolve all sources
correctly. Note that the number of sources is larger than the
number of sensors, K > N .

Fig. 7 shows the RMSE of the estimated DOAs for the
proposed arrays ignoring the effect of mutual coupling when
K = 4 sources. The RMSE is calculated when varying the
SNR and keeping the number of snapshots as 500 in (a) and
varying the number of snapshots and keeping the SNR as
0dB in (b). Hourglass array [25] is simulated using N = 22
elements, with Nx = Ny = 8. This array has a hole-free SODC
and has excellent performance in the presence of mutual cou-
pling. For fair comparison with hourglass array, the FODC is
considered which is also a hole-free coarray. The coarray has
lu = lc = 841 lags and the array requires 7d × 7d aperture
size. It is evident that the performance improves with the
increase of SNR and number of samples. Due to their large
uDOF, the T-shaped structures realize smaller RMSE at high
SNR when mutual coupling is ignored. All proposed arrays
attain smaller RMSE compared with hourglass array. Though,
the latter requires smaller aperture size.

The effect of mutual coupling is considered in Fig. 8.
Arrays based on the coprime and super nested arrays show
more robustness against mutual coupling as expected due to
their sparseness, except the billboard super nested array. The
latter has small uDOF as Table 1 depicts. As per the weights
presented in Table 4, the T-shaped super nested array has the
smallest RMSE. Although the T-shaped nested array has the
largest uDOF (see Table 1), mutual coupling deteriorates the
performance. Above 0dB and around 300 samples, mutual
coupling becomes dominant, and the performance does not
improve.

Since K is small, the impact of mutual coupling is not sig-
nificant. Increasing the number of sources makes the mutual
coupling effect clear and deteriorates the estimation capability
of some arrays, despite the large number of consecutive lags.
Although 2D sparse arrays may estimate K > N sources (see
Fig. 6), the effect of mutual coupling makes the estimation
process more challenging.

Fig. 9 shows how the RMSE depends on c1, the most
significant coefficient in mutual coupling model, when SNR
= 0 dB, T = 500 samples, and K = 4 sources. It can be con-
cluded that the RMSE is small when c1 is close to zero. The
performance degrades above certain thresholds of c1. These
thresholds are the approximate values of c1 at which the arrays
can perform well in the presence of mutual coupling. Fig. 9
illustrates that the thresholds for the billboard-based structure
are around 0.4 for coprime, 0.35 for nested, and 0.5 for super
nested. This indicates that billboard super nested array is more
robust to mutual coupling effects than others. Note that this
array has also smaller uDOF as illustrated in Table 1. While
the thresholds for the T-shaped based structure are around 0.65
for coprime, 0.8 for nested, and 0.75 super nested. Although
nested based-structures have large mutual coupling, the large
uDOF (see Table 1) contributes more to the performance.
Note that the T-shaped based structures realize larger uDOF
and have larger aperture size. Compared with state of art,
the threshold is around 0.55 for hourglass array. Generally
speaking and for the considered arrays, the T-shaped based
structure is more robust to mutual coupling effects, where
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FIGURE 7. RMSE without mutual coupling versus (a) SNR (snapshots = 500) and (b) snapshots (SNR = 0 dB) for K = 4 sources.

FIGURE 8. RMSE with mutual coupling versus (a) SNR (T = 500 samples) and (b) snapshots (SNR = 0 dB) for K = 4 sources.

TABLE 5. Arrays of Comparable UDOF With the Required Elements

w(1, 0) = 4, w(0, 1) = 2, w(1, 1) = 0, w(1,−1) = 0 for
coprime and super nested.

In the previous scenarios, the total number of elements is
the same for all configurations. Configurations with compara-
ble number of consecutive lags are further evaluated. Table 5
demonstrates that the closest billboard super nested array has
large uDOF. All arrays require comparable number of ele-
ments, except the T-shaped nested array. In the presence of
mutual coupling, Fig. 10 shows the RMSE versus SNR with
K = 25 sources. Due to the mutual coupling effect, nested

TABLE 6. Average Running Time (SEC)

structures have the worst RMSE, while the best performance
is realized by super nested arrays.

The running time for all configurations is calculated for the
scenarios in Fig. 7(a). The execution time over MATLAB was
calculated on a PC with an AMD Ryzen 7 5700G processor
with Radeon Graphics and 16 GB RAM at ∼ 3.8 GHz. The
averaged running time in seconds is presented in Table 6.
The T-shaped nested and billboard super nested arrays require
the largest and the smallest running time for estimation, re-
spectively. The running time is proportional to the uDOF as
presented in Table 1.
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FIGURE 9. RMSE versus mutual coupling at SNR = 0 dB, T = 500 samples,
and K = 4 sources.

FIGURE 10. RMSE vs SNR with mutual coupling with T = 500 samples and
K = 25 sources.

C. CRB FOR FOURTH ORDER COARRAY
The derived CRB of the proposed configurations requires very
high computation. The size of the term CT

4 ⊗ C4 in (25) is
N4 × N4. Consequently, this cannot be easily handled. To
present the CRB, the total number of elements is reduced from
N = 22 to N = 10. The billboard and T-shaped super nested
arrays cannot be constructed because the minimum values
are N1 ≥ 4 and N2 ≥ 3 [37]. Coprime and nested arrays with
N1 = 2, N2 = 3 and N1 = 2, N2 = 2 are assumed. Fig. 11
shows the RMSE with mutual coupling versus SNR when
T = 500 samples, K = 4 sources, and N = 10 elements. The
selected parameters lead to equal weight values for the con-
sidered configurations. Due to their large aperture and uDOF,
nested based structures have small RMSEs. Billboard coprime
array has poor performance due to the small uDOF. The CRBs
for the four considered arrays, included based on (26), are
comparable. Even when configurations have equal FODC,

FIGURE 11. RMSE vs SNR with mutual coupling with T = 500 samples,
K = 4 sources, and N = 10 elements.

their CRBs are not the same because the CRB depends on
the sensor locations [50].

VII. CONCLUSION
In this article, we examined six 2D arrays derived from the
billboard and T-shaped arrays. Each 2D array is constructed
using three identical 1D sparse arrays; namely, coprime,
nested, and super nested arrays. The proposed arrays achieve
large DOF when the FODC is exploited. They also enjoy
closed-form sensor locations, and have closed formulas for
the number of consecutive lags. The T-shaped structures re-
sult in a higher DOF compared with the billboard structure.
Among the six arrays, the four arrays based on coprime and
super nested arrays offer significantly reduced values for the
smallest weights in the 2D weight function of the difference
coarray. Simulation results confirmed the robustness of the
proposed arrays in the presence of mutual coupling.
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