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ABSTRACT The orthogonal matching pursuit (OMP) is one of the mainstream algorithms for sparse data re-
construction or approximation. It acts as a driving force for the development of several other greedy methods
for sparse data reconstruction, and it also plays a vital role in the development of compressed sensing theory
for sparse signal and image reconstruction. In this article, we propose the so-called dynamic orthogonal
matching pursuit (DOMP) and enhanced dynamic orthogonal matching pursuit (EDOMP) algorithms which
are more efficient than OMP for sparse data reconstruction from a numerical point of view. We carry out a
rigorous analysis to establish the reconstruction error bound for DOMP under the restricted isometry property
of the measurement matrix. The main result claims that the reconstruction error via DOMP can be controlled
and measured in terms of the number of iterations, sparsity level of data, and the noise level of measurements.
Moveover, the finite convergence of DOMP for a class of large-scale compressed sensing problems is also
shown.

INDEX TERMS Data reconstruction, dynamic orthogonal matching pursuit, error bound, orthogonal match-
ing pursuit, restricted isometry property, sparse optimization.

I. INTRODUCTION
Data reconstruction/recovery is a common request in such
areas as signal denoising, imaging reconstruction, statistical
model selection, pattern recognition, streaming data tracking
and wireless channel estimation (see, e.g., [1], [2], [3], [4],
[5]). For instance, recovering a sparse signal from limited
measurements (observations) is a central task in compressed-
sensing-based signal processing [1], [2], [6], [7], [8]. Thus
developing fast and robust algorithms for data reconstruction
is significantly important in these scenarios. Without loss of
generality, let x ∈ Rn denote the data (e.g., signal or image)
which admits some sparsity structure in the sense that x is
either k-sparse (i.e., x has at most k � n nonzero components)
or k-compressible (i.e., x can be approximated by a k-sparse
vector). In this paper, the unknown data x ∈ Rn to reconstruct
is called the target data. To reconstruct the data x ∈ Rn, one
may first collect a few measurements

yi := (ai )T x + νi, i = 1, . . . , m, (1)

where m � n, ai’s are given measurement vectors, and νi’s
denote the measurement errors. Let A be the m × n matrix

whose row vectors consist of (ai )T , i = 1, . . . , m, and let
y = (y1, . . . , ym )T and ν = (ν1, . . . , νm)T be the vectors of
measurements and errors, respectively. Then the system (1)
can be written as y := Ax + ν. Under the assumption that the
target data x is k-sparse or k-compressible, the reconstruction
of x ∈ Rn from the measurements y can be formulated as the
sparse optimization problem

min
z∈Rn

{‖y − Az‖2
2 : ‖z‖0 ≤ k}, (2)

where ‖z‖0 denotes the number of nonzero entries of z. Essen-
tially, the model (2) is a combinatorial optimization problem.
The vectors satisfying the constraint of (2) are k-sparse. In this
paper, we assume that k � n which is a typical assumption in
the scenario of compressed-sensing-based signal and image
reconstruction [1], [2], [8], [9]. The algorithms for (2) and
similar problems have experienced a significant development
over the past decades. The most widely used algorithms are
based on convex/nonconvex optimization (e.g., [10], [11],
[12], [13], [14], [15]), hard thresholding and greedy methods
(e.g., [1], [2], [8], [16]), and the recent technique based on
the concept of optimal k-thresholding [17], [18], [19]. The
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OMP Algorithm. Perform the following steps until a
certain stopping criterion is satisfied:
S1 Initialization: x(0) = 0 and S(0) = ∅.

S2 Given x(p) and S(p), let

S(p+1) = S(p) ∪ L1(AT (y − Ax(p) )),

x(p+1) = arg min
z∈Rn

{‖y − Az‖2 : supp(z) ⊆ S(p+1)}.

orthogonal matching pursuit (OMP) is one of the popular
greedy methods for the problem (2). Before recalling such a
method, let us first introduce some notations used in the paper.

A. NOTATION
Throughout the paper, all vectors are column vectors unless
otherwise specified. The transpose of the vector z and matrix
A are denoted by zT and AT , respectively. The support of the
vector z is denoted by supp(z) = {i : zi 	= 0}. We use Hk (·)
to denote the hard thresholding operator which retains the k
largest entries in magnitude and zeros out the other entries of
a vector, and we use Lq(·) to denote the index set of the q
largest entries in magnitude of a vector. When two entries of
z are equal in absolute value, Hk (z) and Lq(z) might not be
uniquely determined, in which case we select the entry with
the smallest index. The complement set of S ⊆ {1, 2, . . . , n}
with respect to {1, . . . , n} is denoted by S = {1, 2, . . . , n}\S,

and the cardinality of S is denoted by |S|. Given x ∈ Rn

and S ⊆ {1, 2, . . . , n}, the vector xS ∈ Rn denotes the vector
obtained from x by retaining the entries of x supported on
S and setting other entries of x to be zeros. ‖x‖2 =

√
xT x

and ‖x‖∞ = max1≤i≤n |xi| are the �2-norm and �∞-norm,
respectively.

B. TRADITIONAL OMP ALGORITHM
Referred to as stagewise regression, the OMP algorithm first
appeared in the area of statistics several decades ago. It
was introduced to signal processing community around 1993
(see, e.g., [20], [21], [22]) and later to approximation the-
ory (e.g., [23], [24], [25]). The OMP algorithm is stated as
follows, which iteratively selects a vector basis that is best
correlated to the residual at the current iterate.

The advantage of OMP lies in its simple structure allow-
ing a fast implementation at a low computational cost. OMP
has stimulated the development of several other compressed
sensing algorithms, including the subspace pursuit (SP) [26],
compressive sampling matching pursuit (CoSaMP) [27], mul-
tipath matching pursuit [28], stagewise orthogonal match-
ing pursuit (StOMP) [29], regularized orthogonal matching
pursuit (ROMP) [30], [31], general orthogonal matching
pursuit (gOMP) [32], weak orthogonal matching pursuit
(WOMP) [33], stagewise weak orthogonal matching pursuit
(SWOMP) [34] and constrained matching pursuit (CMP) [35].
In each iteration, the OMP algorithm only select one index

corresponding to the largest entry in magnitude of AT (y −
Az), the gradient of the error metric ‖y − Az‖2

2/2. Thus the
OMP algorithm does not utilize the gradient information ef-
ficiently when the gradient vector possesses several large
entries in magnitude whose absolute values are close to each
other. The gOMP algorithm is a direct generalization of OMP,
allowing N indices to be selected simultaneously in every
iteration, where 1 ≤ N < k is a prescribed integer number.
However, such a selection rule remains very rigid, and it might
significantly increase the chance for a wrong index being
selected. For instance, if the gradient vector of error matric is
τ -compressible, where τ < N, then the N indices selected by
gOMP would include an index corresponding to a vanished or
insignificant entry of the gradient vector. The SP and CoSaMP
in their nature are not close family members of the OMP-type
methods. At each step, they iteratively and simultaneously
search k indices as the approximation to the support of signal.
The StOMP, ROMP, WOMP and SWOMP adopt other differ-
ent index selection rules to possibly enhance the performance
of the standard OMP procedure. A common feature of these
methods is that they allow the algorithm to select more than
one indices in each iteration. WOMP is remarkably different
from OMP in the sense that the index for the largest absolute
entry of AT (y − Az) might be excluded during its iterations.
StOMP and SWOMP might select too many indices in a single
iteration which admits a high risk for wrong indices to be se-
lected. Recently, the CMP method, as a modification of OMP,
was proposed for solving more complicated recovery prob-
lems with certain constraints. In this paper, we propose further
modifications of OMP, which dynamically select a few indices
among the k largest components in magnitude of AT (y − Az).
We also allow the algorithms to adjust the selected index sets
at every iteration by performing a shrinkage step when the
total number of selected indices goes beyond the sparsity level
of the signal (see the description of the proposed algorithm in
Section II).

C. EXISTING RESULTS FOR OMP
The theoretical performance of OMP-type methods can be
analyzed in terms of coherence tools (e.g., [1], [36], [37],
[38], [39]). However, the restricted isometry property (RIP)
of the measurement matrix becomes relatively more popular
than coherence for the analysis of various compressed sensing
algorithms including OMP. The RIP is defined as follows.

Definition 1.1 ([11]): Let A be an m × n matrix. The re-
stricted isometry constant (RIC) denoted by δq is the smallest
number δ ≥ 0 such that

(1 − δ)‖z‖2
2 ≤ ‖Az‖2

2 ≤ (1 + δ)‖z‖2
2

for any q-sparse vectorz ∈ Rn. A is said to satisfy the re-
stricted isometry property (RIP) of order q if δq < 1.

It was shown in [40] that OMP can identify the support of a
k-sparse signal in exact k iterations if δk+1 < 1/(3

√
k). This

condition was relaxed to δk+1 < 1/(1 + √
2 k) in [41] and

δk+1 < 1/(
√

k + 1) in [42] and [43]. This condition was fur-
ther improved to δk+1 < (

√
4k + 1 − 1)/(2 k) in [44], which
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is situated between 1/(
√

k + 1) and 1/
√

k. Examples are
given in [42], [43] to show that the OMP algorithm might
fail to achieve the correct support identification in exact k
iterations when δk+1 = 1/

√
k. In noiseless situations (i.e., the

measurements are accurate), it was shown that the condition
δk+1 < 1/

√
k + 1 is sharp to guarantee the success of OMP

for k-sparse data reconstruction in exact k iterations [45]. In
noisy settings (the measurements are inaccurate), the guaran-
teed performance of OMP has been shown in [46] and [47]
under the condition δk+1 < 1/(

√
k + 1) and a certain assump-

tion on the target signal. Another improvement was achieved
recently in [48], and it was shown that the condition δk+1 <

1/
√

k + 1 together with a condition on the signal is sufficient
for OMP to correctly identify the support of a k-sparse vector
in exact k iterations. Moreover, the stability of OMP was also
studied under the RIP in [49].

While CoSaMP and SP are also motivated by OMP, the
two algorithms equipped with a hard thresholding operator
are very different from OMP. The interested readers can find
the latest development of CoSaMP and SP algorithms in such
reference as [8], [50], [51], [52], and can also find the results
for other modifications of OMP such as StOMP, MMP, ROMP,
gOMP and SWOMP. Here we only mention a few results for
gOMP since it includes OMP as a special case and it is the
closest kin to OMP. The gOMP algorithm was introduced
first in [32] (see also [53], [54]). It was shown in [32] that
the condition δNk <

√
N/(

√
k + 3

√
N ) is sufficient for the

gOMP algorithm to reconstruct the k-sparse signal in k iter-
ations. This condition was relaxed in [53] and [55] and was
further relaxed to δNk <

√
N/(

√
k + 1.27

√
N ) in [56]. The

reconstruction error via gOMP in noisy scenarios has been
investigated in [48], [57], [58].

D. CONTRIBUTION OF THE PAPER
The main purpose of this paper is to propose an enhanced
modification of OMP for sparse data reconstruction called dy-
namic orthogonal matching pursuit (DOMP) and its enhanced
counterpart called enhanced dynamic orthogonal matching
pursuit (EDOMP). The proposed algorithms dynamically se-
lect vector bases to reconstruct the target data according to
the major gradient information of the error metric at every
iteration. As a result, the gradient information is sufficiently
and efficiently exploited to identify the support of the target
data. The reconstruction error bound via DOMP is estab-
lished under the RIP assumption. This bound also implies
the finite convergence of DOMP in large-scale compressed
sensing scenarios. Moreover, the numerical performance of
the proposed algorithms is evaluated through random prob-
lem instances. The results indicate that due to the efficient
usage of significant gradient information, the proposed algo-
rithms are fast and robust for sparse data reconstruction and
are very comparable to several state-of-art algorithms in this
field.

The paper is organized as follows. The proposed algorithms
are described in Section II. An approximation counterpart

DOMP Algorithm. Perform the following steps until a
certain stopping criterion is satisfied:
S1 Initialization: Set x(0) = 0, S(0) = ∅ and

r(0) = AT (y − Ax(0)) = AT y. Choose parameter
γ ∈ (0, 1].

S2 Given x(p), S(p) and r(p) = AT (y − Ax(p) ), let

�(p) = {i : i ∈ Lk (r(p) ), |(r(p) )i| ≥ γ ‖r(p)‖∞},
and then set

S(p+1) = S(p) ∪ �(p), (DOMP1)

x(p+1) = arg min
z∈Rn

{‖y − Az‖2 : supp(z) ⊆ S(p+1)}.
(DOMP2)

of the projection problem in the proposed algorithm is give
in Section III, which is used to facilitate the theoretical
analysis of the algorithm. Section IV is devoted to such a
theoretical analysis which leads to the reconstruction error
bound for the DOMP algorithm. The finite convergence of
DOMP for large-scale compressed sensing problems is also
discussed is Section IV. Numerical results are demonstrated in
Section V.

II. DYNAMIC ORTHOGONAL MATCHING PURSUIT
The OMP algorithm only select one index corresponding to
the largest magnitude of the gradient of error metric at every
iteration. To increase the chance for the correct support of
the target data being identified, it would be helpful to select
indices at every iteration in a dynamic and adaptive manner.
It is worth pointing out that this idea has been exploited in
StOMP and SWOMP, but the total number of indices being
selected at every iteration of these methods might increase too
fast and exceed the sparsity level of the signal. This renders
the algorithm either requires extra effort to reconstruct the
signal or fails to reconstruct the signal. Thus we propose
the following dynamic orthogonal matching pursuit (DOMP)
method, which may efficiently utilize the underlying gradi-
ent information and control the number of selected indices
at each step so that it does not exceed the sparsity level of
signal. When the cardinality of selected indices does exceed
the sparsity level, we may further enhance the algorithm by
including a shrinkage step to bring the cardinality down to the
sparsity level.

Two typical stopping criteria can be used in DOMP depend-
ing on the application environment: The algorithm may stop
in prescribed maximum number of iterations, and may also
stop when ‖y − Ax(p)‖2 ≤ ε∗ or ‖r(p)‖2 ≤ ε∗, where ε∗ > 0
is a prespecified tolerance.

Since x(p) is an optimal solution to the convex optimization
problem

min{‖y − Az‖2 : supp(z) ⊆ S(p)},
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EDOMP Algorithm. Perform the following steps until a
certain stopping criterion is satisfied:
S1 Initialization: Set x(0) = 0, S(0) = ∅, r(0) = AT y

and a parameter γ ∈ (0, 1].
S2 Given x(p), S(p) and r(p) = AT (y − Ax(p) ), let

�(p) = {i : i ∈ Lk (r(p) ), |(r(p) )i| ≥ γ ‖r(p)‖∞}.
Set S(p+1) = S(p) ∪ �(p) and

x̃(p+1) = arg min
z∈Rn

{‖y − Az‖2 : supp(z) ⊆ S(p+1)}.

If |S(p+1)| ≤ k, set x(p+1) = x̃(p+1); otherwise, set
Q = Lk (x̃(p+1)) and

x(p+1) = arg min
z∈Rn

{‖y − Az‖2 : supp(z) ⊆ Q}.

by the first-order optimality condition, the iterates generated
by DOMP satisfy that

(r(p) )S(p) = 0 for any p ≥ 1. (3)

This property will be frequently used in later analysis of the
algorithm.

The DOMP algorithm dynamically select the vector ba-
sis according to the criterion |(r(p) )i| ≥ γ ‖r(p)‖∞ for i ∈
Lk (r(p) ). This criterion guarantees that only the indices cor-
responding to the significant entries of r(p) can be used to
identify the support of target data. In general, �(p) contains
more than one elements corresponding to the indices of a
few largest magnitudes of r(p). Clearly, even when γ = 1, the
DOMP algorithm may not necessarily be the same as OMP
since the set �(p) may still contain more than one indices
if r(p) possesses multiple entries whose absolute values are
equal to ‖r(p)‖∞. The cardinality of �(p) can be any value
between 1 and k, depending on the prescribed value of γ and
the number of significant entries of r(p). Such a dynamic se-
lection of indices efficiently utilizes the gradient information
of the error metric, and thus it might speed up the algorithm
by increasing the chance for the correct support of target data
being identified at every iteration. After a few iterations are
performed, the cardinality of S(p+1) in DOMP might be larger
than k. In this case, it is useful to perform certain shrinkage on
the vector generated by (DOMP2) in order to maintain the k-
sparsity of iterates so that they are feasible to the problem (2).
This consideration leads to the following enhanced dynamic
orthogonal matching pursuit (EDOMP), which is different
from existing modifications of OMP.

Numerical results in Section V indicate that the capabil-
ity of DOMP and EDOMP in sparse data reconstruction is
generally stronger than OMP (see Section V for details). In
the next section, we perform a theoretical analysis to establish
a reconstruction error bound for the DOMP algorithm. Such
an error bound measures the distance between the target data

Approximation counterpart of (DOMP2): Let x(p), S(p),
�(p) and S(p+1) be given in DOMP, and let 	(p) be defined
by (4). Let

Ŝ (p+1) = S(p+1) ∪ 	(p), (AC1)

x̂ (p+1) = arg min
z∈Rn

{‖y − Az‖2
2 + σ‖z	(p)‖2

2 :

supp(z) ⊆ Ŝ p+1} , (AC2)

where ‖z	(p)‖2
2 =∑i∈	(p) z2

i and σ is a given large
positive parameter.

and the iterates generated by the algorithm. To facilitate this
analysis, let us first define an auxiliary optimization model.

III. APPROXIMATION COUNTERPART
Denote by S = Lk (x), and let x(p), S(p), r(p), �(p) and S(p+1)

be defined in DOMP. Define

	(p) := Lk (r(p) ) \ (S(p) ∪ �(p) ∪ S). (4)

We now introduce an approximation counterpart (AC) to the
projection problem (DOMP2), which generates the index set
Ŝ (p+1) and the vector x̂ (p+1).

When r(p) = 0, x(p) is already a global solution to the prob-
lem (2). Thus, to analyze the DOMP algorithm, we assume
without loss of generality that r(p) 	= 0, in which case we
can see from the definition of �(p) that (r(p) )i 	= 0 for any
i ∈ �(p). This together with (3) implies that

S(p) ∩ �(p) = ∅. (5)

Since S(p+1) = S(p) ∪ �(p), we also see from (4) that

	(p) ∩ S(p+1) = ∅. (6)

Thus

|S(p+1)| = |S(p)| + |�(p)|, |Ŝ (p+1)| = |S(p+1)| + |	(p)|. (7)

The solution of the optimization problem in (AC2) depends
on σ, and thus x̂ (p+1) should be written as x̂ (p+1)(σ ). For
notational convenience, however, we simply use x̂ (p+1) to
denote the solution of (AC2). The above-described approxi-
mation counterpart is only used as an auxiliary tool to support
the analysis of DOMP in the next section. From (AC2), one
can see that for a sufficiently large σ, the components of
x̂ (p+1) supported on 	(p) would vanish completely or be
sufficiently small. Thus x̂ (p+1) can be made arbitrarily close
to x(p+1) (the iterate generated by DOMP) provided that σ is
sufficiently large. The following lemma makes this rigorous.

Lemma 3.1: At the iterate x(p), let x(p+1) and S(p+1) be
generated by DOMP, and let Ŝ (p+1) and x̂ (p+1)be defined in
(AC1) and (AC2) accordingly. Then one has

‖A(x̂ (p+1) − x(p+1))‖2 ≤ Cϑ(y,A), (8)
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where C :=
√

2‖A‖2√
σ

+ ‖A‖2
2

σ
+ ‖A‖2√

σ
and ϑ(y,A) is the constant

defined as

ϑ(y,A) := max
U⊆{1,...,n},U 	=∅

(min
z∈Rn

{‖y − Az‖2 : supp(z) ⊆ U }).

(9)
Proof: Suppose that x(p),�(p) and x(p+1) are generated by

DOMP. Let 	(p) be defined by (4) and x̂ (p+1) be a solution to
the minimization problem (AC2). Note that x(p+1) is a feasible
solution to the minimization problem (AC2), by the optimality
of x̂ (p+1), we have

‖y − Ax̂(p+1)‖2
2 + σ‖(x̂ (p+1))	(p)‖2

2

≤ ‖y − Ax(p+1)‖2
2 + σ‖(x(p+1))	(p)‖2

2

= ‖y − Ax(p+1)‖2
2, (10)

where the equality follows from (6) which implies that
(x(p+1))	(p) = 0. Thus

σ‖(x̂ (p+1))	(p)‖2
2 ≤ ‖y − Ax(p+1)‖2

2

= min
z∈Rn

{‖y − Az‖2
2 : supp(z) ⊆ S(p+1)}

≤ ϑ2
(y,A),

where ϑ(y,A) is the constant defined in (9). The inequalities
above imply that

‖(x̂ (p+1))	(p)‖2 ≤ ϑ(y,A)√
σ

, ‖y − Ax(p+1)‖2 ≤ ϑ(y,A). (11)

We now bound ‖A(x(p+1) − x̂ (p+1))‖2. From (10), we see that

‖y − Ax̂ (p+1)‖2 ≤ ‖y − Ax(p+1)‖2. (12)

By (AC1) and (6), we see that x̂ (p+1) = (x̂ (p+1))Ŝ (p+1) =
(x̂ (p+1))S(p+1) + (x̂ (p+1))	(p) . Thus by the triangular inequal-
ity, we have

‖y − Ax̂ (p+1)‖2

= ‖y − A[(x̂ (p+1))S(p+1) + (x̂ (p+1))	(p) ]‖2

≥ ‖y − A(x̂ (p+1))S(p+1)‖2 − ‖A(x̂ (p+1))	(p)‖2. (13)

Merging (12) and (13) leads to

‖y − A(x̂ (p+1))S(p+1)‖2 ≤ ‖y − Ax(p+1)‖2 + ‖A(x̂ p+1)	(p)‖2,

which together with (11) implies that

‖y − A(x̂ (p+1))S(p+1)‖2
2

≤ (‖y − Ax(p+1)‖2 + ‖A(x̂ (p+1))	(p)‖2)2

= ‖y − Ax(p+1)‖2
2

+ 2‖y − Ax(p+1)‖2‖A(x̂ (p+1))	(p)‖2 + ‖A(x̂ (p+1))	(p)‖2
2

≤ ‖y − Ax(p+1)‖2
2

+ 2ϑ(y,A)‖A‖2‖(x̂ (p+1))	(p)‖2 + ‖A‖2
2‖(x̂ (p+1))	(p)‖2

2

≤ ‖y − Ax(p+1)‖2
2

+ 2ϑ(y,A)‖A‖2

(
ϑ(y,A)√

σ

)
+ ‖A‖2

2

(
ϑ(y,A)√

σ

)2

= ‖y − Ax(p+1)‖2
2 +

(
2‖A‖2√

σ
+ ‖A‖2

2

σ

)
(ϑ(y,A) )

2. (14)

By Taylor’s expansion, we also have that

‖y − A(x̂ (p+1))S(p+1)‖2
2 = ‖y − Ax(p+1)‖2

2

+ 2[−AT (y − Ax(p+1))]T [(x̂ (p+1))S(p+1) − x(p+1)]

+ [(x̂ (p+1))S(p+1) − x(p+1)]T AT A[(x̂ (p+1))S(p+1) − x(p+1)]

= ‖y − Ax(p+1)‖2
2 + ‖A[(x̂ (p+1))S(p+1) − x(p+1)]‖2

2, (15)

where the last equality follows from (3) and the fact that
supp[(x̂ (p+1))S(p+1) −x(p+1)] ⊆ S(p+1). Combining (14) and
(15) yields

‖A[(x̂ (p+1))S(p+1) − x(p+1)]‖2
2 ≤

[
2‖A‖2√

σ
+ ‖A‖2

2

σ

]
(ϑ(y,A) )

2.

(16)
By (AC1) and (6), i.e., Ŝ (p+1) = S(p+1) ∪ 	(p) and S(p+1) ∩
	(p) = ∅, we immediately see that (Ŝ (p+1)) ∩ 	(p) = ∅ and

S(p+1) = Ŝ (p+1) \ 	(p) = Ŝ (p+1) ∪ 	(p), and hence

(x̂ (p+1))
S(p+1) = (x̂ (p+1))

Ŝ (p+1) +(x̂ (p+1))	(p) = (x̂ (p+1))	(p),

where the last equality follows from the fact that
(x̂ (p+1))

Ŝ (p+1) = 0. This together with (11), (16) and

(x(p+1))
S(p+1) = 0 implies that

‖A(x̂ (p+1) − x(p+1))‖2

= ‖A[(x̂ (p+1) − x(p+1))S(p+1) + (x̂ (p+1) − x(p+1))
S(p+1) ]‖2

= ‖A[(x̂ (p+1))S(p+1) − x(p+1)] + A(x̂ (p+1))	(p)‖2

≤ ‖A[(x̂ (p+1))S(p+1) − x(p+1)]‖2 + ‖A(x̂ (p+1))	(p)‖2

≤ ϑ(y,A)

√
2‖A‖2√

σ
+ ‖A‖2

2

σ
+ ‖A‖2

ϑ(y,A)√
σ

which is the inequality (8). �
A basic property of the optimization problem (AC2) is

given in the next lemma which follows directly from the
optimality condition of convex optimization. The proof of the
lemma is omitted.

Lemma 3.2: Let x̂ (p+1) be a minimizer of (AC2), i.e.,

x̂ (p+1) =arg min
z∈Rn

{‖y−Az‖2
2+σ‖z	(p)‖2

2 : supp(z) ⊆ Ŝ (p+1)},

where Ŝ (p+1) is defined by (AC1). Then[−AT (y − Ax̂ (p+1)) + σ (x̂ (p+1))	(p)

]
Ŝ (p+1) = 0. (17)

IV. RECONSTRUCTION ERROR BOUNDS
In this section, we establish the reconstruction error bound
for DOMP. The efficiency of the algorithm for sparse data
reconstruction can be interpreted via such an error bound
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which measures the distance of the generated solution and
target data. The error bound may also imply the stability and
convergence of the algorithm under certain conditions. Let us
first recall some properties of δt that will be used to establish
the desired error bound.

Lemma 4.1 ([8]): Let u ∈ Rn and 	 ⊆ {1, 2, . . . , n}. Then
the following three statements are true:

i) If |	 ∪ supp(u)| ≤ t, then ‖[(I − AT A)u]	‖2 ≤
δt‖u‖2.

ii) If 	 ∩ supp(u) = ∅ and |	 ∪ supp(u)| ≤ t, then
‖(AT Au)	‖2 ≤ δt‖u‖2.

iii) If |	| ≤ t, one has ‖(AT u)	‖2 ≤ √
1 + δt‖u‖2.

It should be pointed out that δt is not the only tool that
can be used to analyze algorithms. Other tools such as the
spark [1], mutual coherence [1], null space property [8] and
range space property of AT [15], [59] might be also used to
achieve this goal. However, we only use δt to establish the
main result in this paper.

A. MAIN RESULT FOR DOMP
The purpose of this section is to answer the question: How
does the reconstruction error decay in the course of iterations?
In other words, we would like to measure the quality of the
iterate, generated by the algorithm, as an approximation to the
target data. The result for DOMP is summarized in Theorem
4.2 below, whose proof is postponed to the end of the next
subsection after we establish some helpful technical results.

Theorem 4.2: Suppose that y := Ax + ν are the measure-
ments of the target data x ∈ Rn where ν are the measurement
errors. Let γ ∈ (0, 1] be a given constant. If the RIC of the
measurement matrix A satisfies

δck <
1√

1 +
(

1 +
√

1 + kγ 2
)2

, (18)

where c > 2 is an integer number, then at the pth iteration,
provided that |Sp+1| ≤ (c − 2)k, the iterate x(p+1) generated
by DOMP approximates xS with error

‖x(p+1) − xS‖2 ≤ β p
(

(
/β )k‖xS − x(0)‖2

)
+ τ‖ν′‖2, (19)

where ν′ = AxS + ν and S = Lk (x). The constants β and 
 are
given respectively as

β =
(

1 +
√

1 + kγ 2
)

δck√
1 − δ2

ck

< 1, 
 =
√

1 + δck

1 − δck
,

and τ is a constant dependent only of δck, k and γ .

Remark 4.3: If x is k-compressible with very small tail
‖xS‖2 and the measurements are accurate enough, then ‖ν′‖2

would be very small. In particular, if x is k-sparse and the
measurements are accurate, then ‖ν′‖2 = 0. From (19), the
reconstruction quality in these cases would completely depend
on the iterations being executed. We also note that |S(p+1)| is
the total number of indices being selected after p iterations.
At the pth iteration, the indices in �(p) are added to S(p) to

form the set S(p+1). By (5), |S(p+1)| =∑p
i=1 |�(p)| ≤ pk, thus

the largest integer number p∗ satisfying |S(p∗+1)| ≤ (c − 2)k
would be at least (c − 2). This means when c � 2 the error
bound (19) is satisfied for a large number p = p∗ and thus
‖x(p) − xS‖2 ≈ 0. Thus x(p) is a quality reconstruction of xS

after the algorithm is performed enough iterations.
The lemma below follows immediately from Theorem 4.2.
Corollary 4.4: Let y := Ax + ν be the measurements of the

target data x ∈ Rn where ν are the measurement errors. Let
γ ∈ (0, 1] be a given constant. If the matrix A satisfies the
RIP of order t∗ > 2 k where

t∗ := max

⎧⎪⎪⎨⎪⎪⎩t : δt <
1√

1 +
(

1 +
√

1 + kγ 2
)2

⎫⎪⎪⎬⎪⎪⎭ , (20)

then at the pth iteration, provided |Sp+1| ≤ t∗ − 2 k, the iter-
ate x(p+1) generated by DOMP approximates xS with error

‖x(p+1) − xS‖2 ≤ β̂ p
(

(
̂/β̂ )k‖xS − x(0)‖2

)
+ τ̂‖ν′‖2,

where ν′ = AxS + ν and S = Lk (x). The constants β̂ and 
̂ are
given respectively as

β̂ =
(

1 +
√

1 + kγ 2
)

δt∗√
1 − δ2

t∗
< 1, 
̂ =

√
1 + δt∗

1 − δt∗
,

and τ̂ is a constant dependent only of δt∗ , k and γ .

The results above indicate that the quality of the iterate as
an approximation to xS can be measured provided that the
total number of selected indices is lower than t∗ − 2 k. The
RIC bounds (18) and (20) depends on the parameter γ . In
theory, a small parameter γ can alleviate the requirement on
measurement matrices since the smaller the parameter γ , the
larger the right-hand sides of (18) and (20).

B. PROOF OF THE MAIN RESULT FOR DOMP
We first establish several useful technical results. The first one
below is partially shown in [52].

Lemma 4.5: Given constants α1, α2, α3 ≥ 0 where α1 < 1,

if t satisfies that

t ≤ α1

√
t2 + α2

2 + α3, (21)

then

t ≤ α1√
1 − α2

1

α2+ α3

1 − α1
,

√
t2 + α2

2 ≤ α2√
1 − α2

1

+ α3

1 − α1
.

(22)
Proof: The first inequality in (22) was shown in [52] (see

Lemma 4.1 therein). Thus we only need to show the second
inequality in (22), which follows from the first inequality
and the fact that

√
(a + c)2 + b2 ≤ √

a2 + b2 + c for any
a, b, c ≥ 0. �
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Some fundamental properties of DOMP and the optimiza-
tion problem (AC2) are given in the next two lemmas.

Lemma 4.6: Let y := Ax + ν, S(p+1) be generated by
DOMP, Ŝ (p+1) be defined in (AC1), and let x̂ (p+1) be a mini-
mizer of (AC2). If A satisfies that δk+|Ŝ (p+1)| < 1, then

‖xS − x̂ (p+1)‖2

≤
‖(xS − x̂ (p+1))

Ŝ (p+1)‖2√
1 − δ2

k+|Ŝ (p+1)|
+
√

1 + δ|Ŝ (p+1)|
1 − δk+|Ŝ (p+1)|

‖ν′‖2, (23)

where ν′ = AxS + ν and S = Lk (x).
Proof: By Lemma 3.2, we have that [−AT (y − Ax̂ (p+1)) +

σ (x̂ (p+1))	(p) ]Ŝ (p+1) = 0. As y = Ax + ν = AxS + ν′ where
ν′ = AxS + ν, the equality above can be written as[−AT A(xS − x̂ (p+1)) − AT ν′ + σ (x̂ (p+1))	(p)

]
Ŝ (p+1) = 0.

Note that [(x̂ (p+1))	(p) ]Ŝ (p+1) = (x̂ (p+1))	(p) since 	(p) ⊆
Ŝ (p+1). The equality above is equivalent to

(xS − x̂ (p+1))Ŝ (p+1) = [(I − AT A)(xS − x̂ (p+1))]Ŝ (p+1)

− (AT ν′)Ŝ (p+1) + σ (x̂ (p+1))	(p) .

(24)

By the definition of 	(p) in (4), we see that S ∩ 	(p) = ∅.

Thus (xS )	(p) = 0 and

[(xS − x̂ (p+1))Ŝ (p+1) ]T (x̂ (p+1))	(p)

= [(xS − x̂ (p+1))	(p) ]T (x̂ (p+1))	(p)

= −‖(x̂ (p+1))	(p)‖2
2 ≤ 0. (25)

Multiplying (24) by (xS − x̂ (p+1))Ŝ (p+1) , using (25) and
Lemma 4.1 (i) and (iii), we obtain

‖(xS − x̂ (p+1))Ŝ (p+1)‖2
2

= [(xS − x̂ (p+1))Ŝ (p+1) ]T [(I − AT A)(xS − x̂ (p+1))]Ŝ (p+1)

− [(xS − x̂ (p+1))Ŝ (p+1) ]T (AT ν′)Ŝ (p+1)

+ σ [(xS − x̂ (p+1))Ŝ (p+1) ]T (x̂ (p+1))	(p)

≤ [(xS − x̂ (p+1))Ŝ (p+1) ]T [(I − AT A)(xS − x̂ (p+1))]Ŝ (p+1)

− [(xS − x̂ (p+1))Ŝ (p+1) ]T (AT ν′)Ŝ (p+1)

≤ δk+|Ŝ (p+1)|‖xS − x̂ (p+1)‖2‖(xS − x̂ (p+1))Ŝ (p+1)‖2

+
√

1 + δ|Ŝ (p+1)|‖ν′‖2‖(xS − x̂ (p+1))Ŝ (p+1)‖2

= ‖(xS − x̂ (p+1))Ŝ (p+1)‖2(δk+|Ŝ (p+1)|‖xS − x̂ (p+1)‖2

+
√

1 + δ|Ŝ (p+1)|‖ν′‖2). (26)

If ‖(xS − x̂ (p+1))Ŝ (p+1)‖2 = 0, then ‖xS − x̂ (p+1)‖2 =
‖(xS − x̂ (p+1))

Ŝ (p+1)‖2, and hence the inequality (23) is
satisfied trivially. Thus we assume without loss of generality
that ‖(xS − x̂ (p+1))Ŝ (p+1)‖2 	= 0. We cancel this term from

(26) to obtain that

‖(xS − x̂ (p+1))Ŝ (p+1)‖2

≤ δk+|Ŝ (p+1)|‖xS −x̂ (p+1)‖2 +
√

1 + δ|Ŝ (p+1)|‖ν′‖2

=δk+|Ŝ (p+1)|
√

‖(x − x̂ (p+1))Ŝ (p+1)‖2
2+‖(x−x̂ (p+1))

Ŝ (p+1)‖2
2

+
√

1 + δ|Ŝ (p+1)|‖ν′‖2,

which is in the form of (21) with t = ‖(xS − x̂ p+1)Ŝ (p+1)‖2,

α1 = δk+|Ŝ (p+1)|, α2 = ‖(xS − x̂ (p+1))
Ŝ (p+1)‖2, α3 =√

1 + δ|Ŝ (p+1)|‖ν′‖2, and

‖xS − x̂ (p+1)‖2

=
√

‖(xS − x̂ (p+1))Ŝ (p+1)‖2
2 + ‖(xS − x̂ (p+1))

Ŝ (p+1)‖2
2

=
√

t2 + α2
2 .

Thus it immediately follows from Lemma 4.5 that

‖xS − x̂ (p+1)‖2 ≤ 1√
1 − δ2

k+|Ŝ (p+1)|
‖(xS − x̂ (p+1))

Ŝ (p+1)‖2

+
√

1 + δ|Ŝ (p+1)|
1 − δk+|Ŝ (p+1)|

‖ν′‖2,

which is exactly the relation (23). �
Under the condition �(p) ∩ S = ∅, we now bound the term

‖(xS − x̂ (p+1))
Ŝ (p+1)‖2 which is equal to ‖(xS − x(p) )

Ŝ (p+1)‖2

since (x̂ (p+1))
Ŝ (p+1) = 0 and (x(p) )

Ŝ (p+1) = 0.

Lemma 4.7: Let y := Ax + ν, and let x(p), S(p), �(p) and
S(p+1) be generated by DOMP. Let Ŝ (p+1) be defined by
(AC1), i.e., Ŝ (p+1) = S(p+1) ∪ 	(p) where 	(p) is defined by
(4). Suppose that �(p) ∩ S = ∅ where S = Lk (x). If the matrix
A satisfies that δk+|Ŝ (p+1)| < 1, then one has

‖(xS − x(p) )
Ŝ (p+1)‖2 ≤ ρ∗(δ2k+|S(p)|‖xS − x(p)‖2

+
√

1 + δk‖ν′‖2), (27)

where ρ∗ = 1 +
√

1 + γ 2 k, ν′ = AxS + ν and γ ∈ (0, 1] is a
given parameter in DOMP.

Proof: Let x(p) be the current iterate and
r(p), S(p),�(p), S(p+1) be defined in DOMP. Suppose that
�(p) and S are disjoint, i.e.,

S ∩ �(p) = ∅. (28)

We denote by L̃ := Lk (r(p) ) for notational convenience. Note
that |̃L| = k = |S|. Thus

|S\L̃| = |S| − |S ∩ L̃| = |̃L| − |S ∩ L̃| = |̃L\S|. (29)

This means the number of elements in S\L̃ is equal to the
number of elements in L̃\S. By the definition of L̃, the entries
of r(p) = AT (y − Ax(p) ) supported on L̃\S are among the k
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largest magnitudes of r(p). This together with (29) implies that

‖(r(p) )S\L̃‖2 ≤ ‖(r(p) )L̃\S‖2. (30)

By (4), S ∩ 	(p) = ∅ which together with (28) implies that

S ∩ Ŝ (p+1) = S ∩ (S(p) ∪ �(p) ∪ 	(p) ) = S ∩ S(p). (31)

Note that S = (S\T ) ∪ (S ∩ T ) for any set T, where S \ T
and S ∩ T are disjoint. By setting T = Ŝ (p+1) and T = L̃
respectively, we immediately obtain the two relations:

‖(r(p) )S‖2
2 = ‖(r(p) )S\Ŝ (p+1)‖2

2 + ‖(r(p) )S∩Ŝ (p+1)‖2
2, (32)

‖(r(p) )S‖2
2 = ‖(r(p) )S\L̃‖2

2 + ‖(r(p) )S∩L̃‖2
2. (33)

Note that x(p) is a minimizer of the convex optimization
problem min{‖y − Az‖2 : supp(z) ⊆ S(p)}. Thus x(p) and S(p)

satisfy (3), i.e.,

(r(p) )S(p) = 0. (34)

This together with (31) implies that ‖(r(p) )S∩Ŝ (p+1)‖2
2 =

‖(r(p) )S∩S(p)‖2
2 = 0. Thus, merging (32) and (33) yields

‖(r(p) )S\Ŝ (p+1)‖2
2 = ‖(r(p) )S\L̃‖2

2 + ‖(r(p) )S∩L̃‖2
2. (35)

By (30), (34), and (35), one has

�2 := ‖(r(p) )(S∪S(p) )\Ŝ (p+1)‖2
2 = ‖(r(p) )S\Ŝ (p+1)‖2

2

= ‖(r(p) )S\L̃‖2
2 + ‖(r(p) )S∩L̃‖2

2

≤ ‖(r(p) )L̃\S‖2
2 + ‖(r(p) )S∩L̃‖2

2

= ‖(r(p) )L̃\(S∪S(p) )‖2
2 + ‖(r(p) )S∩L̃‖2

2, (36)

where the last equality follows from (34). In fact, by elim-
inating the components of (r(p) )L̃\S indexed by S(p), we
immediately see that

‖(r(p) )L̃\S‖2 = ‖(r(p) )L̃\(S∪S(p) )‖2. (37)

We now estimate the last term ‖(r(p) )S∩L̃‖2
2 in (36). Note

that the elements in �(p) are added to S(p) to form the next
set S(p+1). From the definition of �(p), it contains the indices
in L̃ = Lk (r(p) ) such that |(r(p) )i| ≥ γ ‖r(p)‖∞. Clearly, we
have either |�(p)| < k or |�(p)| = k. We now consider the two
cases separately.

Case 1: |�(p)| = k. In this case, all indices of L̃ are selected
into �k . So �(p) = L̃. Under the assumption (28), it implies
that S ∩ L̃ = S ∩ �(p) = ∅ and hence ‖(r(p) )S∩L̃‖2 = 0. As
a result, the relation (36) reduces to � ≤ ‖(r(p) )L̃\(S∪S(p) )‖2.

Case 2: |�(p)| < k. In this case, by the structure of DOMP,
not all indices in L̃ are selected into �(p). Without loss
of generality, we assume that S ∩ L̃ 	= ∅ since otherwise
‖(r(p) )S∩L̃‖2

2 = 0. Under the condition (28), we see that
(S ∩ L̃) ∩ �(p) = (S ∩ �(p) ) ∩ L̃ = ∅. So the indices in S ∩
L̃ are not in �(p), and hence |(r(p) )i| < γ ‖r(p)‖∞ for all i ∈
S ∩ L̃, which implies that

‖(r(p) )S∩L̃‖∞ < γ ‖r(p)‖∞. (38)

Again, as �(p) ⊆ L̃ and the elements in S ∩ L̃ are not in
�(p), we see that �(p) ⊆ L̃\(L̃ ∩ S) = L̃\S. Since the index
of the largest magnitude of r(p) is in �(p), one has

‖r(p)‖∞ = ‖(r(p) )�p‖∞ ≤ ‖(r(p) )�p‖2 ≤ ‖(r(p) )L̃\S‖2.

Merging this relation and (37) yields

‖r(p)‖∞ ≤ ‖(r(p) )L̃\(S∪S(p) )‖2. (39)

By using (38) and (39), we deduce that

‖(r(p) )S∩L̃‖2 ≤
√

|S ∩ L̃|‖(r(p) )S∩L̃‖∞

< γ

√
|S ∩ L̃|‖r(p)‖∞

≤ γ

√
|S ∩ L̃|‖(r(p) )L̃\(S∪S(p) )‖2

≤ γ
√

k‖(r(p) )L̃\(S∪S(p) )‖2, (40)

where the last inequality follows from γ
√

|S ∩ L̃| ≤ γ
√

k.

Combining (36) and (40) leads to

� ≤
√

1 + γ 2 k
∥∥∥(r(p) )L̃\(S∪S(p) )

∥∥∥
2
. (41)

So the bound (41) is valid in both Case 1 and Case 2. Since
[L̃\(S ∪ S(p) )] ∩ supp(xS − x(p) ) = ∅, by Lemma 4.1 (ii)
and (iii), we obtain

‖(r(p) )L̃\(S∪S(p) )‖2

= ‖(AT A(xS − x(p) ) + AT ν′)L̃\(S∪S(p) )‖2

≤ ‖(AT A(xS − x(p) ))L̃\(S∪S(p) )‖2 + ‖(AT ν′)L̃\(S∪S(p) )‖2

≤ δk+|S(p)|+|̃L|‖xS − x(p)‖2 +
√

1 + δk‖ν′‖2

= δ2k+|S(p)|‖xS − x(p)‖2 +
√

1 + δk‖ν′‖2.

Merging (41) and the relation above leads to

� ≤
√

1 + kγ 2
(
δ2k+|S(p)|‖xS − x(p)‖2 +

√
1 + δk‖ν′‖2

)
.

(42)

Denote by

W := [(xS − x(p) ) − AT (y − Ax(p) )](S∪S(p) )\Ŝ (p+1) .

Note that |supp(xS − x(p) )| ≤ k + |S(p)| and |(S ∪ S(p) ) \
Ŝ (p+1)| ≤ |S| = k since S(p) ⊆ Ŝ (p+1). By Lemma 4.1 (i)
and (iii), one has

‖W ‖2 = ‖[(I − AT A)(xS − x(p) ) − AT ν′](S∪S(p) )\Ŝ (p+1)‖2

≤ δk+|S(p)|‖xS − x(p)‖2 +
√

1 + δk‖ν′‖2. (43)

Note that xS − x(p) = (xS − x(p) )(S∪S(p) ) since supp(xS −
x(p) ) ⊆ S ∪ S(p). We have

‖(xS − x(p) )
Ŝ (p+1)‖2

= ‖(xS − x(p) )(S∪S(p) )\Ŝ (p+1)‖2

= ‖[xS − x(p) − AT (y − Ax(p) )](S∪S(p) )\Ŝ (p+1)
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+ [AT (y − Ax(p) )](S∪S(p) )\Ŝ (p+1)‖2

≤ ‖W ‖2 + �. (44)

Denote by φ := 1 +
√

1 + kγ 2. Combining (42), (43) and
(44) yields

‖(xS − x(p) )
Ŝ (p+1)‖2

=
(
δk+|S(p)| +

√
1 + kγ 2δ2k+|S(p)|

)
‖xS − x(p)‖2

+ φ
√

1 + δk‖ν′‖2

≤ φ
(
δ2k+|S(p)|‖xS − x(p)‖2 +

√
1 + δk‖ν′‖2

)
,

where the last inequality follows from the fact δk+|S(p)| ≤
δ2k+|S(p)|. Thus (27) is satisfied. �

We have all ingredients needed to show the main result
stated in Theorem 4.2.

The Proof of Theorem 4.2: Let x(p) be the current iter-
ate and S(p),�(p), S(p+1) and x(p+1) are defined by DOMP.
Without loss of generality, we assume r(p) 	= 0. Let Ŝ (p+1)

be defined as (AC1) and x̂ (p+1) be a solution to the auxiliary
minimization problem in (AC2). Still, S = Lk (x) is the index
set for the k largest magnitudes of the target vector x. At the
pth iteration, there are only two cases: either S ∩ �(p) 	= ∅ or
S ∩ �(p) = ∅.

Case 1: S ∩ �(p) 	= ∅. In this case, at least one of the indices
in S is added to S(p+1) = S(p) ∪ �p. By (5), �(p) ∩ S(p) =
∅. Thus set S(p+1) contains more elements of S than S(p) in
this case. Note that supp(x(p) ) ⊆ S(p) ⊆ S(p+1). Thus x(p)

is a feasible vector to the optimization problem (DOMP2),
to which x(p+1) is a minimizer. Thus by optimality, one
has ‖y − Ax(p+1)‖2 ≤ ‖y − Ax(p)‖2. Note that y = AxS +
ν′ where ν′ = AxS + ν. By the triangular inequality, it fol-
lows from the inequality above that

‖A(xS − x(p+1))‖2 − ‖ν′‖2 ≤ ‖A(xS − x(p) )‖2 + ‖ν′‖2,

By noting that |supp(xS − x(p+1))| ≤ k + |S(p+1)| and
|supp(xS − x(p) )| ≤ k + |S(p)| and by the definition of RIC
of A, the inequality above implies that√

1 − δk+|S(p+1)|‖x(p+1) − xS‖2

≤
√

1 + δk+|S(p)|‖x(p) − xS‖2 + 2‖ν′‖2.

Since δk+|S(p)| ≤ δk+|S(p+1)|, one has

‖x(p+1) − xS‖2 ≤
√

1 + δk+|S(p+1)|
1 − δk+|S(p+1)|

‖x(p) − xS‖2

+ 2√
1 − δk+|S(p+1)|

‖ν′‖2. (45)

The first relation in (7) implies that |S(p+1)| =∑p
i=1 |�(i)|,

which means {|S(p)|} is nondecreasing sequence. Let p∗
denote the largest integer number p such that |S(p+1)| ≤

(c − 2)k. Then for any p ≤ p∗, the coefficients on the right-
hand side of (45) are bounded by√

1 + δk+|S(p+1)|
1 − δk+|S(p+1)|

≤ 
,
2√

1 − δk+|S(p+1)|
≤ c1, (46)

where 
 :=
√

1+δck
1−δck

and c1 := 2√
1−δck

. Thus it follows from

(45) and (46) that

‖x(p+1) − xS‖2 ≤ 
‖x(p) − xS‖2 + c1‖ν′‖2 (47)

for any p ≤ p∗. We now analyze the second case.
Case 2: S ∩ �(p) = ∅. Let p∗ be defined as above, i.e., p∗ is

the largest number p such that |S(p+1)| ≤ (c − 2)k. Denote
by φ = 1 +

√
1 + kγ 2. By Lemmas 4.6 and 4.7, we imme-

diately obtain that

‖xS − x̂ (p+1)‖2

≤ φ(δ2k+|S(p)|‖xS − x(p)‖2 + √
1 + δk‖ν′‖2)√

1 − δ2
k+|Ŝ (p+1)|

+
√

1 + δ|Ŝ (p+1)|‖ν′‖2

1 − δk+|Ŝ (p+1)|

= φδ2k+|S(p)|‖xS − x(p)‖2√
1 − δ2

k+|Ŝ (p+1)|

+
⎛⎝ φ

√
1 + δk√

1 − δ2
k+|Ŝ (p+1)|

+
√

1 + δ|Ŝ (p+1)|
1 − δk+|Ŝ (p+1)|

⎞⎠ ‖ν′‖2

≤ φδ2k+|S(p+1)|‖xS − x(p)‖2√
1 − δ2

2k+|S(p+1)|

+
⎛⎝ φ

√
1 + δk√

1 − δ2
2k+|S(p+1)|

+
√

1 + δ2k+|S(p+1)|
1 − δ2k+|S(p+1)|

⎞⎠ ‖ν′‖2

≤ φδck‖xS −x(p)‖2√
1−δ2

ck

+
⎛⎝φ

√
1 + δk√

1−δ2
ck

+
√

1 + δck

1−δck

⎞⎠ ‖ν′‖2,

(48)

where the second inequality follows from the fact
that δ2k+|S(p)| ≤ δ2k+|S(p+1)| since |S(p)| ≤ |S(p+1)|, and
that δk+|Ŝ (p+1)| ≤ δ2k+|S(p+1)| since |Ŝ (p+1)| = |S(p+1)| +
|	(p)| ≤ k + |S(p+1)| which follows from the second re-
lation in (7). The last inequality follows from the fact
δ2k+|S(p+1)| ≤ δck due to p ≤ p∗. Denote by

ε := ϑ(y,A)√
1 − δck

(√(
2√
σ

+ ‖A‖2

σ

)
‖A‖2 + ‖A‖2√

σ

)
,

(49)
where ϑ(y,A) and σ are defined in Lemma 3.1. Since
supp(x̂ (p+1) − x(p+1)) ⊆ Ŝ (p+1), by the definition of RIC
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of A and Lemma 3.1, we have

‖x̂ (p+1) − x(p+1)‖2

≤ ‖A(x̂ (p+1) − x(p+1))‖2√
1 − δ|Ŝ (p+1)|

≤ ‖A(x̂ (p+1) − x(p+1))‖2√
1 − δck

≤ ϑ(y,A)√
1 − δck

(√(
2√
σ

+ ‖A‖2

σ

)
‖A‖2 + ‖A‖2√

σ

)
= ε.

(50)

Then using the triangular inequality and (48) and (50)
yields

‖xS − x(p+1)‖2 ≤ ‖xS − x̂ (p+1)‖2 + ‖x̂ (p+1) − x(p+1)‖2

≤ φδck√
1 − δ2

ck

‖xS − x(p)‖2

+
⎛⎝φ

√
1 + δk√

1 − δ2
ck

+
√

1 + δck

1 − δck

⎞⎠ ‖ν′‖2+ε

= β‖xS − x(p)‖2 + c2‖ν′‖2 + ε, (51)

where the constants β and c2 are given by

β = φδck√
1 − δ2

ck

, c2 =
⎛⎝φ

√
1 + δk√

1 − δ2
ck

+
√

1 + δck

1 − δck

⎞⎠ . (52)

It is easy to verify that β < 1 under the assumption of the
theorem. In fact, β = φδck√

1−δ2
ck

< 1 is guaranteed under the

condition

δck <
1√

1 + φ2
= 1√

1 +
(

1 +
√

1 + kγ 2
)2

.

Suppose that the algorithm DOMP has performed p iter-
ations where p ≤ p∗. Without loss of generality, suppose
that within these p iterations the aforementioned Case 1
appears τ ∗ times, and thus Case 2 appears p − τ ∗ times.
Clearly, Case 1 appears at most k times since |S| = k, so
τ ∗ ≤ k. The error bound for this case is given by (47), and
the error bound for Case 2 is given by (51). Therefore, it is
not difficult to verify that after p iterations, one has

‖xS − x(p+1)‖2 ≤ (
τ∗
β p−τ∗

)‖xS − x(0)‖2

+ c1β
p−τ∗

(

τ∗ − 1


 − 1

)
‖ν′‖2

+ c2‖ν′‖2 + ε

1 − β
. (53)

where all constants (β, 
, c1, c2) are determined only by
δck and/or k and γ . To see (53), without loss of generality,
we assume that the first τ ∗ iterations correspond to Case 1,
and the remaining p − τ ∗ iterations correspond to Case 2.

Then using the fact
∑p−τ∗−1

i=0 β i = (1 − β p−τ∗
)/(1 − β ) <

1/(1 − β ) for β < 1, it follows from (51) that

‖xS − x(p+1)‖2 ≤ β p−τ∗‖xS − x(τ∗+1)‖2

+(1 + β+. . .+β p−τ∗−1)(c2‖ν′‖2+ε)

≤ β p−τ∗‖xS − x(τ∗+1)‖2 + c2‖ν′‖2 + ε

1 − β
.

(54)

Also, by (47) and the fact
∑τ∗−1

i=0 
i = (
τ∗ − 1)/(
 − 1)
where 
 > 1, we obtain

‖xS − x(τ∗+1)‖2

≤ 
τ∗‖xS − x(0)‖2 + (1 + 
 + · · · + 
τ∗−1)(c1‖ν′‖2)

= 
τ∗‖xS − x(0)‖2 + c1

(

τ∗ − 1


 − 1

)
‖ν′‖2. (55)

Merging (54) and (55) yields

‖xS − x(p+1)‖2 ≤ β p−τ∗
(
τ∗‖xS − x(0)‖2)

+ c1β
p−τ∗

(

τ∗ − 1


 − 1

)
‖ν′‖2 + c2‖ν′‖2 + ε

1 − β
,

which is exactly the error bound given in (53). Note that

the coefficients (
/β )τ
∗ ≤ (
/β )k and c1β

p−τ∗(
τ∗−1

−1

)
≤

c1

(

k−1

−1

)
since β < 1, 
 > 1 and τ ∗ ≤ k. Thus we deduce

that

‖xS − x(p+1)‖2 ≤ β p
[
(
/β )k‖xS − x(0)‖2

]
+ τ‖ν′‖2

+ ε/(1 − β ). (56)

where τ = c1

(

k−1

−1

)
+ c2

1−β
with constants c1 =

2/
√

1 − δck and c2 given in (52). The term (
/β )k‖xS −
x(0)‖2 in (56) is a fixed quantity. In (56), only the last term
ε/(1 − β ) depends on σ , and we see from the definition of
ε that ε → 0 as σ → ∞. Therefore, the desired estimation
(19) is obtained. �

The main result established in this section provides an es-
timation for the distance between the significant components
of the target data and the solution generated by the DOMP
algorithm. The result claims that the reconstruction quality
becomes better and better as the iteration proceeds provided
that |S(p)| ≤ (c − 2)k, where k is the sparsity level of the
target data and ck is the order of the RIC of the measurement
matrix. In this process, the algorithm gradually identifies the
correct support of the sparse data and the iterate x(p) gets
closer and closer to the significant components of the target
data. When m, n are particularly large with n � m and the
highest order RIC of A is much larger than 2 k, the proposed
algorithms can perform enough iterations to guarantee that the
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reconstruction error becomes so small that the finite conver-
gence of the algorithms can be achieved, as discussed in the
next subsection.

C. FINITE CONVERGENCE
From Definition 1.1, we see that δs ≤ δt for any positive inte-
ger number s ≤ t . Thus if A has the RIP of order t , i.e., δt < 1,

then it has the RIP of any order s ≤ t . In this section, we define
the highest order of the RIP of A as

tmax = max{t : δt < 1}.
The basic assumption in compressed sensing is that the num-
ber of measurements m is much lower than the signal length
n, i.e., m � n. It is also well known that to ensure a k-sparse
signal being exactly reconstructed, the signal should be sparse
enough so that it is the unique sparsest solution to the underde-
termined linear system y = Ax (see [1]). We now consider the
reconstruction problems satisfying the following assumption.

Assumption 4.8: k � m � n and 2 k � tmax, where tmax

is the highest order of RIP of the measurement matrix A.

The problem in such settings may be referred to as a
large-scale compressed sensing problem for which the DOMP
algorithm can maintain the error bound (19) with enough
iterations so that the significant information of the target data
can be guaranteed to reconstruct. Let c be the largest integer
number such that 2 k � ck ≤ tmax, i.e., c = � tmax

k �. Recall
that p∗ (defined in the proof of Theorem 4.2) denotes the
largest number of iterations such that |S(p∗+1)| ≤ (c − 2)k,

i.e.,
∑p∗

i=1 |�(i)| ≤ (c − 2)k. This means that
∑p∗+1

i=1 |�(i)| >

(c − 2)k which together with |�(i)| ≤ k implies that (p∗ +
1)k > (c − 2)k, i.e., p∗ ≥ c − 2. Thus p∗ would be a large
number when c � 2 which is guaranteed by tmax � 2 k.

We now point out that for large-scale compressed sensing
problems, the DOMP algorithm can exactly reconstruct the
support of xS in a finite number of iterations as long as ‖AxS +
ν‖2 is small enough. We say that the vector x is nondegener-
ated k-compressible if it has at least k nonzero components
and ‖xS‖2 is sufficiently small, where S = Lk (x). For such a
vector, xi 	= 0 for all i ∈ S. Clearly, any k-sparse vector with k
nonzeros must be nondegenerated k-compressible.

Theorem 4.9: Assume that the data x ∈ Rn is nonde-
generated k-compressible. Let y := Ax + ν be the slightly
inaccurate measurements of x in the sense that the errors ν

are sufficiently small. Let γ ∈ (0, 1] be a given constant in
DOMP. Suppose that Assumption 4.8 holds and that A has
the RIP of order ck with tmax ≥ ck � 2 k and δck satisfies
(19). Then when p∗ = max{p : |S(p+1)| ≤ (c − 2)k} is large
enough, there must exist p̂ such that for any p with p̂ ≤ p ≤
p∗, the iterate x(p) generated by DOMP satisfies that

Lk (x(p) ) = Lk (x).

Proof: (i) Under (19), Theorem 4.2 claims that

‖x(p) − xS‖2 ≤ β p−1
(




β

)k

‖x0 − xS‖2 + τ‖ν′‖, (57)

where S = Lk (x) and the constants (β, 
, τ ) are given in The-
orem 4.2. By assumption, the right-hand side of the above
bound is sufficiently small when p is large enough. Note that
‖x(p) − xS‖2

2 = ‖(x(p) )S − xS‖2
2 + ‖(x(p) )S‖2

2. It follows from
(57) that both terms ‖(x(p) )S − xS‖2 and ‖(x(p) )S‖2 are suffi-
ciently small when p is large enough, which is ensured under
the assumption of the theorem. Since x is ‘nondegenerated
k-compressible,’ this implies that the largest k magnitudes of
x(p) are concentrated on S and sufficiently close to xS. This
means Lk (x(p) ) = S. Thus after performing enough iterations,
the support of xS is correctly reconstructed by DOMP. �

The error bound established in this paper measures how
close the iterates generated by the algorithm to the target data
in terms of δck, the number of iterations p, and the measure-
ment error ‖ν‖2. The bound (19) indicates that as p increases,
the reconstruction error decays provided that p ≤ p∗. In the
setting of large-scale compressed sensing, Theorem 4.9 fur-
ther claims that the exact reconstruction of the sparse data can
be also possible under the assumption of the theorem.

Remark 4.10: The EDOMP algorithm shares the same
steps of DOMP when |S(p)| ≤ k, and performs hard thresh-
olding to restore the k-sparsity of iterates when |S(p)| > k.

The iterate x(p+1), generated by EDOMP when |S(p)| > k,

is very different from the one generated by DOMP. Clearly,
the relations S(p) ⊆ S(p+1) and |S(p)| =∑p

i=1 |�(i)| in DOMP
are lost in EDOMP. Thus the analysis of DOMP presented
in this section would not be generalized straightforwardly to
EDOMP. While we had attempted to show the reconstruction
error bound for EDOMP in the earlier draft of this report, the
argument therein for EDOMP remains incomplete. It is still
not completely clear at the moment about the error bound for
EDOMP. This is an interesting and worthwhile future work.

V. NUMERICAL EXPERIMENTS
The performance of the proposed algorithms is clearly related
to three main factors: (a) the choice of parameter γ , (b) the
relative sparsity level k/m or k/n, and (c) the total number of
iterations executed. We first carry out experiments to demon-
strate how these factors might affect the performance of the
proposed algorithms and thus to suggest the suitable choice of
γ as well as the number of iterations to perform. All sparse
vectors and measurement matrices in experiments are ran-
domly generated. The entries of sparse vectors and matrices
are assumed to be independent and identically distributed and
follow the standard normal distribution, and the positions of
nonzero entries of sparse vectors are uniformly distributed.
All iterative algorithms in our experiments use x(0) = 0 as the
initial point. Unless otherwise stated, we adopt the following
reconstruction criterion:

‖x(p) − x‖2/‖x‖2 ≤ 10−5, (58)

where x(p) is the iterate produced by the algorithm and x is the
target data to reconstruct. If x(p) satisfies (58), we say that the
algorithm succeeds in reconstructing x.
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FIGURE 1. Comparison of performances of DOMP and EDOMP with
different choices of γ .

A. EFFECT OF THE PARAMETER γ

To illustrate how the value of γ affects the reconstruction
ability of the proposed algorithms, we compare the success
rates of the proposed algorithms in k-sparse data reconstruc-
tion using the following 20 different values: γ = t/20, where
t = 1, 2, . . . , 20. The size of matrix is 500 × 2000, and the
sparsity levels k = 120, 140, 150, 160, 170 and 180 of the
sparse vectors x ∈ R2000 are examined in this experiment. For
every given sparsity level k, the success rates for k-sparse
data reconstruction via DOMP and EDOMP with each given
γ are obtained respectively by attempting 500 random pairs
(A, x) with accurate measurements y := Ax. The algorithms
are performed a total of k iterations, where k is the sparsity
level of the vector to reconstruct. The results are given in
Fig. 1. Intuitively, a small value of γ allows more indices to be
added to �(p) at every iteration, but it may also increase the
chance for an incorrect index being added to �p, and thus
a small γ may lower the success rates of DOMP for data
reconstruction as shown in Fig. 1(a). However, as shown in
Fig. 1(b), it seems that the performance of EDOMP is less
sensitive to the change of γ , compared with DOMP. On the
other side, the results in Fig. 1 indicate that the success rates of
the proposed algorithms with γ = 1 are not the highest ones.
This does indicate that the algorithm with γ = 1 (including
OMP) are not working to their potentials to identify the sup-
port of the target data. One can also see from Fig. 1(a) that the
sparser the target data, the wider range of values for γ can be
used in DOMP. The numerical experiments indicate that the

values of γ situated between 0.7 and 1 are generally good for
DOMP, while EDOMP admits more freedom in the choice of
γ . As a result, we may use γ = 0.9 as a default choice for two
algorithms in the remaining experiments.

B. EFFECT OF THE NUMBER OF ITERATIONS
The main feature of OMP is that the support of the target
data is gradually identified as the iteration proceeds. This
means that the support of the target data (which is usually
unknown beforehand) cannot be fully obtained if the number
of iterations performed is too low. Similarly, the proposed
algorithms need to perform enough iterations before being
terminated. However, after the necessary iterations have been
performed, can any further iterations continue to remarkably
improve the performance of the proposed algorithms? To find
a possible answer, it is useful to carry out an experiment
to test the performance of algorithms against the number of
iterations executed. According to our theory, under the RIP
assumption, the DOMP and EDOMP algorithms keep finding
the correct support of the target data provided that the per-
formed iterations are lower than p∗, the largest integer number
p such that |S(p+1)| ≤ (c − 2)k where c > 2 is the constant
associated with the order of RIP. But when iterations go be-
yond p∗, there would be no guarantee for the algorithms to
continue to find the correct support of xS. With the same ran-
dom matrices and sparse vectors used in first experiment, we
compare the performance of DOMP and EDOMP when they
are allowed to perform different numbers of iterations: p =
1 + 3 j where j = 0, 1, . . . , 59. For every given sparsity level
k = 120, 140, 150, 160, 170, 180 and the prescribed number
for iterations, the success rates for data reconstruction via the
two algorithms with γ = 0.9 are obtained by 500 random tries
of (A, x) with accurate measurements. The results are given in
Fig. 2. As expected, the algorithms need to perform necessary
iterations in order to possibly reconstruct the data. The figure
indicates that with the increment of iterations, the success
frequencies of the two algorithms for data reconstruction in-
crease to some highest point, after that the performance of
algorithms would generally not be improved no matter how
many further iterations are performed. From Fig. 2, it can be
easily seen that the highest point of the reconstruction curve
appears after a certain number of iterations that is much lower
than the sparsity level k of the vector. This means unlike
the classic OMP, the DOMP and EDOMP algorithms do not
need to perform at least k iterations in order to reconstruct
a k-sparse signal. Thus we carry out further simulations to
examine the average number of iterations as well as the aver-
age runtime needed for the proposed algorithms to reconstruct
sparse data.

C. AVERAGE NUMBER OF ITERATIONS AND AVERAGE
RUNTIME
Experiments were performed to demonstrate the average
number of iterations and runtime needed for the proposed
algorithms to achieve the reconstruction criterion (58). The
random matrices in 10 different sizes ranging from (m, n) =
(200, 1000) to (2000, 10000) are used in this experiments.
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FIGURE 2. Comparison of performances of DOMP and EDOMP with
different no. of iterations.

Specifically, n = 5 m and m = 200 j, where j = 1, . . . , 10.

For every m × n matrix, the sparsity level of x ∈ Rn is set as
k = 0.3 m. The OMP algorithm always performs at least k
iterations in order to possibly reconstruct the k-sparse vector.
Thus the total number of iterations required by OMP to recon-
struct the k-sparse vectors (k = 0.3 m in this experiment) is
increasing linearly with respect to the size of the matrices, as
shown in Fig. 3(a). However, Fig. 3(a) indicates that the aver-
age numbers of iterations required by DOMP and EDOMP to
meet the reconstruction criterion (58) are slowly increasing to
the size of problems, remarkably lower than that of CoSaMP
and OMP, and very comparable to gOMP (N = 5), but slightly
more than that of SP and StOMP (with threshold parameter
ts = 3).

The average runtime for these algorithms to achieve the
same criterion (58) is summarized in Fig. 3(b). It can be seen
that the proposed algorithms require much less computational
time than OMP and CoSaMP to achieve the same recon-
struction criterion. The proposed algorithms take very similar
amount of time as SP, StOMP and gOMP. As the problem size
goes up, the runtime of the proposed algorithms increases very
slowly in a linear-like manner, while the runtime for OMP
and CoSaMP increases dramatically with respect to the size of
problems. The simulation does indicate that the total iterations
as well as the runtime required by DOMP and EDOMP to
reconstruct the random sparse data can be remarkably lower
than that of OMP and CoSaMP.

FIGURE 3. Comparison of average no. of iterations and runtime required
by OMP, DOMP, EDOMP, CoSaMP, SP, gOMP and StOMP.

D. COMPARISON TO SOME EXISTING ALGORITHMS
Finally, we compare the reconstruction success rates of the
proposed algorithms and a few existing methods including
OMP, SP CoSaMP, gOMP, StOMP and �1-minimization. The
parameter γ = 0.9 is still set in DOMP and EDOMP which
are performed the same number of iterations as OMP and
gOMP, which is set to be the sparsity level k of the target
signal. In our experiments, N = 5 is set in gOMP, and the
threshold parameter ts = 3 is set in StOMP. CoSaMP and
SP are allowed to perform a total of 500 iterations for every
problem instance in this experiment. For accurate measure-
ments, all algorithms use the stopping criterion (58). For noisy
measurements, however, we adopt the following criterion:

‖x(p) − x‖2/‖x‖2 ≤ 10−3.

In this comparison, the size of matrices is 500 × 2000, and
the sparsity level k of the random data x ∈ R2000 is ranged
from 1 to 300 with stepsize 3, i.e., k = 1, 4, 7, . . . , 299. For
each given sparsity level, 200 random pairs of (A, x) were
realized and used to estimate the success rates of the algo-
rithms for data reconstruction. All matrices A are normalized.
The accurate measurements are taken as y := Ax and inaccu-
rate measurements are taken as ỹ := Ax + 0.001 h, where h
is a normalized Gaussian random vector. When an algorithm
terminates, if x(p) satisfies the reconstruction criterion, a ‘suc-
cess’ is counted for the algorithm. The success rates of the
proposed algorithms using accurate measurements are shown
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FIGURE 4. Comparison of reconstruction success rates of algorithms in
noiseless and noisy cases.

in Fig. 4(a), and the results with inaccurate measurements
are given in Fig. 4(b). One can see that in noiseless set-
ting, DOMP and EDOMP outperform OMP, CoSaMP, gOMP
and �1-minimization, and they perform very comparably to
SP and StOMP. The similar results for EDOMP can be ob-
served when the measurements are slightly inaccurate, while
DOMP and gOMP are clearly subject to the effect of noises.
In summary, EDOMP is very competitive to the existing
mainstream algorithms for sparse data reconstruction. It is
fast, stable, robust and very easy to implement like CoSaMP
and SP.

VI. CONCLUSION
The reconstruction error bound for the proposed DOMP algo-
rithm is established in this article under the RIP assumption.
Finite convergence of the algorithm is also discussed in large-
scale compressed sensing scenarios. Simulations indicate that
the proposed methods (especially, EDOMP) are more efficient
than OMP in sense that they may take much less average com-
putational times and iterations to reconstruct the sparse data,
and they can compete against several state-of-art methods in
this field. Distinguished from the existing OMP-type methods,
the main feature of the proposed algorithms is that they can
dynamically and efficiently exploit the gradient information
of the error metric at every iteration to recognize the support
of the target data.
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