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ABSTRACT Many applications in signal processing require the estimation of mean and covariance matrices
of multivariate complex-valued data. Often, the data are non-Gaussian and are corrupted by outliers or
impulsive noise. To mitigate this, robust estimators are employed. However, existing robust estimation tech-
niques employed in signal processing, such as M-estimators, provide limited robustness in the multivariate
case. For this reason, this paper introduces the signal processing community to the highly robust class of
multivariate estimators called multivariate S-estimators. The paper extends multivariate S-estimation theory
to the complex-valued domain. The theoretical performances of S-estimators are explored and compared with
M-estimators through the practical lens of the minimum variance distortionless response (MVDR) beam-
former, and the empirical finite-sample performances of the estimators are explored through the practical
lens of direction-of-arrival (DOA) estimation using the multiple signal classification (MUSIC) algorithm.

INDEX TERMS Complex elliptically symmetric distribution, complex-valued S-estimator, covariance and
shape matrix estimation, robust estimation of multivariate location and scatter, Sq-estimator.

I. INTRODUCTION
Covariance and mean matrices are used ubiquitously through-
out the signal processing field, such as in linear filtering [1],
array processing [2], and signal detection [3], and for most
practical applications, these matrices need to be estimated.
To do this, the most commonly employed estimators are the
sample estimators, which happen to be the maximum likeli-
hood estimators (MLEs) at the Gaussian distribution, but they
lack statistical efficiency for many other distributions such
as the Cauchy distribution. Additionally, the sample estima-
tors are not robust against outliers or impulsive noise in the
data. The ability to handle non-Gaussian data is important for
many applications where the data are better modeled by other
distributions, such as speech and radar clutter signals, which
are commonly modeled by Laplace [4] and K- [5] distribu-
tions, respectively. Additionally, the ability to handle large
deviations from the true data is important for applications
where outliers or impulsive noise may be present. Common
sources of outliers include occlusions in image processing [6];
high-power equipment in wireless communications [7]; tar-
gets, clutter discretes, other radars, and jamming in adaptive
radar [8]; measurement and instrument errors, cyber attacks,

and communication interference in power systems [9]; and
general sensor and human errors [10].

Recently, there has been increasing interest in the robust
estimation of multivariate location and scatter matrices in
the signal processing literature, and much of this attention
has been on M-estimators (for example, see [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22]). However,
a major drawback of M-estimators is that their robustness to
outliers is limited in the multivariate case [23], [24], [25], [26].
For example, the statistical asymptotic breakdown point—
an important measure of outlier robustness to be defined in
Section V—of multivariate M-estimators of dimension p is
at most 1/(p + 1), which goes toward zero for large di-
mensions [27]. As will be demonstrated, this provides little
robustness for high-dimensional estimation.

To address this lack of robustness, a high-breakdown-point
class of scale-based estimators, called S-estimators, was intro-
duced by Rousseeuw and Yohai [28] and Davies [23]. Unlike
M-estimators, S-estimators have an asymptotic breakdown
point of 1/2, for any dimension. In fact, S-estimators have
been compared against many other types of robust estimators,
and they have been recommended in the statistics literature as
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the general multivariate estimator of choice for p ≥ 10 (for
real-valued data, which corresponds to p ≥ 5 for complex-
valued data) [26], [29, Sec. 6.10.5]. To date, S-estimators have
been employed in widely diverse fields for applications such
as fault monitoring of industrial processes [30] and outlier
detection of gene patterns in biological microarray data [31].
However, S-estimators have not been explored much by signal
processing researchers. For this reason, this paper introduces
S-estimation to the field, and it extends the theory to the
complex-valued domain.

This paper is organized as follows. Elliptically symmetric
distributions are summarized in Section II. Complex-valued
S-estimators are then introduced in Section III, and common
S-estimator ρ functions are summarized and extended to the
complex domain in Section IV. Properties of complex-valued
S-estimators are provided in Section V, and these are used
in Section VI to compare the theoretical performance of
S-estimators with other estimation techniques. Finally, Sec-
tion VII summarizes simulations demonstrating the practical
benefits of S-estimators.

The following notation is used throughout this paper. The
matrix operators X�, XH, X∗, and |X | are the transpose, Her-
mitian transpose, conjugate, and determinant, respectively.
The Euclidean vector norm is given by ‖x‖. The matrices I
and K are the identity and square commutation matrices. The
operator vec(X ) stacks the columns of X into a vector. The
indicator function is given by I(t ), and Kx (y) is the modified
Bessel function of the second kind. The scalar squared Maha-
lanobis distance function is given by d (x,μ,�) for random
vector x and location and scatter matrices μ and �, and d
is the resulting random scalar (i.e., the second-order modular
variate). The matrices μ̂n and �̂n are estimates of μ and �, re-
spectively, for a sample of size n. The prime operator indicates
a derivative, f ′(t ) = d f (t )/ d t . The relations

a∼,
d→, and

p→
denote asymptotic equality in distribution, convergence of
distribution, and convergence in probability, respectively. The
Gaussian normal, complex normal, and generalized complex
normal distributions are respectively denoted by N , CN , and
GCN . Statistical independence of random variables a and b
is signified by a ⊥ b. Finally, this paper sometimes considers
both real- and complex-valued cases simultaneously. In this
case, equations are parameterized by κ, with κ = 1 indicating
the real-valued case and κ = 2 indicating the complex-valued
one.

The estimators and associated properties derived in this
paper, along with some of the simulation results, have also
been presented in the author’s dissertation [32].

II. ELLIPTICALLY SYMMETRIC DISTRIBUTIONS
Elliptically symmetric distributions are a broad class of mul-
tivariate families that cover many common distributions such
as the Gaussian, Laplace, hyperbolic, normal inverse Gaus-
sian, variance gamma, t-, K-, and W -distributions. Both real
elliptically symmetric (RES) and circular (about μ) complex
elliptically symmetric (CES) distributions are defined as being

a function of the squared Mahalanobis distance, given by

d (x,μ,�) = (x − μ)H �−1 (x − μ) ,

where d ∈ [0,∞), x ∈ R
p (RES) or x ∈ C

p (CES), the loca-
tion μ ∈ R

p (RES) or μ ∈ C
p (CES), and � is the real or

complex p × p positive semi-definite Hermitian scatter ma-
trix. When defined, their probability density functions (PDFs)
are of the form given by

fX (x;μ,�, φ, p, κ ) = κ pακ p|�|−κ/2φκ p (κd (x,μ,�)) ,

for some generating function φκ p(κd ), where κ = 1 corre-
sponds to the RES PDF and κ = 2 corresponds to the CES
PDF, and where the scalar constant ακ p ensures fX (x) inte-
grates to one. We denote RES generating functions with φp(d )
and CES generating functions with ϕp(d ), and they are related
as ϕp(d ) = φ2p(2d )—hence the compact notation φκ p(κd ).
RES generating functions are summarized for common RES
families in [33, Table A1] and CES generating functions for
common CES families in [34, Table 1]. Note that the RES
and CES mean is equal to μ when the distribution’s mean is
defined, and when the distribution’s covariance matrix, C, is
defined and full rank, then the covariance matrix is a scalar
multiple of the scatter matrix, with C = p−1 E[d]�, for both
RES [35] and CES [21] distributions.

The PDF of the corresponding RES and CES squared Ma-
halanobis distance is given by

fD (d;φ, p, κ ) = κ pβκ p dκ p/2−1φκ p (κd ) , d ∈ [0,∞),
(1)

where βκ p = ακ pπ
κ p/2/	(κ p/2). Not all distributions have

analytical expressions for ακ p, but ακ p can easily be calcu-
lated using the scalar equation (1) to numerically solve for βκ p

by ensuring (1) integrates to one. Hereafter, unless otherwise
noted, all densities, f (d ), refer to the density of d (x,μ,�) in
(1), so the subscript D will be omitted.

This paper assumes complex-valued data are CES and cir-
cularly symmetric about μ. Non-circular CES data can simply
be treated as 2p-RES data.

III. COMPLEX-VALUED S-ESTIMATORS
S-estimators were originally introduced for regression by
Rousseeuw [28] in 1984 as a more robust alternative to M-
estimators. In 1987, Davies [23] expanded the definition to
the real-valued estimation of multivariate location and scatter.
Using a more contemporary notation than Davies, we now
extend multivariate S-estimators of location and scatter to the
complex-valued domain with the following definition.

Definition 1 (Complex multivariate S-estimators): Given
a sample of n p-dimensional complex-valued observations,
{x1, . . ., xn}, complex-valued S-estimates of multivariate lo-
cation and scatter are defined by(

μ̂, �̂
) = arg min |�|

subject to
1

n

n∑
i=1

ρ

(
d (xi,μ,�)

σ

)
≤ b. (2)

VOLUME 4, 2023 209



FISHBONE AND MILI: HIGHLY ROBUST COMPLEX COVARIANCE ESTIMATORS WITH APPLICATIONS TO SENSOR ARRAY PROCESSING

The function ρ(t ) is a scalar, real-valued, nondecreasing,
and left-continuous function in t ≥ 0, with ρ(0) = 0 and ρ(t )
continuous at t = 0, and where there is a point c such that
ρ(t ) = ρ(∞) for t ≥ c.

It is often assumed that ρ(t ) is continuously differentiable,
in which case the inequality can be replaced with an equality.
The parameter b affects the estimator’s statistical robust-
ness and efficiency, and when b = (n − p − 1)ρ(∞)/(2n),
the maximum breakdown point (i.e., maximum outlier robust-
ness) is achieved. When b = E [ρ(d/σ )], then limn→∞ �̂n =
� almost surely; otherwise, �̂∞ is simply a real-valued scalar
multiple of �. The positive scalar σ may be chosen (solved
for analytically or numerically) to satisfy E [ρ(d/σ )] = b =
(n − p − 1)ρ(∞)/(2n) in order to obtain both consistency
and the maximum breakdown point. Except where otherwise
noted, this paper assumes S-estimators where both the consis-
tency and maximum breakdown point conditions hold.

When ρ(t ) is continuously differentiable, local solutions to
(2) can be found by iteratively evaluating

μ̂ =
∑n

i=1 w
(

d
(
xi,μ̂,�̂

)
σ

)
xi∑n

j=1 w
(

d
(
x j ,μ̂,�̂

)
σ

) , (3)

�̂ =
∑n

i=1 w
(

d
(
xi,μ̂,�̂

)
σ

)
(xi−μ̂)(xi−μ̂)H

σ∑n
j=1 ν

(
d
(
x j, μ̂, �̂

)
/σ

)
/p

, (4)

where the weight function is the derivative of the ρ function,
w(t ) = ρ′(t ), and ν(t ) = tw(t ) − ρ(t ) + b. Alternatively, �̂

can be calculated by neglecting the denominator in (4), and
then scaling its determinant, |�̂|, to satisfy the equality con-
straint in (2). To show that local solutions of (2) satisfy
(3)–(4), we can use the Lagrangian function

L =

− ln |V | − λ

(
1

n

n∑
i=1

ρ

(
(xi − μ)H V (xi − μ)

σ

)
− b

)
,

where V = �−1. Taking the Wirtinger derivatives results in

∂L
∂λ

= 1

n

n∑
i=1

ρ

(
d (xi,μ,�)

σ

)
− b = 0, (5)

∂L
∂μ

= λ

n

n∑
i=1

w

(
d (xi,μ,�)

σ

)
(xi − μ)H V

σ
= 0, (6)

∂L
∂μ∗ = λ

n

n∑
i=1

w

(
d (xi,μ,�)

σ

)
(xi − μ)� V �

σ
= 0, (7)

∂L
∂V

= −λ

n

n∑
i=1

w

(
d (xi,μ,�)

σ

)
(xi − μ)∗ (xi − μ)�

σ

− V −� = 0, (8)

∂L
∂V ∗ = 0.

Substituting the factorization � = AAH into (8) results in

− n

λ
I

=
n∑

i=1

w

(
d (xi,μ,�)

σ

)
A−1 (xi − μ) (xi − μ)H A− H

σ
.

Taking the trace of this equation gives

λ−1 = − 1

np

n∑
i=1

w

(
d (xi,μ,�)

σ

)
d (xi,μ,�)

σ
. (9)

Combining (9) with (5) and (8) results in (4). Solving for μ,

(6) and (7) both equal (3).
The formulation used in Definition 1 is convenient for prov-

ing properties of S-estimators. An alternative, and perhaps
more common, formulation is given by(

μ̂, �̂
) = arg min σ̂

subject to |�| = 1,

1

n

n∑
i=1

ρ

(
d (xi,μ,�)

σ̂

)
≤ b,

where the shape matrix, �, is the unit-volume scaled scatter
matrix given by � = �/|�|1/p, meaning |�| = 1. When ρ is
continuous, local solutions are found using the same weighted
sums (3) and (4), but with �̂ substituted for �̂, where �̂

is rescaled with each iteration so that |�̂| = 1, and with σ̂

substituted for σ , where σ̂ is the solution of (5) but using
σ̂ . See [29, Sec. 6.8.2 and Sec. 9.6] for more explicit details
on numerical solutions of S-estimators. This formulation is
convenient because it does not require the calculation of σ or
ν(·), and many practical applications only require the shape
matrix. The scatter matrix can be estimated by scaling �̂ using
(5), which then results in the same estimate as Definition 1. An
alternative and more robust estimate to scale �̂ is discussed
in [33] and given by

�̂ = Median
{
d
(
x1, μ̂, �̂

)
, . . . , d

(
xn, μ̂, �̂

)}
F−1(0.5)

�̂,

where F (d ) is the cumulative distribution function (CDF) cor-
responding to (1), and F−1(0.5) is the distribution’s median.

For the initial estimates in the iterative approach of (3)–(4),
it is generally recommended to use a highly robust, albeit less
statistically efficient, estimator such as the minimum volume
ellipsoid estimate obtained through subsampling (see [29,
Sec. 6.8]).

The result of Definition 1 and (3)–(4) is that the definition
and calculation of complex-valued S-estimators are a straight-
forward extension of real-valued S-estimators. However, some
of the ρ functions and properties need to be extended to the
complex-valued domain. These are addressed in the next two
sections, respectively.
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IV. ESTIMATOR ρ FUNCTIONS
There are four notable ρ functions used for location and
scatter S-estimators. Regression S-estimators were first in-
troduced with the minimum volume ellipsoid (MVE) ρ

function [28]. Although highly robust, the function is discon-
tinuous, resulting in poor statistical efficiency. The smooth
bisquare (alternatively known as biweight) function quickly
gained popularity for its improved efficiency, and it was
the standard for multivariate S-estimators when they were
introduced [23], [24]. However, for location and scatter esti-
mation, the bisquare is not tunable, and therefore its effective
robustness diminishes with large dimension, p. Rocke [25]
addressed this problem by introducing a tunable ρ function,
the biflat, which was later extended by Maronna et al. [36,
Sec. 6.4.4] and termed the Rocke function. The Rocke S-
estimator, however, can have poor efficiency—particularly for
low dimensions or non-Gaussian distributions. To improve the
efficiency of S-estimators, Fishbone and Mili [33] introduced
the tunable Sq ρ function for RES distributions.

These four ρ functions are now provided. The Rocke and
Sq functions assume real-valued data, so they are extended
to the complex domain. Later, in Section VI and Fig. 1, we
will explore examples of the corresponding weight functions
and compare them to weight functions for other estimation
techniques.

The minimum volume ellipsoid ρ function is given by
ρMVE (t ) = I(t > 1). This is discontinuous, so (3)–(4) do not
apply, and it has a slow asymptotic convergence rate of n−1/3,

unlike smooth ρ functions, which have convergence rates of
n−1/2. The minimum volume ellipsoid is often implemented
with subsampling (see [29, Sec. 6.8.4]), and it is applicable
for both real- and complex-valued data.

The ρ function for the bisquare is given by ρbisq(t ) =
min{1, 1 − (1 − t )3}, and the corresponding weight function
is given by wbisq(t ) = 3(1 − t )2 I(t ≤ 1). This is applicable
for both real and complex data.

The Rocke ρ and weight functions are given by

ργ (t ) =

⎧⎪⎪⎨⎪⎪⎩
0 if 0 ≤ t ≤ 1 − γ

t−1
4γ

[
3 −

(
t−1
γ

)2
]

+ 1
2 if 1 − γ < t < 1 + γ

1 if 1 + γ ≤ t

,

wγ (t ) = 3

4γ

[
1 −

(
t − 1

γ

)2
]

I(1 − γ ≤ t ≤ 1 + γ ),

where the tuning parameter γ ∈ (0, 1] increases the es-
timator’s robustness, and generally decreases the estima-
tor’s efficiency, as its value is decreased. While these
equations are the same for both real and complex data,
Maronna et al. [36, eq. (6.40)] suggest tuning this using
γ = min{χ2

p (1 − α)/p − 1, 1}, where χ2
p (1 − α) is the

(1 − α)th percentile of the chi-squared distribution. This
assumes real-valued Gaussian data and is designed to re-
ject observations with an approximate asymptotic rejection
probability of α. For CES Gaussian data, we note that

d ∼ Gamma(p, 1), and proceeding as in [36, Sec. 6.4.4], we
obtain γ = min{	−1

p,1(1 − α)/p − 1, 1}, where 	−1
p,1(1 − α) is

the inverse CDF of the Gamma(p, 1) distribution. Noting that
	−1

p,1(1 − α)/p = χ2
2p(1 − α)/(2p), we can compactly write

γ = min

{
χ2

κ p(1 − α)

κ p
− 1, 1

}
,

for RES (κ = 1) and CES (κ = 2) Gaussian data.
The Sq function is derived from a density-weighted max-

imum likelihood estimator for the scale of d (x;μ,�), and
it is defined for most common continuous RES distributions
(such as those in [33, Table A1]). The Sq function is tuned
with parameter q ≤ 1 and is given by

ρq(t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if q < 1 and t ≤ a

s1
(
ρ̃q(t ) − ρ̃q(a)

)
if q < 1 and a < t < c

1 if q < 1 and t ≥ c

ρ̃q(t ) if q = 1

,

where s1 = (ρ̃q(b) − ρ̃q(a))−1, and a is the minimum and
c the maximum of ρ̃q(t ), which is given by ρ̃q(t ) =
−t f ′(t )/ f q(t ). Using (1) and proceeding as in [33], we obtain
for both RES and CES distributions,

ρ̃q (t ) = − f (t )sq

(
κt

φ′
κ p(κt )

φκ p(κt )
+ sκ p

)
,

where sκ p = κ p/2 − 1, and sq = 1 − q, and the values of
a and c are summarized in Table 1 for general elliptically
symmetric subclasses. The values in Table 1 correspond to
the RES φ functions as defined in [33, Table A1]. The corre-
sponding Sq weight function is given by

wq(t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if q < 1 and t ≤ a

s1w̃q(t ) if q < 1 and a < t < c

0 if q < 1 and t ≥ c

w̃q(t ) if q = 1

,

with

w̃q(t ) = − κ f (t )sq

⎛⎝ sqs2
κ p

κt
+ (

2sqsκ p + 1
) φ′

κ p(κt )

φκ p(κt )

−qκt

(
φ′

κ p(κt )

φκ p(κt )

)2

+ κt
φ′′

κ p(κt )

φκ p(κt )

⎞⎠ .

There are a few important remarks about the Sq function.
Although the Sq is indexed to an assumed PDF, it is dis-
tributionally robust to model mismatch [33], which will be
illustrated in simulations later in this paper. When q = 1,

ρq(t ) is not generally a proper (bounded) S-estimator ρ

function, but it does correspond to the maximum likelihood
estimator for the scale of d. Using the Gaussian phi function
with q = 1 results in the sample estimators. When q < 1, βκ p

can be dropped from the calculations of ρq(t ) and wq(t ) for
simplicity. Finally, in some cases, there are a few restrictions
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TABLE 1. Sq Inlier and Outlier Rejection Points for Common RES/CES Families

TABLE 2. Restrictions on Parameter q for Common RES/CES Families

on q beyond q ≤ 1. These follow directly from the real-valued
restrictions in [33] and are summarized in Table 2.

V. PROPERTIES OF COMPLEX-VALUED S-ESTIMATORS
Properties of complex-valued S-estimators will now be pro-
vided. Some of the properties follow directly from their
real-valued counterparts provided by Davies [23] and Lop-
uhaä [24], [37]. Note that Davies defines S-estimators using
the function κ (t ) and the robustness value ε, where κ (t ) =
1 − ρ(t )/ρ(∞), and ε = b/ρ(∞). Lopuhaä defines ρL as a
function of the Mahalanobis distance, not the squared Ma-
halanobis distance (i.e., ρL (

√
t ) = ρ(t )). Both authors absorb

the constant σ into their definition of ρ(t ).
In this section, we define three sets of assumptions. As-

sumptions (A0) are the basic assumptions of the distribution
in order to establish the S-estimator properties. These assump-
tions are

(A0) b = E[ρ(d/σ )],

xi ∼ CES (μ,�, ϕ, p) , where xi are i.i.d.,

ϕp(d ) is non-increasing,

ϕp(d ),−ρ(d/σ ) have common point(s) of decrease.

These follow straightforwardly from the RES case. Most com-
mon continuous CES distributions satisfy these assumptions,
including those in [33, Table A1].

Assumptions (A1) are assumptions on the derivatives of
the ρ function that enable the derivation of the asymptotic
distribution and influence functions of S-estimators. Assump-
tions (A1) depend on whether the data come from RES or
CES distributions, so we parameterize them with κ . These
assumptions are

(A1) w(t ) and w′(t ) are bounded and continuous,

E
[
w(d/σ ) + (3 − κ )p−1(d/σ )w′(d/σ )

]
> 0,

E
[
(p + 3 − κ )(d/σ )w(d/σ )

+ (3 − κ )(d/σ )2w′(d/σ )
]

> 0.

Finally, Assumptions (A2) provide an alternate set of assump-
tions to Assumptions (A1) for the asymptotic distribution.
These assumptions are

(A2) w(t ) and tw(t ) are of bounded variation,

φ′
p(t ) is continuous and decreasing with φ′

p(d ) < 0.
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The proofs in this paper utilize Assumptions (A0) and (A1),
but we also provide results under Assumptions (A2) and leave
it to future work to derive the proofs under those assumptions.

A. BASIC PROPERTIES
The affine equivariance, uniqueness, existence, consistency,
and breakdown point of complex-valued S-estimators follows
directly from their real-valued counterparts. For complete-
ness, we briefly summarize those properties here.

Complex-valued S-estimators are affine equivariant, which
follows directly from their definition and is discussed for the
real-valued case in [23, p. 1271].

Theorem 1 (Uniqueness): Assuming (A0), the solution of
minimizing |�̂| subject to

∫
C

p
ρ

(
d
(
x, μ̂, �̂

)
σ

)
fX (d (x,μ,�)) dx = b

has a unique solution (μ̂, �̂) = (μ,�).
Proof: The proof follows the same as for [23, Th. 1]. �
Remark 1: While this establishes the asymptotic unique-

ness for most elliptical distributions, note that S-estimators
generally have many finite-sample solutions (i.e., (2) is non-
convex for the finite-sample case).

Theorem 2 (Existence): Assuming (A0), if n ≥ (p +
1)/(1 − b/ρ(∞)), then (2) has at least one solution with prob-
ability one.

Proof: The proof follows the same as for [23, Th. 2]. �
Theorem 3 (Consistency): Assuming (A0), given b =

E[ρ(d/σ )], and assuming that p + 1 ≤ n(1 − b/ρ(∞)), then,
almost surely,

lim
n→∞

(
μ̂n, �̂n

) = (μ,�) .

Proof: The proof follows the same as for [23, Th. 3]. �
The finite-sample breakdown point of a multivariate es-

timator of location and scatter is an important measure of
robustness and is defined to be the proportion of the sample
that can be set such that either ‖μ̂‖ = ∞ or that an eigenvalue
of �̂ can be driven to either zero or infinity [38]. In the
following, the meaning of a sample in general position is that
at most p observations lie in any hyperplane of dimension less
than p.

Theorem 4 (Breakdown point): Assuming (A0), when n
observations are in general position, with n(1 − 2b/ρ(∞)) ≥
p + 1, the breakdown point of complex-valued S-estimators
is (�nb/ρ(∞)� + 1)/n.

Proof: The proof follows the same as for [23, Th. 5],
which assumes that ρ(δ) = 0, for some δ > 0. Lopuhaä and
Rousseeuw [38, Th. 3.2] provide an alternative proof that does
not require δ > 0 but that assumes ρ(t ) is twice continuously
differentiable. �

Corollary 1: The maximum breakdown point is �(n −
p + 1)/2�/n, which is achieved when b/ρ(∞) = 1/2 − (p +
1)/(2n).

Remark 2: S-estimators, therefore, obtain the maximum
theoretical breakdown point that any affine equivariant esti-
mator may achieve [23, Th. 6].

B. ASYMPTOTIC NORMALITY
To derive the asymptotic normal distribution of complex-
valued multivariate S-estimators for CES distributions, we can
utilize the local solutions (3) and (4). We first recall the RES
asymptotic distribution and then state the CES asymptotic
distribution. To prove the CES asymptotic distribution, we
map complex-valued S-estimates to real-valued ones, derive
those real-valued distributions, then map the result back to the
complex-valued domain.

Using the real-valued equivalents of (3) and (4), Lopuhaä
[24] derived the asymptotic distribution of real-valued S-
estimates of location and scatter using Assumptions (A1).
Lopuhaä [37] then extended his previous results using As-
sumptions (A2) instead of Assumptions (A1). When both
(A1) and (A2) are true, both approaches lead to different, but
equal, formulations, which are now summarized. The asymp-
totic distribution of real-valued multivariate S-estimates is
given by √

n
(
μ̂n − μ, vec

(
�̂n − �

)) d→ (a, b) , (10)

with a ⊥ b, where a ∼ N (0,�μ,R = ω1,R

ω2
2,R

�) with

ω1,R = 4p−1 E
[
dw2(d/σ )

]
,

ω2,R =
{

2 E
[
w(d/σ ) + 2p−1(d/σ )w′(d/σ )

]
(A1)

−2βp
∫ ∞

0 2p−1d p/2w(d/σ )φ′
p(d ) dd (A2),

and where b ∼ N (0,��,R), with

��,R = ζ1,R (I + K ) (� ⊗ �) + ζ2,R vec (�) vec (�)� ,

ζ1,R=λ−2
1,R

p(p + 2) E
[
(d/σ )2 w2(d/σ )

]
,

ζ2,R=λ−2
2,R

E
[
(ρ(d/σ ) − b)2] − 2p−1ζ1,

λ1,R=
{

E
[
(p+2)(d/σ )w(d/σ )+2(d/σ )2 w′(d/σ )

]
(A1)

−2βp
∫ ∞

0 σ−1d p/2+1w(d/σ )φ′
p(d ) dd (A2),

λ2,R=
{

E [(d/σ )w(d/σ )] (A1)

−βp
∫ ∞

0 d p/2 (ρ(d/σ ) − b) φ′
p(d ) dd (A2).

We now extend this result to complex-valued S-estimates.
Theorem 5 (Asymptotic normality): Assuming (A0) and

(A1), the asymptotic distribution of (μ̂n, �̂n) is given by

√
n
(
μ̂n − μ, vec

(
�̂n − �

)) d→ (a, b) ,

with a ⊥ b, where a ∼ CN (0,�μ = ω1
ω2

2
�) with

ω1 = p−1 E
[
dw2(d/σ )

]
,

ω2 = E
[
w(d/σ ) + p−1(d/σ )w′(d/σ )

]
, (11)
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and where b ∼ GCN (0,��,C� = ��K ) with

�� = ζ1�
� ⊗ � + ζ2 vec (�) vec (�)H ,

ζ1 = λ−2
1 4p(p + 1) E

[
(d/σ )2 w2(d/σ )

]
,

ζ2 = λ−2
2 E

[
(ρ(d/σ ) − b)2] − p−1ζ1,

λ1 = 2 E
[
(p + 1)(d/σ )w(d/σ ) + (d/σ )2 w′(d/σ )

]
, (12)

λ2 = E [(d/σ )w(d/σ )] . (13)

C. PROOF OF THEOREM 5
In order to prove Theorem 5, we can exploit the S-estimator
solution equations given by (3) and (4). These equations can
be considered to be of the form of an M-estimator, but require
a more general multivariate M-estimator definition than was
introduced by Maronna [27] and is usually defined in the
literature (for example, see [20], [21], [29], [39]). This more
prevalent M-estimator definition is defined with equations
similar to (3) and (4), but without the function ν(t ), which
is instead replaced by the constant p. For this proof, we take
an approach similar to [17, Th. IV.1] for M-estimators, but we
have to extend it to allow for the definition of ν(t ) in (4). It
is ν(t ) that incorporates the constraint (5), which is the key to
the high breakdown point of S-estimators.

1) DEFINITIONS
Let us define the functions

h(a) = [
Re(a)� Im(a)�

]�
,

g(A) = 1

2

[
Re(A) − Im(A)
Im(A) Re(A)

]
,

the skew-symmetric orthogonal matrix

P =
[

0p×p −Ip×p

Ip×p 0p×p

]
,

and the vectors and matrices μR = h(μ), μ̂R
n = h(μ̂n),

�R = g(�), �̂R
n = g(�̂n), u = h(x), v = Pu, μu = h(μ),

and μv = Pμu. The vectors u ∼ RES(μu,�R, φ, 2p) and
v ∼ RES(μv,�R, φ, 2p).

Note that g(xxH) = (uu� + vv�)/2, and for any p × p
Hermitian matrix A, 2xHA−1x = u�g(A)−1u = v�g(A)−1v

[20]. Therefore, we have 2d (x, μ̂n, �̂n) = d (u, μ̂R
n , �̂R

n ) =
d (v, Pμ̂R

n , �̂R
n ). Defining ρ

R
(t ) = ρ(t/2) gives wR(t ) =

w(t/2)/2 and νR(t ) = ν(t/2). Applying h(·) to (3) gives

μ̂R

n =
∑n

i=1 wR

(
d
(
ui,μ̂

R
n ,�̂R

n
)

σ

)
ui∑n

j=1 wR

(
d
(
u j ,μ̂

R
n ,�̂R

n
)

σ

) , (14)

and applying g(·) to (4) gives

�̂R

n = 1

2

∑n
i=1 wR

(
d
(
ui,μ̂

R
n ,�̂R

n
)

σ

) (
ui−μ̂R

n
)(

ui−μ̂R
n
)�

σ∑n
j=1 νR

(
d
(
u j, μ̂R

n , �̂R
n

)
/σ

)
/(2p)

+ 1

2

∑n
i=1 wR

(
d
(
vi,Pμ̂R

n ,�̂R
n
)

σ

) (
vi−Pμ̂R

n
)(

vi−Pμ̂R
n
)�

σ∑n
j=1 νR

(
d
(
v j, Pμ̂R

n , �̂R
n

)
/σ

)
/(2p)

.

(15)

Now applying (3) and (4) for real-valued S-estimates of lo-
cation and scatter for u, and rearranging for later simplicity,
gives

0 = 1

n

n∑
i=1

wR

⎛⎝d
(

ui, μ̂
u
n, �̂

u
n

)
σ

⎞⎠(
ui − μ̂u

n

)
, (16)

0 = 1

n

n∑
i=1

wR

⎛⎝d
(

ui, μ̂
u
n, �̂

u
n

)
σ

⎞⎠ (
ui − μ̂u

n

) (
ui − μ̂u

n

)�
σ

− 1

2p
νR

⎛⎝d
(

ui, μ̂
u
n, �̂

u
n

)
σ

⎞⎠ �̂
u
n. (17)

Equivalently for v, we have

0 = 1

n

n∑
i=1

wR

⎛⎝d
(
vi, μ̂

v
n, �̂

v

n

)
σ

⎞⎠(
vi − μ̂v

n

)
, (18)

�̂
v

n =

∑n
i=1 wR

(
d
(
vi,μ̂

v
n,�̂

v
n

)
σ

)
(vi−μ̂v

n )(vi−μ̂v
n )�

σ∑n
j=1 νR

(
d
(
v j, μ̂

v
n, �̂

v

n

)
/σ

)
/(2p)

. (19)

2) ASYMPTOTIC RELATION BETWEEN REAL ESTIMATES
Lemma 1 (Consistency of �̂

u
n and �̂

v

n):

�̂
u
∞ = �u = �R = �v = �̂

v

∞

Proof: By [23, Th. 3], (14) and (15) are consistent esti-
mates. The u and v estimator equations (16)–(19) match the
form of the S-estimator equations (3)–(4). Applying (1) to the
consistency constraint that b = E[ρ(d/σ )], we have

E

[
ρ
R

(
d
(
u;μu,�R

)
σ

)]

= E

[
ρ
R

(
d
(
v;μv,�R

)
σ

)]

=
∫ ∞

0
ρ
R

(
du

σ

)
f (du;φ, 2p, 1) ddu

=
∫ ∞

0
ρ

(
dx

σ

)
f (dx;φ, p, 2) ddx

= E

[
ρ

(
d (x;μ,�)

σ

)]
= b.
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Therefore, by Theorem 3 and [23, Th. 3], we have
consistency. �

Lemma 2: μ̂R
n

a∼ μ̂u
n and �̂R

n
a∼ 1

2 (�̂
u
n + �̂

v

n ), and asymp-
totically, μ̂R

n ⊥ �̂R
n and μ̂u

n ⊥ �̂
u
n.

Proof: See Appendix A. �

3) ASYMPTOTIC DISTRIBUTION
The final part of this proof directly follows parts three of
the proofs of [20, Th. IV.1] and [17, Th. IV.1], but using
the asymptotic distribution of real-valued S-estimators (10).
The inverse transformation matrix g = [Ip,− jIp]� gives, for
any p × p Hermitian matrix A, A = gHg(A)g, and it gives
x = gHh(x).

Using �R = �u from Lemma 1 and μ̂R
n

a∼ μ̂u
n from

Lemma 2, and applying μ̂n = gHμ̂R
n , it is found that

�μ = gHn E
[(

μ̂u
n − μu

) (
μ̂u

n − μu
)�] g

= gH

[
ω1,R

ω2
2,R

�R

]
g = ω1,R

ω2
2,R

�,

where the scalars ω1,R and ω2,R are given in (10) using 2p,
wR(d (u;μu,�u)/σ ), and w′

R
(d (u;μu,�u)/σ ). Substituting

in x, w(·), and w′(·), results in the expressions stated in the
theorem. Using the same approach, it is found that

Cμ = gHn E
[(

μ̂u
n − μu

) (
μ̂u

n − μu
)�]

g∗ = 0.

Similarly, applying �̂n = gH�̂R
n g and Lemmas 1 and 2, it is

found that [17, e.q. (20)–(23)]

�� = n E
[
vec

(
�̂n − �

)
vec

(
�̂n − �

)H
]

=
(

g� ⊗ gH
)

��u,R

(
g� ⊗ gH

)H
,

where ��u,R is given in (10) using 2p, ρR(d (u;μu,�u)/σ ),
wR(d (u;μu,�u)/σ ), and w′

R
(d (u;μu,�u)/σ ). Substituting

in � = gH�ug, x, ρ(·), w(·), and w′(·), results in the expres-
sions stated in the theorem. We also have [17, e.q. (28)–(30)]

Cμ = n E
[
vec

(
�̂n − �

)
vec

(
�̂n − �

)�]
= n E

[
vec

(
�̂n − �

)
vec

(
�̂n − �

)H
K
]

= ��K.

4) COMMENTS
Assuming Lemma 2 holds under Assumptions (A2), then The-
orem 5 also holds under (A2) without needing (A1). In this
case, we have

ω2 = −2p+1β2p

∫ ∞

0
p−1d pw(d/σ )φ′

2p(2d ) dd, (20)

λ1 = −2p+2β2p

∫ ∞

0
σ−1d p+1w(d/σ )φ′

2p(2d ) dd, (21)

λ2 = −2p+1β2p

∫ ∞

0
d p (ρ(d/σ ) − b) φ′

2d (2 d ) dd. (22)

An alternative approach for calculating the asymptotic vari-
ance is to use the influence function, with [40, Sec. IV.B]

�T = E
[
vec (IF (z; T )) vec (IF (z; T ))H

]
,

CT = E
[
vec (IF (z; T )) vec (IF (z; T ))�

]
,

where the influence function, IF(·), for the estimate T will
now be defined and derived.

D. INFLUENCE FUNCTION
The influence function (IF) is another important measure of
asymptotic robustness [41]. The influence function can be
seen as a function that characterizes the sensitivity to an
infinitesimal point contamination at location z ∈ C

p, stan-
dardized by the probability (mass) of the contamination, ε.

Boundedness and continuity of the influence function are
critical for robust estimators since these characteristics im-
ply limited effects from small amounts of contamination.
Additionally, from the influence function, other important ro-
bustness measures can be calculated, such as the asymptotic
rejection point, gross-error sensitivity, and local-shift sensitiv-
ity. For an estimator T at nominal distribution F , the influence
function is defined as

IF (z; T , F ) = lim
ε→0+

T ((1 − ε)F + ε�z) − T (F )

ε

= ∂

∂ε
T ((1 − ε)F + ε�z)|ε=0,

where the ε proportion of the sample is a point-mass, �z, at
location z.

Theorem 6 (Influence function): Assuming (A0) and (A1),
the influence functions of μ̂ and �̂ are given by

IF (z;μ, F ) = 2
√

dzw(dz/σ )

ω2

zc√
dz

,

IF (z;�, F ) = ρ (dz/σ ) − b

λ2
�

+ 2p(p + 1)dzw (dz/σ )

σλ1

(
zczH

c

dz
− 1

p
�

)
,

(23)

where zc = z − μ, dz = zH
c �−1zc, ω2 is given by (11), λ1 is

given by (12), and λ2 is given by (13).
Proof: See Appendix B. �
Assuming Lemma 2 holds under Assumptions (A2), then

Theorem 6 also holds under (A2) without needing (A1). In
this case, ω2, λ1, and λ2 are respectively given by (20)–(22).

VI. ASYMPTOTIC COMPARISON WITH M-ESTIMATORS
The asymptotic statistical performances of S-estimators are
now compared with other common estimation techniques,
specifically, the traditional sample covariance matrix (SCM)
estimator and the common Huber M-estimator. The SCM
is an M-estimator with w(t ) = 1 and is the maximum like-
lihood estimator for mean and covariance at the Gaussian
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FIGURE 1. Normalized asymptotic weight functions at the
five-dimensional CES Gaussian distribution. The reference PDF is also
plotted.

distribution. The Huber weight function is given by wh(t ) =
ζ · min{1, h/t}, where the parameter h controls the estimator’s
robustness and the parameter ζ affects the estimator’s consis-
tency.

As mentioned above, multivariate M-estimators of location
and scatter are commonly defined with equations similar to (3)
and (4), but with ν(t ) = p. For comprehensive details on the
common M-estimator assumptions, see [27] and [21]. Most
notably, however, their weight functions are usually assumed
to be continuous and nonincreasing, and tw(t ) is usually as-
sumed to be nondecreasing [42]. The implication of this is
that M-estimators are what Maronna et al. [29] call monotone
estimators. Monotone M-estimators provide the benefit of a
unique solution, but as previously mentioned, have limited
outlier robustness. As discussed above, S-estimators solved
with (3) and (4) only have unique solutions asymptotically
(under Assumptions (A0)), but they are highly robust.

To explore the asymptotic performance of S-estimators,
and for a fair comparison with M-estimators, we follow an
approach similar to that used by Ollila and Koivunen [22] to
introduce and explore complex-valued M-estimators. We start
by comparing the weight functions of the different estimation
methods. The influence functions and asymptotic efficiencies
are then compared through the lens of a common signal
processing application, adaptive beamforming. Although the
results here are through the lens of beamforming, the relative
and qualitative results generally apply across most applica-
tions. Here, the focus is on the estimation of scatter matrices
since they generally have significantly larger errors than lo-
cation estimates, and they tend to drive overall estimator
performance [26], [33].

The array processing technique employed here is Capon’s
minimum variance distortionless response (MVDR) beam-
former [43]. The adaptive MVDR array weights are given by
w = (sH�̂−1s)−1�̂−1s, where �̂ is the estimated scatter of the
received signal, and s is the array response (or steering) vector.

A. ESTIMATOR WEIGHT FUNCTIONS
To help convey an initial understanding of the relative benefits
of S-estimators, Fig. 1 plots normalized asymptotic estimator
weight functions at the CES Gaussian distribution with p = 5.

The bisquare, Rocke, and Sq S-estimators are compared with

the Huber M-estimator and the SCM. For reference, the prob-
ability density function is also plotted. By definition, the SCM
weights, wscm, are uniform, no matter how large the outlier.
The bisquare S-estimator, wbisq, is also not tunable. For the
other estimators, their tuning parameters affect their cutoff
points.

For the Huber weight function, wh, we chose h = p and
ζ such that σ = 1. The Huber function provides uniform
weighting for observations of squared distance less than h.

Therefore, at the limit as h → ∞, the SCM is obtained.
As h → 0, the Huber M-estimator becomes more robust.
For squared distances slightly above h, the weight function
first drops off rapidly, but for larger d, the function only
slowly approaches zero. In fact, multivariate M-estimator
weight functions only asymptotically approach zero [42],
which means outliers will always receive positive weight, no
matter how large.

The benefit of S-estimators is apparent by the fact that S-
estimators give zero weight to large outliers. The Rocke and
Sq S-estimators also give zero weight to small inliers. For the
plot in Fig. 1, we used the moderate tuning values α = 0.05
for the Rocke S-estimator weights, wγ , and q = 0.9 for the
Sq-estimator weights, wq. A benefit of the Sq-estimator is that
its weight function follows the general shape of the assumed
PDF, providing more weight to more probable observations
and less weight to less probable ones.

B. MVDR INFLUENCE FUNCTION
The influence function of the MVDR beamformer is now used
to better understand the benefits of S-estimators for practical
applications. Ollila and Koivunen [22, Th. 1] derived the in-
fluence function of the centered adaptive MVDR beamformer
for CES distributions, giving

IF (z; w�, F ) = α�(dz )
(

wsH − I
) �−1zczH

c w
dz

,

where the function α�(dz ) depends on the estimator, and the
other variables are defined as before. For M-estimators of
scatter, they gave

α�,M (t ) = (t/σ ) w (t/σ )

1 + (
p2 + p

)−1
E
[
w′ (d/σ ) (d/σ )2] .

For S-estimators of scatter, by applying [22, Lemma 1] to (23),
it is seen that

α�,S (t ) = 2p(p + 1)λ−1
1 (t/σ ) w (t/σ ) .

Fig. 2 plots α�(t ) for the same estimators as depicted in
Fig. 1. Here, however, the Huber M-estimator was changed
to have h = 1 (and ζ such that σ = 1) to emphasize the fact
that inliers influence M-estimates [42]. Additionally, although
M-estimators can have bounded influence functions, exceed-
ingly large outliers are still able to influence their results,
resulting in large biases. S-estimators, however, provide the
benefit of nulling the influence of large outliers. Additionally,
some S-estimators, such as the Rocke and Sq, can also null the
influence of inliers.
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FIGURE 2. α�(dz ) of the MVDR influence functions at the five-dimensional
CES Gaussian distribution.

FIGURE 3. MVDR asymptotic relative efficiencies versus tuning parameter
at the two-dimensional CES K-distribution with ν = 1.

C. MVDR ASYMPTOTIC EFFICIENCY
Estimator efficiency is an important performance metric that
conveys the rate of the estimator’s convergence with respect
to sample size. Ollila and Koivunen [22, Th. 2] derived the
asymptotic covariance matrix of the centered adaptive MVDR
beamformer for CES distributions, giving

ASC (ŵ�; F ) = ξ

(
�−1

sH�−1s
− wwH

)
,

where ξ = E[α2
�(d )]/(p2 + p). They also showed that the

asymptotic MVDR pseudo-covariance matrix is zero. The
MVDR asymptotic relative efficiency (ARE) is then defined
as the ratio of ξ for the maximum likelihood estimator to ξ for
the given estimator, that is,

ARE (ŵ�; F ) = Tr [ASC (ŵmle; F )]

Tr [ASC (ŵ�; F )]
= ξmle

ξ�̂

.

Historically, a major drawback of S-estimators has been
poor efficiency at many non-Gaussian distributions. With
the introduction of the Sq-estimator, however, efficiency was
greatly improved. Fig. 3 plots the MVDR asymptotic rela-
tive efficiency as a function of estimator tuning parameter
for the Huber M-estimator, and Rocke and Sq S-estimators

at the two-dimensional CES K-distribution with ν = 1. The
K-distribution is defined by ϕp(t ) = √

t
ν−p

Kν−p(2
√

νt ). For
the Huber M-estimator, ζ was chosen such that σ = 1 for con-
sistency at the assumed K-distribution. As seen in the plot, the
Sq-estimator provides superior efficiency as compared to the
Rocke S-estimator. The M-estimator class includes maximum
likelihood estimators, so whereas M-estimators are generally
able to achieve higher efficiencies than S-estimators, the Sq-
estimator is able to achieve an efficiency nearly as high as the
Huber M-estimator in this example.

Although Huber’s estimator is perhaps the most commonly
applied tunable M-estimator, tuning it is complicated by the
fact that it has two parameters, h and ζ , and its efficiency
as a function of parameter h can be non-convex, as seen in
Fig. 3. The tunable S-estimators discussed here, however, have
a single tuning parameter that generally controls the efficiency
monotonically, which makes their tuning simpler.

VII. FINITE-SAMPLE PERFORMANCE SIMULATIONS
The finite-sample performances of S-estimators are now com-
pared to M-estimators by way of simulations. While the
focus continues to be primarily on robustness to outliers,
we also include a mismatched Sq-estimator in order to il-
lustrate its distributional robustness. Additionally, we also
include a complex-valued R-estimator—a rank-based class of
robust estimators introduced by Hallin, Oja, and Paindaveine
in [44] for RES shape matrix estimation and recently ex-
tended to CES data by Fortunati, Renaux, and Pascal in [45].
R-estimators are designed to be distributionally robust and
computationally efficient—unlike M- and S-estimators, they
do not require iterative computation to solve [46].

The application used for demonstration is non-coherent sig-
nal direction-of-arrival (DOA) estimation using the multiple
signal classification (MUSIC) algorithm [47], which provides
much higher resolution than the MVDR beamformer for DOA
applications [48]. The sensor model employed was a uniform
linear array of p = 10 elements spaced at half-wavelengths,
and the simulation used narrowband plane waves. The steering
vector is given by

s(θ ) = [
1, exp(−1π j sin(θ )), . . . , exp(−9π j sin(θ ))

]�
.

The MUSIC pseudospectrum (i.e., spectral power as a func-
tion of angle) is given by

P(θ ) = 1

s(θ )HÊÊHs(θ )
,

where Ê is an estimate of E, the matrix whose columns are
the eigenvectors that span the noise subspace. The number
of signals, ns, was assumed known, and Ê was obtained by
horizontally stacking the p − ns eigenvectors corresponding
to the smallest eigenvalues of the estimated shape matrices.
The direction-of-arrival estimates were then determined as the
ns largest peaks of P(θ ).

We first simulated a quadrature phase shift keying (QPSK)
signal at +20◦ off the array normal. The noise was complex
K-distributed with ν = 10, zero mean, and scatter matrix I.
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The QPSK signal was scaled to achieve 3 dB signal-to-noise
ratio (SNR) incident on the array.

To estimate location and shape, we used a small sample
of 30 snapshots (n = 3p). The estimators employed were
the SCM, minimum volume ellipsoid (MVE), matched and
mismatched Sq-, Tyler M-, and matched R-estimators. We
implemented the MVE estimator using the subsampling tech-
nique as recommended by Maronna et al. [29, Sec. 6.8.4]
with subsample size of 30. The matched Sq-estimator was
configured for the ν = 10 K-distribution. One can use an
auxiliary estimator of ν for the Sq model, but for these sim-
ulations, the mismatched Sq-estimator was configured for the
K-distribution with a constant model error with ν = 100. Both
Sq-estimators were initialized using the MVE estimate, and
they were both set to their maximum breakdown point with
b = (n − p − 1)/(2n). The Tyler estimator [49], MTy , is very
popular in the signal processing literature [39, Sec. 4.4.3]. It
is obtained by taking Huber’s M-estimator to its robust limit
at h → 0, and the resulting scatter weight function is simply
wT (t ) = 1/t—note that this is unbounded at t = 0 and may
result in estimator instability [29, Sec. 6.3.3]. Finally, we also
included the R-estimator as described in [50] by using soft-
ware provided at [46]. For the R-estimator, we used the score
function given by [45, eq. (30)] assuming the same model as
for the matched Sq-estimator—a ν = 10 K-distribution.

A finite-sample efficiency of a MUSIC direction-of-arrival
estimator can be defined as the mean squared error of the
estimate in the absence of contamination. For a fair compar-
ison, and using this definition, the matched Sq-estimator was
tuned to obtain the same efficiency as the MTy-estimator, with
q = 0.865. The mismatched Sq-estimator used this same value
of q.

Samples were contaminated using replacement, where the
elements of each contaminated observation, x, were set to
xi = k. Using a large outlier value of k = 100 to highlight the
effects of outliers, the top of Fig. 4 plots the root mean squared
error (RMSE) of the direction estimates versus the number
of contaminated observations. The SCM was breaking down
with a single outlier. Tyler’s M-estimator was breaking down
with three outliers. Because the R-estimator implementation
described in [50] uses the MTy -estimator for initialization, it
too performed poorly with three outliers. The MVE and Sq-
estimators, however, did not break down. Although the MVE
estimator is highly robust, it lacks efficiency, as seen with the
higher RMSE as compared to the Sq-estimator. The distribu-
tional robustness of the Sq-estimator means that it maintains
high efficiency, even under model mismatch. This is evident
with the similar RMSEs of the mismatched and matched Sq-
estimates. To improve the performance of the R-estimator, we
also tried initializing it with the MVE estimate, as we did for
the Sq-estimators. The result was a more robust R-estimator,
but with only slight improvement over the MVE estimator
alone.

For scatter and other normal matrices, the condition number
is the ratio of the largest to the smallest eigenvalue, and large
condition numbers indicate numerically singular matrices. To

FIGURE 4. Root mean squared errors of direction-of-arrival estimates
versus the number of contaminated observations (a), and corresponding
scatter matrix condition number (b).

further illustrate the breakdown of the estimators as a function
of the number of outliers, the bottom of Fig. 4 plots the
average matrix condition number. Due to the breakdown of
the MTy-estimator and its non-uniform weighting, it becomes
substantially more ill-conditioned than even the SCM for just
a few outliers.

Next, we briefly diverge from the focus on robustness to
outliers and explore the distributional robustness of the es-
timators. Fig. 5 illustrates the uncontaminated performance
of the estimators as a function of the K-distribution param-
eter ν. The Sq-estimator was fixed with parameter ν = 10.

Fig. 5(a) depicts the DOA RMSE for the estimators. Fig. 5(b)
plots the Frobenius norm of the mean squared error of the
noise-only shape matrix estimates [16, eq. (69)], and these are
compared to the complex constrained semiparametric Cramér-
Rao bound (CCSCRB) normalized by n [16, eq. (32)]. In
both of these, the MTy-estimator performs well due to the
lack of contamination, and the Tyler-initialized R-estimator
generally provides slight improvement over the estimator used
to initialize it. For the mismatched Sq-estimator where the
underlying distribution had a larger ν, the estimator actu-
ally performed better than the MTy-estimator, and almost as
well as the Tyler-initialized R-estimator. However, its per-
formance did fall off some for distributions with smaller ν.
Although setting a smaller value of q results in an Sq-estimate
that is more robust to outliers, setting a larger value for q
generally results in an estimator that is more robust to pertur-
bations in the assumed model [33]. This is evident in Fig. 5
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FIGURE 5. Root mean squared errors of uncontaminated direction-of-
arrival estimates versus distribution parameter ν (a), and RMSE and
CCSCRB metrics for noise-only scatter matrix estimates (b).

where we also included an Sq-estimator where we set q =
0.998. This estimator performed very well against the model
mismatch.

Next, we added additional QPSK signals at −37◦, −30◦,
10◦, 30◦, and 40◦, each of equal power to the 20◦ signal.
Using three contaminated observations, Fig. 6 depicts the
normalized average achieved pseudospectrum of each esti-
mator as well as the ideal MUSIC pseudospectrum obtained
from the true shape matrix. Only the MVE and Sq-estimators
were able to resolve all of the signals. The higher efficiency
of the Sq-estimator resulted in taller and sharper peaks than
the MVE estimator, and this corresponds to a higher prob-
ability of detection and higher DOA accuracy, respectively.
The pseudospectrums from the MTy -estimator and the Tyler-
initialized R-estimator did not resolve the two signals at
−37◦ and −30◦. They also only exhibited three peaks for
the four signals between 10◦ and 40◦, and none of the peaks
coincided with any of the true signals. Finally, both the MTy -
estimator and the Tyler-initialized R-estimator resulted in a
false detection at 0◦, which was driven by the contaminated
observations.

To characterize the variability of the pseudospectrum esti-
mates, the plot in Fig. 6(c) shows the corresponding standard
deviation of the achieved pseudospectrums in dB. For prac-
tically all angles, the Sq-estimators exhibited the lowest
variability, and the MVE estimator generally produced the

second-lowest variability. Tyler’s M-estimator and the Tyler-
initialized R-estimator exhibited the highest variability.

As observed above, when the R-estimator is initialized
with a poor estimate of location and scatter, the resulting
R-estimate is likewise of poor accuracy. Therefore, we tried
initializing the R-estimator with the S-estimates. Fig. 6(b)
is the same as Fig. 6(a) except that we include two R-
estimators, one initialized with the MVE estimator and one
with the Sq-estimator. For clarity, the figure is zoomed into
the four signals between 10◦ and 40◦. We have also in-
cluded the mismatched Sq-estimator. Then, to see the effects
of sample size, Fig. 6(d) depicts the same simulation as in
Fig. 6(b) but with 10× the number of samples (n = 30p),
and correspondingly, 10× the number of outliers. For both
the small- and large-sample cases, the relative results be-
tween the estimators is the same, and the larger sample
size provides a better estimate of the shape matrix, resulting
in taller and sharper pseudospectrum peaks. Both Fig. 6(b)
and 6(d) illustrate the mismatched Sq-estimator performing
approximately as well as the matched one—illustrating dis-
tributional robustness—with both Sq-estimators performing
the best of the lot. Both the MVE-initialized R-estimator and
the Sq-initialized R-estimator perform much better than the
Tyler-initialized one, and the Sq-initialized R-estimator per-
formed the best of the three. However, both the MVE- and
Sq-initialized R-estimators demonstrate clear bias (of approx-
imately 0.5◦−1◦) in the mean signal locations.

Finally, we test the estimators’ ability to achieve high-
resolution DOA estimates with the MUSIC algorithm. The
angular resolution of this algorithm is driven by the efficiency
of the shape matrix estimators as well as by the SNR. Here,
we used the same estimators and configuration as we used
for Fig. 6(b), except with only two signals, closely spaced
at 3◦ apart (10◦ and 13◦). Fig. 7(a) depicts the empirical
probability of detecting both signals as a function of the
SNR incident on the array. A detection was counted if the
MUSIC algorithm resulted in both signal direction estimates
being within 3◦ of their true direction. The relative estimator
performance results of this simulation generally match those
above when the SNR is below about 20 dB—the matched
and mismatched Sq-estimators performing the best, and the R-
estimator performing approximately as well as the estimator
used to initialize it. However, around 30 dB, the R-estimator
exhibits a strong instability that drives down its ability to
resolve the two signals. Fig. 7(b) then depicts the results of
the same simulation but without outliers. As expected, the
S-estimators perform slightly better without outliers, and the
MTy-estimator now provides valid estimates. Recalling that the
Sq-estimator was tuned to match the MTy-estimator efficiency
with a single signal at 3 dB SNR, we can see that their relative
performance continues to track for varying SNR and numbers
of signals. This indicates that the tuned estimator performance
is largely invariant to different scenarios, meaning that the
Sq-estimator can be tuned once and employed in a dynamic
environment or for various scenarios.
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FIGURE 6. Small-sample normalized averages of the achieved MUSIC pseudospectrums (a), plot (a) but zoomed in with additional estimators (b), the
corresponding standard deviation of the achieved pseudospectrums in dB (c), and large-sample normalized averages of the achieved MUSIC
pseudospectrums (d). True signal locations are indicated with vertical lines.

FIGURE 7. Probability of detecting two closely spaced signals as a function of SNR with outliers (a) and without outliers (b).

VIII. CONCLUSION
This paper has provided an overview of multivariate S-
estimators—a high-breakdown-point class of robust multi-
variate estimators of location and scatter that provide substan-
tially higher robustness than M-estimators. The S-estimator
class was extended to the complex-valued domain by up-
dating the common ρ functions and extending the class’
theoretical properties. By exploring the theoretical breakdown
point, and the theoretical weight and influence functions, the
improved robustness of S-estimators over M-estimators was
shown. Simulations demonstrated the practical benefits of

S-estimators over M-estimator and R-estimators. While M-
estimators—including the Huber and Tyler estimators—were
demonstrated to break down with just a few outliers, S-
estimators are able to ignore bad observations. With the recent
development of the Sq-estimator, in many cases, S-estimator
efficiency is now able to rival that of robust M-estimators
for large and small dimensions, and non-Gaussian data. The
Sq-estimator is also less sensitive to initial estimates [33] than
traditional S-estimators, and it has been demonstrated here
to be much less sensitive than the R-estimator. MATLAB
code for the real- and complex-valued S-estimators discussed
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in Section IV is provided on GitHub at https://github.com/
JAFishbone/.

The properties presented here are also directly applicable
to complex-valued multivariate MM-estimators. Introduced
by Lopuhaä [51] and Tatsuoka and Tyler [52] for real-
valued data, multivariate MM-estimators are an extension
of multivariate S-estimators that provide additional flexibil-
ity by utilizing two ρ functions. Extending the definition
of MM-estimators to the complex-valued domain is trivial,
and because MM-estimators inherit their properties from the
S-estimator class [53], the properties derived above apply
directly to complex-valued MM-estimators.

APPENDIX
A. PROOF OF LEMMA 2
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n = μu + �μu and Ŵ u = I + ��u. It is easily
verified that d (ui, μ̂

u
n, �̂

u
n)/σ = d (ki,�

−1/2
u �μu/

√
σ ,Ŵ u).
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As discussed in [17], by defining κ = k/‖k‖, we have
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Proceeding as in the previous section by taking the Taylor
expansion of these about �μR = 0 and ��R = 0, and then
rearranging the result of
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Finally, noting that ki are i.i.d., using (26) and (27), and
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B. PROOF OF THEOREM 6
1) INFLUENCE FUNCTION OF SCATTER
We first derive the scatter influence function assuming a
standard spherical distribution F = CES(0, I, ϕ, p), and then
generalize it to any μ and �. By the strong law of large
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with dx (Fε ) = xH�F (Fε )−1x and dz(Fε ) = zH�F (Fε )−1z. We
now take ∂ (·)/∂ε|ε=0, apply (29), and use the shorthand nota-
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We now address the two remaining differential terms.
Using the identity I = �−1�, and taking its deriva-
tive at zero, ∂ (�F (Fε )−1�F (Fε ))/∂ε|ε=0, it is found that
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For each of these two foregoing equations, the second expec-
tation on the right-hand side can be replaced using [21]

E
[(

uH�′
F (z)u

)
uuH

]
= �′

F (z) + Tr
(
�′

F (z)
)

I

p(p + 1)
,

E
[
uH�′

F (z)u
]

= Tr
(
�′

F (z)
)

p
.

Note that ν′(t ) = tw′(t ), and because b = E[ρ(dx(F )/σ )],
we also have E[ν(dx (F )/σ ] = dx (F )w(dx(F )/σ )/σ. There-
fore, (30) becomes

E

[
dx(F )w (dx (F )/σ )

σ p

]
�′

F (z)

= − E

[
dx (F )2

σ 2
w′

(
dx (F )

σ

)]
�′

F (z) + Tr
(
�′

F (z)
)

I

p(p + 1)

+ w

(
dz(F )

σ

)
zzH

σ
− ν (dz(F )/σ )

p
I

+ E

[
dx (F )2 w′ (dx(F )/σ )

σ 2 p

]
Tr

(
�′

F (z)
)

p
I.

Taking the trace and rearranging gives

Tr
(
�′

F (z)
) = p (ρ (dz(F )/σ ) − b)

E
[
σ−1dx (F )w (dx (F )/σ )

] .

Combining the previous two equations and simplifying yields

�′
F (z) = ρ (dz(F )/σ ) − b

E
[
σ−1dx (F )w (dx (F )/σ )

] I

+ 2p(p + 1)dz(F )w (dz(F )/σ )

σλ1(F )

(
zzH

dz(F )
− 1

p
I

)
,

where λ1(F ) is given by (12). Leveraging the equiv-
ariance property of S-estimators and utilizing the
factorization � = AAH, we generalize this using
�′

F�
(z) = A�′

FI
(A−1(z − μ))AH. The result is the equation

stated in the theorem.

2) INFLUENCE FUNCTION OF LOCATION
Recall the real-valued representation of μ̂, μ̂R from (14).
Lopuhaä [24, eq. (5.7)] derived the influence function for
real-valued S-estimators, giving

IFR

(
zu;μR, FR

0

)
= wR(‖zu‖2/σ )zu

E
[
wR(du/σ ) + (pσ )−1duw

′
R

(du/σ )
] ,

for FR

0 = RES(0, I, φ, 2p), and where zu = h(z). Substituting
the identities from the proof of Theorem 5, applying IF =
gHIFR and z = gHzu, and applying the affine equivariance
property, yields the equation stated in the theorem.
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