
Received 23 November 2022; revised 13 March 2023; accepted 13 March 2023. Date of publication 23 March 2023;
date of current version 7 April 2023. The review of this article was arranged by Associate Editor H. Vicky Zhao.

Digital Object Identifier 10.1109/OJSP.2023.3261132

Discovering Influencers in Opinion Formation
Over Social Graphs

VALENTINA SHUMOVSKAIA 1 (Graduate Student Member, IEEE),
MERT KAYAALP 1 (Graduate Student Member, IEEE), MERT CEMRI2 (Student Member, IEEE),

AND ALI H. SAYED 1 (Fellow, IEEE)
1École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

2Bilkent University, 06800 Ankara, Turkey

CORRESPONDING AUTHOR: VALENTINA SHUMOVSKAIA. (e-mail: valentina.shumovskaia@epfl.ch).

Mert Cemri contributed to the work as a visiting student at EPFL, Switzerland. This work was supported in part by the Swiss National Science Foundation under
Grant 205121-184999. A short version of this work appears in the conference publication [1]

ABSTRACT The adaptive social learning paradigm helps model how networked agents are able to form
opinions on a state of nature and track its drifts in a changing environment. In this framework, the agents
repeatedly update their beliefs based on private observations and exchange the beliefs with their neighbors.
In this work, it is shown how the sequence of publicly exchanged beliefs over time allows users to discover
rich information about the underlying network topology and about the flow of information over the graph. In
particular, it is shown that it is possible (i) to identify the influence of each individual agent to the objective
of truth learning, (ii) to discover how well-informed each agent is, (iii) to quantify the pairwise influences
between agents, and (iv) to learn the underlying network topology. The algorithm derived herein is also able
to work under non-stationary environments where either the true state of nature or the graph topology are
allowed to drift over time. We apply the proposed algorithm to different subnetworks of Twitter users, and
identify the most influential and central agents by using their public tweets (posts).

INDEX TERMS Social learning, social influence, explainability, inverse modeling, online learning, graph
learning, Twitter.

I. INTRODUCTION AND RELATED WORK
The social learning paradigm is a popular non-Bayesian for-
mulation that enables a group of networked agents to learn and
track the state of nature. It has motivated several studies in the
literature with many useful variations under varied modeling
assumptions (see, e.g., [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14], [15], [16], [17]). Under this framework,
agents observe streaming data and share information with
their immediate neighbors. Through a process of localized
cooperation, the agents continually update their beliefs about
the underlying state. These beliefs describe the agents’ con-
fidence on each possible hypothesis. The main question in
social learning is whether agents are able to learn the truth
eventually, i.e., whether the beliefs on the wrong hypotheses
vanish.

In principle, each agent in the network could consider pur-
suing a fully Bayesian solution to learn and track the state of

nature. However, this solution is intractable and generally NP-
hard [10], [11], [18]. This is because it requires that each agent
has access to the data from the entire network, in addition to
their knowledge of the full graph topology. These pieces of
information are rarely available in a decentralized setting. For
this reason, non-Bayesian approaches have been devised as
effective alternatives [2], [3], [4], [5], [6], [7], [8], [9]. In this
formulation, the agents first perform a local Bayesian update
using their newly received private observations, and then fuse
their beliefs with those of their neighbors either linearly or
geometrically [3], [6], [8], [9], [19]. This approach allows for
diverse data models across the agents, and helps preserve the
privacy of the individual observations. In this work, we adopt
the Adaptive Social Learning (ASL) strategy from [6], which
showed how to extend traditional non-Bayesian learning un-
der fixed truth to dynamic scenarios where the state of nature
is allowed to drift with time. Under ASL, the agents will be

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

188 VOLUME 4, 2023

https://orcid.org/0000-0001-5847-0783
https://orcid.org/0000-0002-0082-1058
https://orcid.org/0000-0002-5125-5519

able to track these drifts rather effectively with performance
guarantees.

Now, given a collection of networked agents tracking the
state of nature by means of the adaptive social learning (ASL)
strategy, our main objective is to focus on two questions
related to explainability and inverse modeling. In particular,
by observing the sequence of publicly exchanged beliefs, we
would like to discover the underlying graph topology (i.e.,
how the agents are connected to each other). We would also
like to discover each agent’s contribution (or influence) to the
network’s learning process.

The question of explainability over graphs is actually a
challenging task, and it has been receiving increasing at-
tention (e.g., [20], [21], [22], [23], [24], [25], [26]). These
works approach explainability from different perspectives,
and with different aims. For instance, in [25], [26], the au-
thors aim at building a framework for human understanding of
why a black-box method arrives at a particular solution. The
work [20] argues that a better understanding of multi-agent
reinforcement learning can help to limit the search space.
Other works suggest modifying the learning algorithm for
better interpretability [23]. Overall, higher transparency and
a better understanding of the solutions are generally crucial
for critical applications, such as using artificial intelligence in
healthcare or in autonomous devices (such as vehicles).

We have performed some prior work on explainability for
social learning [27], [28]. In these works, given the evolu-
tion of beliefs and assuming some partial prior knowledge
about the distribution of private observations, it was shown
how to identify pairwise influences inside the network (i.e.,
how strongly pairs of agents influence each other), as well
as how to recover the underlying graph topology. One of
the key differences with the previous works is that here, we
consider a more limited (and, therefore, more challenging) in-
formation scenario, where we do not require any information
about the probability distribution of the observations (or their
likelihoods). Despite being more challenging to analyse, the
algorithm nevertheless becomes more practical and applicable
to real-world data, where distributions of privately received
observations remain unknown. We will show that, under this
more demanding scenario, we are still able to identify the
contribution of each agent to truth learning, assess its level of
informativeness, as well as learn the underlying graph and the
pairwise influences between agents. The modeling conditions
we consider are generally commonplace in real-world social
networks, such as Twitter [29], [30], [31], [32], [33], [34],
[35], [36]. We consider a Twitter application in Section VII.
In this application, users publicly exchange their opinions on
Twitter, which are therefore observable. However, we do not
have access to additional information about sources affecting
people’s opinion during these exchanges such as News or dis-
cussions occurring outside Twitter and, therefore, we do not
have information about the signal distributions. Identifying
the most influential users and their communication patterns
can provide valuable insights in social network analysis [37].
Actually, the problem of identifying the most influential nodes

in a network is increasingly relevant [38], [39], [40], [41],
[42], [43], especially following the rise of online social net-
works. Once identified, this information can be useful in many
contexts. For example, it can be used to enhance recommen-
dations for marketing purposes [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], where the objective is to
maximize the number of influenced nodes.

There have also been several important contributions to
graph learning such as [27], [28], [50], [51], [52], [53], [54],
[55], [56], [57], [58], [59], [60], [61], [62], [63]. This is
because the graph structure plays an important role in dis-
tributed learning [64], [65], [66], [67], and its identification
can provide valuable information about relationships within
the network [27]. One approach is based on exploiting cor-
relations and similarities between vertices [68], [69], [70].
Other works assume a defined model behind the graph signal,
such as the heat diffusion process [52], [54], [55]. Structural
constraints (such as sparsity, connectivity, symmetry) can also
be introduced through regularization [51], [56], [60]. The
present work examines the problem of identifying a graph in
the adaptive social learning setting. Learning the graph from
social interactions requires a different approach, as already
illustrated in [28], due to the special form of the non-stationary
observation signals. Importantly, our study will relax certain
assumptions introduced in that work.

The paper is organized as follows. We describe the adap-
tive social learning model in Section II. Then, we propose
an algorithm for learning the combination matrix and the
agents’ informativeness in Section III. In Section IV, we jus-
tify the fact that each agent’s contribution to truth learning
is proportional to its relative centrality and its informative-
ness (the KL-divergence between the marginal likelihood of
the truth and the other hypotheses). We provide theoretical
performance guarantees of the algorithm in Section V. In
Section VI, we illustrate performance in different settings by
means of numerical simulations. Finally, in Section VII, we
apply the algorithm to real-world data from Twitter.

II. SOCIAL LEARNING MODEL
We refer to Fig. 1 and consider a collection of agents N per-
forming peer-to-peer exchanges of beliefs according to some
combination matrix A� with non-negative entries, [A�]�,k =
a�k ≥ 0. Agent � is able to communicate with agent k when
a�k is positive; this scalar refers to the weight that agent k
assigns to the information received from agent �. We assume
the matrix A� is left-stochastic and corresponds to a strongly
connected graph [3], [6], [8]. The first assumption means
that the entries on any matrix column k ∈ N add up to one,∑

�∈N a�k = 1. The second assumption means that there exists
a path with positive weights between any two agents, and there
is at least one agent in the network that does not ignore its
own observation, i.e., akk > 0 for at least one k ∈ N. This
implies that the combination matrix is primitive, i.e., for any �,
k ∈ N, there exists t > 0 such that [At

�]�,k > 0. It follows from
the Perron-Frobenius theorem [71, Chapter 8], [72] that the
power matrix At

� converges to u1T as t → ∞ at an exponential

VOLUME 4, 2023 189

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

FIGURE 1. An illustration of the network model.

rate, where u is the Perron eigenvector that satisfies:

A�u = u, u� > 0,
∑
�∈N

u� = 1, (1)

where the u� denote the individual entries of u. Each of these
entries describes the centrality of the corresponding agent in
the graph (i.e., its level of contribution to the inference task).

We assume that there exists one true state of nature θ�

belonging to a finite set of hypotheses, denoted by �. Initially,
each agent k starts with a private belief vectorμk,0 ∈ [0, 1]|�|,
where each entry μk,0(θ) describes how confident agent k is
that θ corresponds to the true hypothesis θ�. As befitting of
a true probability mass function, the total confidence sums
up to one,

∑
θ μk,0(θ) = 1. To ensure that no hypothesis is

excluded beforehand by any of the agents, we assume that
μk,0(θ) > 0, ∀θ ∈ �.

At each time instant i, each agent k observes a measurement
ζk,i. We assume initially that each agent k ∈ N has access
to private likelihood functions, Lk (ζ |θ), which describe the
distribution of the observation ζ conditioned on each poten-
tial model θ . With a slight abuse of notation, we sometimes
denote Lk (·|θ) by Lk (θ). The observations ζk,i are assumed to
be independent and identically distributed (i.i.d.) over time.
In order to be able to distinguish the true hypothesis θ�

from any other hypothesis θ �= θ�, we need to assume that
for any θ �= θ�, there exists at least one clear-sighted agent
k ∈ N that has strictly positive KL-divergence relative to the
true likelihood, i.e., DKL(Lk (θ�)||Lk (θ)) > 0. The following
boundedness assumption on the likelihood is common in the
literature [7], [27]; it essentially amounts to assuming that the
likelihoods share support regions.

Assumption 1 (Bounded likelihoods): There exists a finite
constant b > 0 such that, for all k ∈ N:∣∣∣∣ log

Lk (ζ|θ)

Lk (ζ|θ ′)

∣∣∣∣ ≤ b (2)

for all θ, θ ′ ∈ �, and ζ. �

Next, we describe the ASL strategy from [6]. At each time
step i, each agent k performs a local update based on the newly
received observation and forms the intermediate (public) be-
lief:

ψk,i(θ) = Lδ
k (ζk,i|θ)μ1−δ

k,i−1(θ)∑
θ ′∈� Lδ

k (ζk,i|θ ′)μ1−δ
k,i−1(θ ′)

, k ∈ N. (3)

Here, δ ∈ (0, 1) is a step-size parameter that controls the
adaptation capacity, i.e., δ controls the importance of newly
received data relative to the past history. This intermediate
belief is shared with the follower agents of k, i.e., with all
agents � for which ak� > 0. Subsequently, agent k fuses the
beliefs received from its neighbors, i.e., from all agents for
which a�k > 0. We denote this set by Nk . One fusion rule is
to fuse the beliefs geometrically as follows in order to obtain
the private beliefs [3], [6], [8], [19]:

μk,i(θ) =
∏

�∈Nk
ψ

a�k
�,i (θ)∑

θ ′∈�

∏
�∈Nk

ψ
a�k
�,i (θ ′)

, k ∈ N. (4)

The term in the denominator in (4) is used to normalize
μk,i(θ) to a probability mass function. Once (4) is performed,
the true state θ� can be estimated by agent k at time i using
the maximum a-posteriori construction over either the private
or public beliefs, for example:

θ̂k,i � arg max
θ∈�

ψk,i(θ). (5)

It was shown in [6], [27] that this social learning scheme has a
powerful performance guarantee. Specifically, the probability
of error goes to zero for both the private and public beliefs as
the step-size δ approaches zero, namely,

lim
δ→0

lim
i→∞

P
(

arg max
θ∈�

μk,i(θ) �= θ�
) = 0, ∀k ∈ N (6)

and

lim
δ→0

lim
i→∞

P
(

arg max
θ∈�

ψk,i(θ) �= θ�
) = 0, ∀k ∈ N. (7)

Thus, the agents’ confidence on hypothesis θ� being the true
hypothesis converges to one. In other words, the agents are
able to learn the truth eventually.

Following [27], we introduce two matrices �i and Li in
order to represent the recursions (3)–(4) in a more compact
matrix form as follows:

�i = (1 − δ)AT
��i−1 + δLi. (8)

The matrices are of size |N| × (|�| − 1), and their entries are
log-belief and log-likelihood ratios and given by:

[�i]k, j � log
ψk,i(θ0)

ψk,i(θ j)
(9)

[Li]k, j � log
Lk (ζk,i|θ0)

Lk (ζk,i|θ j)
(10)

where the reference state θ0 ∈ � can be chosen at will by the
designer.

The matrices Li are i.i.d. over time due to the i.i.d. assump-
tion on the observations. Again, following similar previous

190 VOLUME 4, 2023

approaches [6], [27], we introduce the following condition on
the higher-order moments of Li.

Assumption 2 (Positive-definite covariance matrix): The
covariance matrix RL is uniformly positive-definite for all
i ≥ 0, i.e., there exists τ > 0 such that:

RL � E (Li − ELi) (Li − ELi)
T ≥ τ I. (11)

�
Iterating (8), we find that

�i = (1 − δ)i (Ai
�

)T
�0 + δ

i−1∑
t=0

(1 − δ)t (At
�)TLi−t . (12)

For large i, it can be shown that �i converges in distribution
to a limit value given by [27, Lemma 1]:

�i
d−→ � � δ

∞∑
t=0

(1 − δ)t (At
�)TLt . (13)

For further analysis, we introduce the following useful result
for log-beliefs ratios. The standard laws of large numbers
cannot be applied directly to the expression for �i in (12)
since there are dependencies between the random variables.

Lemma 1 (Law of large numbers for log-belief ratios):
After a sufficient number of iterations i (i.e., for i > M
 1),
the average of the log-belief matrix converges in probability
as follows:

1

M

i−1∑
j=i−M

� j
M→∞−−−−→ E�. (14)

Proof: See Appendix A. �

III. INVERSE LEARNING FROM PUBLIC BELIEFS
In this section, we introduce an algorithm for learning the
graph combination matrix A� from observations of the public
beliefs, as well as for assessing the level of informativeness of
the various agents.

A. PROBLEM STATEMENT
The data available from the social network might be limited
for various reasons, including privacy. Therefore, in this work,
we assume that we can only observe the evolution of the
public beliefs over time:{

ψk,i(θ)
}

i
1 , ∀k ∈ N. (15)

This assumption is motivated by the fact that agents share
their intermediate beliefs computed by (3) during the collabo-
rative process, in contrast to the private beliefs in (4). Here, by
i
 1 we underline that we are observing �i after a sufficient
amount of iterations, i.e., after �i has reached its steady-state
distribution (13).

A good illustration for this setting is the social network
of Twitter users. From each post (or tweet) that a user posts
to their followers, we can extract an intermediate belief ψk,i
based on sentiment analysis, a.k.a., opinion mining. After that,

each user k reads the posts of its followers and constructs the
private belief μk,i according to (4).

Next, we will show that by observing public beliefs, we
can recover many useful network properties such as (i) the
combination matrix, which determines the confidence levels
that agents have about each other, (ii) the KL-divergences
DKL(Lk (θ�)||Lk (θ)), which assess the capacity of each agent
to distinguish the true hypothesis from the other possibilities,
(iii) the pairwise influences of agents on each other, and the
(iv) global influencers across the network. We allow both
the network and the true state θ� to drift over time, and the
algorithm will be able to track these changes too.

B. ALGORITHM DEVELOPMENT
The previous work on learning the combination matrix A�

in [27] assumes that the expected log-likelihood matrix L̄ �
ELi is known. It can be verified that

[L̄]k, j � [ELi]k, j

= DKL(Lk (θ�)||Lk (θ j)) − DKL(Lk (θ�)||Lk (θ0)). (16)

Using this knowledge along with (8), the following objective
function was then minimized to learn A�:

Q(A;�i,�i−1) � 1

2
‖�i − (1 − δ)AT�i−1 − δL̄‖2

F (17)

in terms of the squared Frobenius norm. In this work, we
do not assume that L̄ is known beforehand, and will instead
estimate L̄ at each iteration i by using

L̂i−1(A) = 1

δM

i−1∑
j=i−M

(
� j − (1 − δ)AT� j−1

)
, (18)

where A will be the estimate that is available for A� at that
point in time. This step allows us to keep any information
about the privately received data ζk,i hidden from the al-
gorithm, which makes potential applications more feasible.
Accordingly, the cost function is replaced by:

Q̂(A;�i,�i−1, L̂i−1)

= 1

2
‖�i − (1 − δ)AT�i−1 − δL̂i−1‖2

F

= 1

2

∥∥∥∥�i − 1

M

i−1∑
j=i−M

� j − (1 − δ)AT

×
⎛⎝�i−1 − 1

M

i−1∑
j=i−M

� j−1

⎞⎠∥∥∥∥2

F

= 1

2
‖�i − (1 − δ)AT�i−1‖2

F (19)

where we introduced

�i � �i − 1

M

i−1∑
j=i−M

� j (20)

VOLUME 4, 2023 191

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

The corresponding risk function is then given by:

Ji(A) � EQ̂(A;�i,�i−1, L̂i−1) (21)

We will show in Lemma 2 that the unique minimizer of this
risk function gets closer to the true combination matrix as M
grows.

Now, assume that we observe a sequence of public be-
liefs (15), therefore a sequence {�i}i
1. We define the
objective function as a sum over N observed time indices
i
 1:

min
A

J (A) � 1

N − M

∑
i

Ji(A) (22)

To solve (22), we apply stochastic gradient descent (SGD)
with constant step-size μ > 0. At each iteration i, the estimate
Ai for the combination matrix is updated via:

Ai = Ai−1 + μ(1 − δ)�i−1

×
(
�T

i − (1 − δ)�T
i−1Ai−1 − δL̂T

i−1

)
(23)

We sample the observations in the direct order i, i + 1, i +
2 This online nature of the algorithm, as well as the use of
a constant step-size instead of a vanishing step-size, will allow
the algorithm to track changes in A�.1 We list the procedure in
Algorithm 1.

IV. GLOBAL INFLUENCE IDENTIFICATION
In this section, we establish a strong connection between
the probability of error for truth learning and the network
divergence. The network divergence is defined in terms of the
Perron eigenvector of A�, and the KL-divergences between the
likelihoods:

K (θ�, θ) �
∑
k∈N

ukDKL(Lk (θ�)||Lk (θ)) > 0. (24)

Note that this quantity is a function of the hypothesis θ . As
remarked before (5), the true state estimator can be deduced
from the public beliefs. The probability of error is defined as
the probability of selecting a wrong hypothesis θ �= θ�:

pk,i � P

(
arg max

θ∈�
ψk,i(θ) �= θ�

)
. (25)

Note that if θ� does not maximize a public belief, then there
exists at least one θ �= θ� such that

log
ψk,i(θ

�)

ψk,i(θ)
≤ 0. (26)

Thus, we can equally define the probability of error pk,i as:

pk,i = P

(
∃θ �= θ� : log

ψk,i(θ
�)

ψk,i(θ)
≤ 0

)
. (27)

For this section alone, we will additionally assume that the
observations {ζk,i} are independent over space (and not only

1In our algorithm, we assume deterministic A�. However, recursion (23)
allows adapting to changes in A�.

Algorithm 1: Graph Social Learning (GSL).

over time). Now, we know from [6, Th. 3] that each random
variable (for any k) of the form (26) can be approximated
by a Gaussian random variable in the steady state with the
following moments:

log
ψk,i(θ

�)

ψk,i(θ)
≈ G (K (θ�, θ

)+ O (δ) , δC + O
(
δ2)) (28)

for some finite and constant covariance matrix, C. Thus, the
probability of error (27) becomes the probability of the Gaus-
sian random variable (28) assuming negative values for at
least one θ ∈ �. This Gaussian random variable concentrates
around its mean (i.e., the network divergence in (24)), which
is positive. The larger network divergence is, the smaller the
probability of error for each individual agent will be.

If we examine expression (24) for the network divergence,
we observe that each individual agent k contributes with a
term of the form

Kk (θ�, θ) = ukDKL(Lk (θ�)||Lk (θ)) (29)

which is scaled by the Perron entry uk . This entry reflects the
centrality of agent k, and serves as a measure of how well
it is connected to other nodes in the network. The larger the
value of (29) is, the stronger the contribution of this agent
will be towards moving the network away from an erroneous
decision. We therefore say that (29) helps convey the amount
of information that agent k has about θ disagreeing with θ�.

192 VOLUME 4, 2023

Since (29) is a function of θ , we can define the level of infor-
mativeness of agent k to the learning process by considering
the aggregate of its contributions for all θ , which we denote
by

Ik �
∑
θ∈�

Kk (θ�, θ) = uk

∑
θ∈�

DKL(Lk (θ�)||Lk (θ)). (30)

This quantity serves as a measure of influence, since agents
with large Ik contribute the most to learning the truth by the
network.

In what follows, we describe how to estimate the quanti-
ties Ik by the learning algorithm. First, to obtain the Perron
eigenvector for Ai, we need to normalize any of its eigenvec-
tors corresponding to the eigenvalue at 1. Subsequently, we
identify θ̂k,i that maximizes ψk,i(θ). From (7) we know that
θ̂k,i tends to θ� almost surely as i → ∞ and δ → 0. After a
sufficient number of iterations iN of the Algorithm 1, we let j′
denote the index within the hypothesis set � that corresponds
to:

θ̂ j′ = arg max
θ∈�

ψk,iN (θ). (31)

Returning to (16), we can then approximate the KL-
divergences by

DKL
(
Lk (θ�)||Lk (θ0)

) ≈ −[L̂iN]k, j′, (32)

DKL
(
Lk (θ�)||Lk (θ j)

) ≈ [L̂iN]k, j + [L̂iN]k, j′, (33)

where L̂iN is an estimate for L̄.
To conclude, the sequence of public beliefs contains rich

information about the network. Using the GSL algorithm,
we are not only able to identify the graph topology, but can
also find answers to the explainability question: which agents
were the most responsible (or the main drivers) for the overall
network learning process?

V. THEORETICAL RESULTS
First, we establish some useful properties of the risk func-
tion (21).

Lemma 2 (Risk function properties): After sufficient num-
ber of iterations i, the risk function Ji(A) is strongly convex
and has Lipschitz gradient with constants νi and κi given by:

νi � (1 − δ)2λmin

(
E�i−1�

T
i−1

)
≥ τδ2(1 − δ)2 + O

(
1/

√
M
)

(34)

κi � (1 − δ)2λmax

(
E�i−1�

T
i−1

)
≥ τδ2(1 − δ)2 + O

(
1/

√
M
)

(35)

where λmin(·) and λmax(·) are the minimum and maximum
eigenvalues. In other words, it holds that:

νiI ≤ ∇2
AJi(A) ≤ κiI. (36)

Moreover, the difference between the true combination matrix
A� and the unique minimizer Amin,i of Ji(A) is on the order of:∥∥Amin,i − A�

∥∥2
F ≤ O

(
1/δ2M2) (37)

Proof: See Appendix B. �
Result (37) states that the gap between A� and the unique

minimizer of Ji(A) is negligible as M
 1/δ grows.
To investigate the steady-state performance of recur-

sion (23), we adopt the following independence assumption,
which is typical in the study of adaptive systems [73], [74],
[75].

Assumption 3 (Separation principle): We denote the esti-
mation error by Ãi � A� − Ai, and assume the step-size μ

is small enough to allow ‖Ãi‖2
F to attain a steady-state dis-

tribution. The separation principle states that the error Ãi is
independent of the observations �i, . . . ,�i−M , conditioned
on the history of previous observations. �

The following theorem shows that in steady-state, the
mean-squared error is O(μ) + O(1/δ3M2) in expectation.

Theorem 1 (Steady-state performance): The mean-square
deviation (MSD) converges exponentially fast with asymp-
totic convergence rate:

α � 1 − μ(2ν + O(δ3)) + O(μ2) (38)

where

ν � (1 − δ)2λmin

(
lim

i→∞
E�i−1�

T
i−1

)
(39)

In the limit, the MSD satisfies:

lim sup
i→∞

E‖Ãi‖2
F ≤ O(μ) + O(1/δ3M2) (40)

Proof: See Appendix C. �
Naturally, the convergence rate for learning the combina-

tion matrix is dependent on the strong convexity constant, ν.
Usually, the limiting MSD expression is of the form O(μ),
so that we can reduce the deviation by using arbitrary small
step-size μ. In our case, we also have the additional term
O(1/δ3M2), which is due to the difference (37) between the
unique minimizer and the true combination matrix. We can
control the number of samples M. Note that by selecting
M = O(1/

√
μ), the MSD in (40) becomes O(μ).

Finally, we study how well the algorithm approximates L̄.
Theorem 2 (Steady-state log-likelihood learning): The

MSD converges exponentially fast with

lim sup
i→∞

E‖L̂i − L̄‖2
F

≤ 1

M
Tr (RL) + O(μ/δ2) + O

(
1/δ5M2

)
(41)

where

RL = E
(Li − L̄) (Li − L̄)T (42)

is independent of i due to i.i.d. observations.
Proof: See Appendix D. �

VOLUME 4, 2023 193

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

FIGURE 2. True combination matrix and the learned matrix using the GSL
algorithm with M = 50.

Since we simultaneously learn the combination matrix A�

and L̄, the limiting MSD for L̄ has similar expression to Theo-
rem 1. We would like to note that usually, the hyper parameter
δ is a network property we don not have a direct influence on.
Thus, the final MSD is controlled by the step-size μ and it
decreases as we use higher number of samples M.

VI. COMPUTER SIMULATIONS
In this section, we illustrate how well the proposed algorithm
is able to identify the true combination matrix A� and the
expected log-likelihood matrix L̄. We also experiment with
different M in (18) to see how the convergence rate changes.
Additionally, we will see how well the learned combination
matrix and KL-divergences identify the influences (30).

We generate a graph with |N| = 20 agents according to
the Erdos-Renyi model with an edge probability of p = 0.2.
We set the adaptation hyperparameter to δ = 0.05. Then, we
generate the combination weights (see Fig. 2(a)) with uniform
weights in the column, such that the resulting matrix is left-
stochastic. We consider |�| = 5 states, where the likelihood
models Lk (θ) for each agent k ∈ N are assumed to follow
a binomial distribution with randomly generated parameters
(for details, see Appendix E). We generate likelihood models
such that we observe only 3 agents with high informativeness.
Later, we illustrate that the algorithm allows for identifying
these agents.

First, we consider how well the combination matrix is
learned for different M ∈ {1, 10, 50}. We additionally com-
pare with [27], where the expectation L̄ was assumed to be
known beforehand. For M = 50, we use μ = 0.1, for M = 10,
we use μ = 0.01, and for M = 1, we use μ = 0.001 for better
convergence. In Fig. 3, we plot the reconstruction error with
respect to the iteration number:

‖Ãi‖2
F = ‖Ai − A�‖2

F (43)

We notice that the higher M improves the limiting MSD as
reflected in Theorem 1.

Next, we illustrate how well the learned L̂i approximates
L̄ for different M ∈ {1, 10, 50}. In Fig. 4, we show how the
reconstruction error evolves with i:

‖L̃i‖2
F = ‖L̂i − L̄‖2

F. (44)

FIGURE 3. Algorithm performance when L̄ is known and when it is
estimated by (18) for different M ∈ {1,10,50}.

FIGURE 4. L̄ reconstruction error estimated by (18) for different
M ∈ {1,10,50}. To reduce the variance and therefore for better
interpretability, we plot the rolling mean with window size equal to 50.

We notice that with M growing, we can approximate L̄ more
precisely, which aligns with the result of Theorem 2, and
explains Fig. 3.

We illustrate the recovered combination matrix in Fig. 2(b).
We use M = 50 since it has better convergence. Comparing
Fig. 2(a) and (b), we observe an almost perfect recovery of
the true combination weights.

Fig. 5 illustrates how well the learned KL-divergences and
combination matrix can recover the global influences (30). For
better interpretability, we normalize the values so that they add
up to one. We see that for some agents, the algorithm does
not perfectly recover these components, but yet allows us to
identify that the first agents are driving the learning the most.
This property allows us to search for agents that are the most
contributing to learning the true state.

In Fig. 6, we illustrate the connection between the probabil-
ity of error (25) and the presence of agents with a significant
contribution Ik (30) to the network divergence. We plot the
rate of correctly classified states at each point i:

ri = 1

i

i∑
t=1

I{̂θi = θ�} (45)

194 VOLUME 4, 2023

FIGURE 5. Agents’ influences (30) based on the learned graph and
KL-divergences.

FIGURE 6. Rate of correctly classified truth for different models. Less
influential agents denote agents with the same centrality as influential
agents, but with smaller KL-divergence between states.

We generate likelihood models according to Appendix E,
where less (yet significantly) influential agents have smaller
KL-divergence between likelihood models (lines 3 and 4 in
the legend). Thus, we illustrate the value of the identified
importance measure (30) and the role of “informativeness”
(or KL-divergences) of each agent: the presence of agents
with high informativeness improves the quality of true state
inference.

Finally, we comment on the adaptation abilities of the pro-
posed algorithm that results from its online nature (23). There
is a trade-off between the speed of adaptation to changes in
A� or in θ� and the final MSD. Larger step-size μ leads to
faster reaction by the algorithm to changes by the combina-
tion matrix, but enlarges the steady-state MSD. However, an
important point to note here is that if the topology changes

FIGURE 7. Algorithm performance under perturbations.

more frequently than the time needed to reach the steady-state
(each change of the true A� “restarts” the algorithm), then a
fairly large step-size μ would be needed. We illustrate this
behavior in Fig. 7(a). The ability of the algorithm to adapt to
the true state θ� is also important for its performance due to
the fact that we have performance guarantees when�i reaches
its steady-state. The adaptation ability is also evident from the
social learning update itself (3)–(4). In [6], the authors discuss
that small δ leads to an increased confidence of beliefs, but
it comes at the cost of an increased adaptation time, on the
order of ≈ log 2/δ. Thus, as long as the environment does not
change its state faster than the adaptation period, the perfor-
mance of the algorithm stays close to what is predicted under
Theorems 1, 2. We illustrate this scenario in Fig. 7(b).

VII. APPLICATION TO TWITTER DATA
In this section, we apply the graph social learning algorithm
introduced in this manuscript to actual datasets. We choose
Twitter as a suitable social media platform where we can
analyze the posts of users and observe their interactions. In
particular, we aim to detect the centrality (i.e., Perron entry)
and influence of agents over a network, and identify the most

VOLUME 4, 2023 195

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

influential agents. We choose this objective as a more realistic
goal for Twitter data, rather than trying to recover the entire
combination matrix. This is primarily due to the fact that we
can only have access to the true adjacency matrix of the users
on Twitter, that is to say, we only know who follows whom,
but we do not know the weights (confidence levels) agents
assign to each other. In the literature, there have been multiple
studies trying to analyze the influence of Twitter accounts on
various topics. The work [29] analyzed the propagation of
information through Twitter networks, and how different users
take part in the effective dissemination of ideas. Moreover, the
work [30] analyzes the influential users on Twitter by investi-
gating the linguistic aspects of the tweets of users, such as the
grammatical structure and vocabulary of the tweets. However,
these studies lack a mathematical foundation to analyze the
“influence” of agents, and rely largely on heuristics. In this
context, the work [31] aims to leverage ten different attributes
of Twitter accounts and their tweets to develop a Twitter-based
influence measure. Similarly, the work [32] uses descriptive
statistics of the Twitter accounts such as their follower counts,
frequency of their posts and the total number of replies, likes
and retweets of users. However, what we propose in this study
is significantly different. In the proposed algorithm, we do not
need to have access to any of these features and the various
statistics. In fact, the only input the proposed algorithm needs
is the publicly shared tweets of the users. This information is
sufficient to learn the centrality of users over a subnetwork of
Twitter users, and to identify the most influential user for the
formed opinions, using the described mathematical model of
social learning.

To identify the influence of agents in a network, we first
need to (i) create a subnetwork of Twitter users that is strongly
connected, (ii) obtain the tweets (posts) of the users in the
created network, and (iii) process the text in the tweets to
obtain the log-belief ratios �i over time. After these pre-
processing operations, we run the proposed algorithm, and
estimate the underlying combination matrix of the network
of users and the likelihood models of these users. Then, we
compute the Perron eigenvector of the estimated combination
matrix. We refer to this vector as the “learned” Perron vector,
not to be confused with the “original” Perron vector of the true
combination matrix of the network of users. Note that, there
is no ground truth regarding the confidence agents place on
each other, hence one cannot possibly know the true combi-
nation matrix. Therefore, we heuristically form a combination
matrix to obtain its Perron vector, through the procedure of
Section VII-A. However, as an indisputable ground truth data
for a given subnetwork, we know the agents that have the
highest number of followers within that subnetwork. In our
experiments, these agents happen to coincide with the highest
original Perron vector entries.

We run experiments on three different user subnetworks
of Twitter users by using Twitter API, where we utilize the
Tweepy library to build up our queries in Python. Quantita-
tively, we show that we can identify the most central user
in all three networks, i.e., the largest entries of the learned

Perron vector and the original Perron vector. Note that in
these experiments with real data, we do not have access to the
likelihood models of the users, hence we do not have “ground
truths” for the influence of agents, i.e., ukDKL(Lk (θ�)||Lk (θ)).
However, to obtain a qualitative measurement, we construct
the aforementioned three networks (see Fig. 8) around famous
public figures (the first network is built around Elon Musk
(CEO, 118.5 M followers), the second network is built around
Maggie Haberman (journalist, 1.6 M followers), and the third
network is built around Ben Shapiro (columnist, 5 M follow-
ers)). In all of these networks, we recover these public figures
as the most influential users.

A. NETWORK FORMATION
To construct a network, we first select a popular Twitter ac-
count A, such as an influential CEO or a journalist whom
we expect to be influential among other users. Next, in order
to select a strongly connected network, we build a network
starting from a less centered Twitter account B that is followed
by that popular user A. Starting from account B, we construct
a subnetwork of depth 2, i.e. we identify 1 K followers of
account B, and 1 K followers of each of those followers.
While satisfying these conditions, we filter users who post fre-
quently, so that they provide sufficient data, and who are less
centered (they have less than 10 K followers). Among all of
these identified follower-following relationships, we construct
a network, and verify that the network is strongly connected.
Following this procedure, the networks constructed for Elon
Musk, Maggie Haberman and Ben Shapiro are of sizes 20, 26
and 28, respectively.

After constructing the network, we obtain its adjacency
matrix by finding out who follows whom. Since there is no
way in real world experiments to determine the confidence
agents assign to each other, there is no ground truth for the
combination matrix. Therefore, we assume that agents assign
uniform weights to their neighbors (i.e., to the people they
follow). This corresponds to applying the averaging rule [74,
Chapter 14] to the adjacency matrix.

B. OBTAINING USER POSTS
In order to obtain the tweets of the users, we first build up
our query for the Twitter API. This query includes a specific
keyword for each network so that we do not fetch unrelated
tweets. For the network containing Elon Musk, we choose
the keyword to be “coin OR bitcoin OR crypto-currency,” for
the tweets between 01.01.2017 and 01.05.2022. In this case,
we would like to see the influential agents in that network
in shaping the opinion of Twitter users on crypto-currency
related matters. For the other networks, we choose the key-
word to be “Trump” for the tweets between 01.01.2017 and
31.01.2021, and “Biden” for the tweets between 01.01.2021
and 01.05.2022. Hence, we aim to determine the influence of
agents in determining the attitude of their respective networks
regarding the issue of “the current president of the United
States”.

196 VOLUME 4, 2023

FIGURE 8. Network of agents. Agent A is indicated with color green, and agent B is indicated in color orange according to the description in Section VII-A.

TABLE 1. Examples of Sentiment Analysis and Generated Sentiment
Probabilities

C. OBTAINING THE LOG-RATIO BELIEFS OF USERS
After obtaining the tweets of the users, we need to process
the text in those tweets to obtain the intermediate belief vec-
tors. For this purpose, we use a language model based on
Roberta, which is trained with around 124 M tweets, and
fine tuned with the TweetEval benchmark for the sentiment
analysis task [76]. We can feed a text to this model and obtain
three different probabilities for three different sentiments of
the input text: p0 for “Negative,” p1 for “Neutral,” and p2 for
“Positive”. We eliminate the neutral labels and recalculate the
probability of the positive sentiment of a text as

p � p2

p0 + p2
(46)

and accordingly, the probability of the negative sentiment as

1 − p = p0

p0 + p2
(47)

In Table 1, we show sample tweets from the network related to
Bitcoins. When p is close to 1, this means that the text asserts
a positive attitude towards Bitcoin, and when p is closer to 0,
this means that the text asserts a negative attitude.

To construct the log-belief ratio of an agent at a day i, we
incorporate the sentiment of all tweets within this day. We
denote the number of tweets user k shares at iteration i by
Nk,i. Among those tweets, we denote the positive sentiment

probability of each tweet t by pk,i,t , so that pk,i,t approxi-
mates belief ψk,i,t (θ0), and 1 − pk,i,t as approximates belief
ψk,i,t (θ1). Here, θ0 is the hypothesis that the underlying topic
(e.g., Bitcoin, the current president of the United States, etc.)
is “good,” and θ1 is the counter-hypothesis. Then, we con-
struct log-belief of each agent k as:

�k,i = 1

Nk,i

Nk,i∑
t=1

log

(
pk,i,t

1 − pk,i,t

)
(48)

Note that if Nk,i = 0 for some agent k at some iteration i, we
set �k,i to previous value of it, i.e. �k,i = �k,i−1.

D. ADJUSTMENTS TO THE ALGORITHM
We have made some adjustments to the graph social learning
algorithm to cope with real life data. In particular, instead of
performing gradient updates at each iteration, as in the online
stochastic learning algorithm, we use stochastic mini-batches.
Namely, we select a window size W , and average the gradients
calculated within that window, and then perform the gradient
step. In our experiments, we observe that this practice reduces
the noise in the gradients due to real life data. Furthermore,
we use �1 regularization to promote sparsity. The motivation
for sparsity is to get rid of unnecessary links between different
users in the graph. These hyperparameters in the experiments
are determined with a grid search on one of the networks
(Ben Shapiro), and then the parameters are used in the other
two networks. These hyperparameters are: for the stochastic
mini-batch size, W = 30, for the stepsize δ = 0.0001, for the
learning rate μ = 0.0003 and for the �1 regularization weight
α = 0.006. The fact that we obtain desirable outcomes in all
cases suggests that the algorithm generalizes and performs
well across different networks.

E. EXPERIMENTAL RESULTS
We compare the Perron vectors of the learned combination
matrix and the original combination matrix (which is con-
structed by assigning uniform weights to users each user
follows). In these comparisons of Perron vectors, we show

VOLUME 4, 2023 197

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

FIGURE 9. Plots of agent centralities. Green points are the entries of the original Perron vector, and purple points belong to the learned Perron vectors. In
all networks, we see that the algorithm identifies the most central agent in the graph.

FIGURE 10. Plots of agent influences. In the respective networks containing Elon Musk (CEO – 110 M followers on Twitter), Maggie Haberman (journalist
– 1.7 M followers on Twitter) and Ben Shapiro (columnist – 4.5 M followers on Twitter), we can identify these public figures as the most influential
agents. For instance, in Fig. 10(a), we can identify Elon Musk as the most influential Twitter user in the corresponding subnetwork.

that we can correctly estimate the most central agents in all
three networks. These comparisons can be seen in Fig. 9.
Secondly, we show the influence plots of the agents in these
three networks in Fig. 10. These figures, “qualitatively” show
that we can indeed identify the popular accounts (Elon Musk,
Maggie Haberman and Ben Shapiro) as the most influential
agents in their respective networks. For instance, in Fig. 10(a),
we can identify Elon Musk as the most influential Twitter user
of his network of users.

VIII. CONCLUSION
In this study, we show that a sequence of publicly exchanged
beliefs in the adaptive social learning protocol contains rich
information about the underlying model. We present an al-
gorithm for learning the agents’ informativeness in terms of
KL-divergences between likelihood models, and for identify-
ing a combination graph. We demonstrate that these quantities
determine the probability of error of the true hypothesis esti-
mator, and we introduce a notion of a global agent influence,
which quantifies the individuals’ contribution to learning. As
a result, the suggested approach enables us to determine the
most influential agents in the opinion formation process. We
also describe how to apply the algorithm to Twitter data. Our
experiments on both synthetic data and Twitter data illustrate
that we can accurately find global influencers and learn the
underlying graph.

APPENDIX A
PROOF OF LEMMA 1
From Markov’s inequality, we have

P

⎛⎝∥∥∥∥ 1

M

i−1∑
j=i−M

� j − E�

∥∥∥∥2

F

> ε

⎞⎠
≤ 1

ε
E

∥∥∥∥ 1

M

i−1∑
j=i−M

� j − E�

∥∥∥∥2

F

= 1

M2ε
E

∥∥∥∥ i−1∑
j=i−M

(
� j − E�

)∥∥∥∥2

F

. (49)

The expectation above can be expanded into:

E

∥∥∥∥ i−1∑
j=i−M

(
� j − E�

)∥∥∥∥2

F

=
i−1∑

j=i−M

E

∥∥∥� j − E�

∥∥∥2

F

+ 2
i−1∑

j1, j2=i−M,
j1< j2

Tr
(
E
(
� j1 − E�

) (
� j2 − E�

)T)
. (50)

Introducing the history

Fi � {ζk, j, j < i, ∀k ∈ N}, (51)

198 VOLUME 4, 2023

which collects all observations up to time i, and conditioning
over F j1+1, we have

E
(
� j1 − E�

) (
� j2 − E�

)T
= E

((
� j1 − E�

)
E

(
�T

j2 − E�T∣∣F j1+1

))
(52)

This equality holds since E(� j1 |F j1+1) = � j1 . Using the
main recursion formula (8), we can represent � j2 in terms of
� j1 and observations Lt with j1 + 1 ≤ t ≤ j2:

� j2 = (1 − δ) j2− j1 (A j2− j1
�)T� j1

+ δ

j2− j1−1∑
t=0

(1 − δ)t (At
�)TL j2−t (53)

It follows that

E
(
� j2

∣∣F j1+1
) = (1 − δ) j2− j1 (A j2− j1

�)T� j1

+ δ

j2− j1−1∑
t=0

(1 − δ)t (At
�)TL̄ (54)

where L̄ is the expected value of Li defined in (16). Us-
ing (54), we can rewrite (52) as:

E

((
� j1 − E�

)
E

(
�T

j2 − E�T∣∣F j1+1

))
= E

(
� j1 − E�

) (
(1 − δ) j2− j1 (A j2− j1

�)T� j1 − E�
)T

+ E
(
� j1 − E�

)⎛⎝δ

j2− j1−1∑
t=0

(1 − δ)t (At
�)TL̄

⎞⎠T

= E
(
� j1 − E�

) (
� j1 − E�

)T
(1 − δ) j2− j1A j2− j1

�

+ E
(
� j1 − E�

)
E�T

(
(1 − δ) j2− j1A j2− j1

� − I
)

+ E
(
� j1 − E�

)⎛⎝δ

j2− j1−1∑
t=0

(1 − δ)t (At
�)TL̄

⎞⎠T

= E
(
� j1 − E�

) (
� j1 − E�

)T
(1 − δ) j2− j1A j2− j1

� (55)

where the last equation holds since in steady state E� j1 =
E�. The trace of (55) then becomes2:

Tr E
(
� j1 − E�

) (
� j1 − E�

)T
(1 − δ) j2− j1A j2− j1

�

≤ E
(∥∥� j1 − E�

∥∥
F

×∥∥(1 − δ) j2− j1 (A j2− j1
�)

(
� j1 − E�

) ∥∥
F

)
≤ (1 − δ) j2− j1‖A j2− j1

� ‖FE‖� j1 − E�
∥∥2

F

≤ (1 − δ) j2− j1
√

|N|E∥∥� j1 − E�
∥∥2

F, (56)

2Using Tr(ABT) ≤ ‖A‖F‖B‖F.

where the last inequality holds because A� and its powers are
left-stochastic, i.e. all the entries are non-negative and each
column’s entries add up to one:

‖A�‖2
F =

∑
k

∑
�

a2
k� ≤

∑
k

(∑
�

ak�

)2

=
∑

k

1 = |N|

(57)

Next, let us study the following sum:

i−1∑
j1, j2=i−M,

j1< j2

(1 − δ) j2− j1

= (M − 1)(1 − δ) + (M − 2)(1 − δ)2 + · · · +
+ 2(1 − δ)M−2 + (1 − δ)M−1

= M − 1 − (1 − δ)M

δ
− (1 − δ)δM−2 = O(M/δ) (58)

Additionally, under the steady-state condition (13), the fol-
lowing property for � holds:

E‖�− E�‖2
F

= E Tr
(

(�− E�) (�− E�)T
)

(13)= E Tr

⎛⎝δ

∞∑
t1=0

(1 − δ)t1 (At1
�)T
(Lt1 − L̄)

×δ

∞∑
t2=0

(1 − δ)t2 (At2
�)T
(Lt2 − L̄)

⎞⎠
= δ2

E Tr

(∞∑
t1=0

∞∑
t2=0

(1 − δ)t1+t2 (At1
�)T(Lt1 − L̄)

× (Lt2 − L̄)TAt2
�

)

= δ2
∞∑

t=0

(1 − δ)2t Tr
(

(At
�)TRLAt

�

)
= O(δ) (59)

due to i.i.d. Li. Combining the derivations above, expres-
sion (49) becomes:

P

⎛⎝∥∥∥∥ 1

M

i−1∑
j=i−M

� j − E�

∥∥∥∥2

F

> ε

⎞⎠
≤ 1

M2ε

i−1∑
j=i−M

E
∥∥� j − E�

∥∥2
F

+ 2

M2ε

∑
j1< j2

(1 − δ) j2− j1
√

|N|E∥∥� j1 − E�
∥∥2

F

VOLUME 4, 2023 199

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

= 1

Mε

⎛⎝1 + 2
√|N|
M

∑
j1< j2

(1 − δ) j2− j1

⎞⎠E‖�− E�‖2
F

= 1

Mε
(1 + O(1/δ)) O(δ)

= O

(
1

Mε

)
(60)

since
∑

j1< j2
(1 − δ) j2− j1 = O(M/δ). Taking M → ∞, the

right-hand side of (60) is zero for any ε > 0. Thus, we es-
tablish convergence in probability by definition.

APPENDIX B
PROOF OF LEMMA 2
Under some reasonable assumptions on the distribution of the
random variables, as required by the dominated convergence
theorem in mathematical analysis, it is possible to exchange
the expectation and gradient operations [72]. Thus, using (19),
the gradient of (21) is given by:

∇Ji(A) = − (1 − δ)E
[
�i−1

(
�T

i − (1 − δ)�T
i−1A

)]
(61)

We first verify that the risk function Ji(A) has Lipschitz gradi-
ents. Note that for any A1, A2:

Tr
(

(∇Ji(A1) − ∇Ji(A2))T (A1 − A2)
)

= (1 − δ)2Tr
(
E�i−1�

T
i−1 (A1 − A2) (A1 − A2)T

)
(a)≤ (1 − δ)2λmax

(
E�i−1�

T
i−1

)
‖A1 − A2‖2

F, (62)

where step (a) follows from the following considerations.
For matrices X and Y of appropriate dimensions, where X
is positive definite with eigendecomposition X = UX �XU−1

X ,
the following inequality holds:

Tr
(

XYY T
)

= Tr
(
UX �XU−1

X YY T
)

= Tr
(
�XU−1

X YY TUX

)
≤ λmax(X)Tr(U−1

X YY TUX)

= λmax(X)‖Y ‖2
F. (63)

Similarly, we can verify that Ji(A) is strongly convex since

Tr
(

(∇Ji(A1) − ∇Ji(A2))T (A1 − A2)
)

≥ (1 − δ)2λmin

(
E�i−1�

T
i−1

)
‖A1 − A2‖T

F. (64)

Next we verify that E�i�
T
i is positive definite and finite. For

this purpose, we refer to [27, Lemma 1], which establishes
that � given by (13) is element-wise bounded as follows:

|�| � �̄ � δb
∞∑

t=0

(1 − δ)t (At
�)T11T

= δb
(

I − (1 − δ)AT
�

)−1
11T (65)

Using (65), we can also bound the sample average:∣∣∣ 1

M

i−1∑
j=i−M

� j

∣∣∣ � 1

M

i−1∑
j=iM

|� j | = �̄ (66)

Then, E�i�
T
i is also bounded:

E�i�
T
i

= E

⎛⎝�i − 1

M

i−1∑
j=i−M

� j

⎞⎠⎛⎝�i − 1

M

i−1∑
j=i−M

� j

⎞⎠T

� E

⎛⎝|�i| +
∣∣∣∣ 1

M

i−1∑
j=i−M

� j

∣∣∣∣
⎞⎠⎛⎝|�i| +

∣∣∣∣ 1

M

i−1∑
j=i−M

� j

∣∣∣∣
⎞⎠T

� 2�̄ · 2�̄T = 4�̄�̄T. (67)

From Lemma 1 we know that the following convergence in
probability holds:

1

M

i−1∑
i−M

� j
M→∞−−−−→ E� (68)

By definition of convergence in probability, for any ε > 0 and
π ∈ (0, 1), there exists M0 such that for any M ≥ M0(π) the
probability of the event ω:

ω �

⎧⎨⎩
∥∥∥∥∥ 1

M

i−1∑
i−M

� j − E�

∥∥∥∥∥
2

F

≤ ε

⎫⎬⎭ (69)

is bounded as follows:

P(ω) ≥ 1 − π. (70)

By the law of total expectation and using (70), we can repre-
sent E�i�

T
i as:

E�i�
T
i

= E

(
�i�

T
i

∣∣ω)P(ω) + E

(
�i�

T
i

∣∣ω̄)P(ω̄)

≥ (1 − π) · E
(
�i�

T
i

∣∣ω)+ 0 · E
(
�i�

T
i

∣∣ω̄) (71)

where ω̄ denotes the complementary event of ω, and
E(�i�

T
i

∣∣ω̄) is finite due to finiteness of each�i, as established
in (65). Next, using definition (20), and the fact that g(X) =
XX T is a continuous bounded function given a bounded input3

we get that:

E

(
�i�

T
i

∣∣ω)

=E

⎛⎜⎝
⎛⎝�i− 1

M

i−1∑
j=i−M

� j

⎞⎠⎛⎝�i− 1

M

i−1∑
j=i−M

� j

⎞⎠T ∣∣∣∣ω
⎞⎟⎠

3If a sequence of random variables x1, x2, . . . converges in distribution to

a random variable x, then Eg(xi)
i→∞−−−→ Eg(x) for a continuous and bounded

function g(·).

200 VOLUME 4, 2023

(69)= E
(
�− E�+ O(

√
ε)
) (
�− E�+ O(

√
ε)
)T

= E(�− E�)(�− E�)T + O(ε)

= δ2
∞∑

t=0

(1 − δ)2t (At
�)TRLAt

� + O(ε)

= δ2RL +
∞∑

t=1

(1 − δ)2t (At
�)TRLAt

� + O(ε)

(a)≥ δ2RL + O(ε) ≥ τδ2I + O(ε) (72)

where the last inequality is due to Assumption 2. Thus, (71)
becomes:

E�i�
T
i ≥ (1 − π)

(
τδ2I + O(ε)

)
(73)

Since we can choose ε as small as possible, let us set ε =
1/

√
M. Then, using (60), we get that

P (w̄) = O(1/Mε) = O(1/
√

M). (74)

Therefore, we can take the corresponding π to be on the order
of 1/

√
M due to (70). Returning to (73), we get:

E�i�
T
i ≥

(
1 + O

(
1/

√
M
)) (

τδ2I + O(1/
√

M)
)

= τδ2I + O
(

1/
√

M
)

. (75)

Thus, E�i�
T
i is positive-definite for M large enought i.e. as

long as M
 1/δ4.
We now examine the relation of the minimizer of Amin,i �

minA Ji(A) to the true combination matrix A�. From strong
convexity, the minimizer of Ji(A) is unique and satisfies:

∇Ji(Amin,i) = 0 (76)

Referring to (61), we get

−(1 − δ)E�i−1

(
�T

i − (1 − δ)�T
i−1Amin,i

)
= 0. (77)

Therefore,

Amin,i = 1

1 − δ

(
E�i−1�

T
i−1

)−1
E�i−1�

T
i (78)

In turn, using (20), recursion (8) can be modified into

�i = (1 − δ)AT
��i−1 + δ

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠ (79)

so that

A� = 1

1 − δ

(
E�i−1�

T
i−1

)−1

×
(
E�i−1�

T
i − δE�i−1

(
Li − 1

M

i−1∑
j=i−M

L j

)T)
(80)

Subtracting (78) and (80) gives:

Amin,i − A� = δ

1 − δ

(
E�i−1�

T
i−1

)−1

× E�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T

(81)

Iterating (8), we get the following representation for �i:

�i = (1 − δ)M (AM
�)T�i−M + δ

M−1∑
t=0

(1 − δ)t (At
�)TLi−t .

(82)

Since Li are i.i.d and using (81) and the definition of �i

in (20), we rewrite the expectation in (81) as:

E�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T

= E

⎛⎝�i−1 − 1

M

i−1∑
j=i−M

� j−1

⎞⎠⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T

(82)= E

[(
(1 − δ)M (AM

�)T

− (1 − δ)M−1(AM−1
�)T + · · · + (1 − δ)AT

� + I

M

)
�i−M−1

+ δ
(

(1 − δ)M−1(AM−1
�)T

− (1 − δ)M−2(AM−2
�)T + · · · + I

M

)
Li−M

+ δ
(

(1 − δ)M−2(AM−2
�)T

− (1 − δ)M−3(AM−3
�)T + · · · + I

M

)
Li−M+1

+ . . .

+ δ

(
(1 − δ)AT

� − I

M

)
Li−2

+ δLi−1

]
×
[
Li − Li−1 + · · · + Li−M

M

]T

= − δ

M

(I

M
+ 2

M
(1 − δ)AT

� + . . .

+ M − 1

M
(1 − δ)M−2(AM−2

�)T

+ (1 − δ)M−1(AT
�)M−1

)
RL

= O (1/M) I. (83)

VOLUME 4, 2023 201

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

with

RL = E
(Li − L̄) (Li − L̄)T (84)

and where we used the fact that

E

[
�i−M−1

(
Li − Li−1 + · · · + Li−M

M

)T
]

= E�i−M−1E

(
Li − Li−1 + · · · + Li−M

M

)T

= E�i−M−1
(L̄ − L̄)T = 0. (85)

Thus, combining (75), (81) and (83), we find the following
relation between A� and Amin:

‖Amin,i − A�‖2
F

≤ δ2

(1 − δ)2
‖O (1/M) I‖2

F

∥∥∥∥(E�i−1�
T
i−1

)−1
∥∥∥∥2

F

≤ |N|δ2

τ 2δ4(1 − δ)6
O
(
1/M2) = O

(
1/δ2M2) (86)

APPENDIX C
PROOF OF THEOREM 1
Using recursion (8) for �i and the definition of L̂i−1 in (18),
the SGD step (23) can be rewritten as follows:

Ai = Ai−1 + μ(1 − δ)�i−1

×
(
�T

i − (1 − δ)�T
i−1Ai−1

)
(79)= Ai−1 + μ(1 − δ)�i−1

×
(

(1 − δ)�T
i−1 (A� − Ai−1)

+ δ

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T
⎞⎟⎠

= Ai−1 + μ(1 − δ)2�i−1�
T
i−1 (A� − Ai−1)

+ μδ(1 − δ)�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T

(87)

Recall the deviation from the true combination matrix:

Ãi = A� − Ai. (88)

Combining (87) with (88), we obtain:

Ãi =
(

I − μ(1 − δ)2�i−1�
T
i−1

)
Ãi−1

− μδ(1 − δ)�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T

=
(

I − μ(1 − δ)2
E�i−1�

T
i−1

)
Ãi−1

+ μ(1 − δ)2
(
E�i−1�

T
i−1 −�i−1�

T
i−1

)
Ãi−1

− μδ(1 − δ)�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T

. (89)

The mean-square deviation is then given by

E‖Ãi‖2
F

≤ ρ2
(

I − μ(1 − δ)2
E�i−1�

T
i−1

)
E‖Ãi−1‖2

F

+ μ2(1 − δ)4
E

[∥∥∥ (E�i−1�
T
i−1 −�i−1�

T
i−1

) ∥∥∥2

F

× ‖Ãi−1‖2
F

]

+ μ2δ2(1 − δ)2
E

∥∥∥�i−1

⎛⎜⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎟⎠
T∥∥∥2

F

− 2μδ(1 − δ)E

⎡⎢⎣Tr

⎛⎜⎝�i−1

⎛⎜⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎟⎠
T

× Ã
T
i−1

(
I − μ(1 − δ)2�i−1�

T
i−1

)⎞⎟⎠
⎤⎥⎦

+ 2μ(1 − δ)2
E

[
Tr

((
E�i−1�

T
i−1 −�i−1�

T
i−1

)
Ãi−1

× Ã
T
i−1

(
I − μ(1 − δ)2

E�i−1�
T
i−1

))]
= ρ2

(
I − μ(1 − δ)2

E�i−1�
T
i−1

)
E‖Ãi−1‖2

F

+ μ2(1 − δ)4
E

[∥∥∥ (E�i−1�
T
i−1 −�i−1�

T
i−1

) ∥∥∥2

F

× ‖Ãi−1‖2
F

]

+ μ2δ2(1 − δ)2
E

∥∥∥�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T ∥∥∥2

F

+ 2μ2δ(1 − δ)3
E

⎡⎢⎣Tr

⎛⎜⎝�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T

× Ã
T
i−1�i−1�

T
i−1

⎞⎟⎠
⎤⎥⎦

+ 2μ(1 − δ)2
E

[
Tr
((

E�i−1�
T
i−1 −�i−1�

T
i−1

)
Ãi−1

×Ã
T
i−1

(
I − μ(1 − δ)2

E�i−1�
T
i−1

))]
202 VOLUME 4, 2023

−2μδ(1−δ)E

⎡⎢⎣Tr

⎛⎜⎝�i−1

⎛⎝Li− 1

M

i−1∑
j=i−M

L j

⎞⎠T

Ãi−1

⎞⎟⎠
⎤⎥⎦

(90)

where ρ(·) denotes the spectral radius of its matrix argument.
Considering the first term:

ρ2
(

I − μ(1 − δ)2
E�i−1�

T
i−1

)
= max

{
λ2

min

(
I − μ(1 − δ)2

E�i−1�
T
i−1

)
,

λ2
max

(
I − μ(1 − δ)2

E�i−1�
T
i−1

)}
= max

{(
1 − μ(1 − δ)2λmin

(
E�i−1�

T
i−1

))2
,

(
1 − μ(1 − δ)2λmax

(
E�i−1�

T
i−1

))2
}

= max
{
(1 − μν)2, (1 − μκ)2}

≤ 1 − 2μν + μ2κ2 = 1 − 2μν + O(μ2), (91)

where the last inequality holds since ν ≤ κ by definitions (34)
and (35). We omit the time indices in νi and κi since we are as-
suming that �i has reached the steady-state distribution (13),
and ν and κ are defined as:

ν � (1 − δ)2λmin

(
lim

i→∞
E�i−1�

T
i−1

)
κ � (1 − δ)2λmax

(
lim

i→∞
E�i−1�

T
i−1

)
(92)

These constraints are positive by Lemma 2 and exist due to
bounded �i in (65). From [27, Lemma 1] it follows that:

|�i| � �̄i � (1 − δ)i
(

AT
�

)i |�0|

+ δb
i−1∑
t=0

(1 − δ)t (At
�)T11T (93)

and the upper bound has a finite limit, limi→∞ �̄i. Therefore,
we can derive another upper bound:

|�i−1�
T
i−1| � 1

M2

i−1∑
j1=i−M

(
�̄i−1 + �̄ j1

)

×
i−1∑

j2=i−M

(
�̄i−1 + �̄ j2

)T � X. (94)

Now, the expectation of the second term in (90) is bounded as
follows:

μ2
E

(
‖(1 − δ)2

(
E�i−1�

T
i−1 −�i−1�

T
i−1

)
‖2

F

×‖Ãi−1‖2
F

)
4(a − b)2 ≤ 2a2 + 2b2.

≤ 4 2μ2
E

((
‖(1 − δ)2

E�i−1�
T
i−1‖2

F

+ ‖(1 − δ)2�i−1�
T
i−1‖2

F

)
×‖Ãi−1‖2

F

)
≤ 2μ2

(
‖(1 − δ)2

E�i−1�
T
i−1‖2

F + ‖(1 − δ)2X‖2
F

)
× E‖Ãi−1‖2

F

≤ 4μ2‖(1 − δ)2X‖2
FE‖Ãi−1‖2

F

= O(μ2) · E‖Ãi−1‖2
F. (95)

Now, we proceed with the third term in (90). Due to Assump-
tion 1, we have bounded observations Li and �i (see (93)),
and we conclude that∣∣∣∣�i−1

(
Li − 1

M

i−1∑
j=i−M

L j

)T∣∣∣∣
=
∣∣∣∣(�i−1 − 1

M

i−1∑
j=i−M

� j

)(
Li − 1

M

i−1∑
j=i−M

L j

)T∣∣∣∣
�
⎛⎝|�i−1| + 1

M

i−1∑
j=i−M

|� j |
⎞⎠⎛⎝|Li| + 1

M

i−1∑
j=i−M

|L j |
⎞⎠T

� (�̄ + �̄)(b11T + b11T)T

= O(1). (96)

Thus,

μ2δ2(1 − δ)2
E

∥∥∥∥�i−1

⎛⎝Li − 1

M

i−1∑
j=i−M

L j

⎞⎠T ∥∥∥∥2

F

≤ μ2δ2(1 − δ)2 · O(1) = μ2 · O(δ2) (97)

In turn, the fourth term becomes:

2μ2δ(1 − δ)3
E

[
Tr

(
�i−1

(
Li − 1

M

i−1∑
j=i−M

L j

)T

× Ã
T
i−1�i−1�

T
i−1

)]

≤5 μ2δ2(1 − δ)6
E

∥∥∥∥Li − 1

M

i−1∑
j=i−M

L j

∥∥∥∥2

F

+ μ2
E

∥∥∥AT
i−1�i−1�

T
i−1�i−1

∥∥∥2

F

(a)= μ2δ2(1 − δ)6 M + 1

M
Tr(RL) + O(μ2) · E‖Ãi−1‖2

F

= μ2O(δ2) + O(μ2) · E‖Ãi−1‖2
F (98)

52 Tr(ABT) ≤ ‖A‖2
F + ‖B‖2

F.

VOLUME 4, 2023 203

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

where we use the same steps as in (95), and (a) follows from:

E

∥∥∥ 1

M

i−1∑
j=i−M

L j − Li

∥∥∥2

F
= E

∥∥∥ 1

M

i−1∑
j=i−M

(L j − Li
) ∥∥∥2

F

= E Tr

(
1

M

i−1∑
i= j−M

(L j − Li
))(1

M

i−1∑
i= j−M

(L j − Li
))T

= 1

M2

i−1∑
j=i−M

Tr E
((L j − Li

) (L j − Li
)T)

+ 1

M2

i−1∑
j1=i−M

i−1∑
j2 �= j1

Tr E
((L j1 − Li

) (L j2 − Li
)T)

= 1

M2

i−1∑
j=i−M

Tr
(
EL jLT

j − 2L̄L̄T + ELiLT
i

)

+ 1

M2

i−1∑
j1=i−M

i−1∑
j2 �= j1

Tr
(
ELiLT

i − L̄L̄T
)

= 2

M
Tr (RL) + M − 1

M
Tr (RL) = M + 1

M
Tr (RL) (99)

To find the expectation of the second trace term in (90),
consider first the conditional expectation, and then use As-
sumption 3:

E

[
Tr
((

E�i−1�
T
i−1 −�i−1�

T
i−1

)
Ãi−1Ã

T
i−1

×
(

I − μ(1 − δ)2
E�i−1�

T
i−1

)) ∣∣∣Fi−M−1

]
= Tr

((
E�i−1�

T
i−1 − E�i−1�

T
i−1

)
× E

[
Ãi−1Ã

T
i−1

∣∣Fi−M−1

]
×
(

I − μ(1 − δ)2
E�i−1�

T
i−1

))
= 0 (100)

where we use the fact that �i−1 depends only on
�i−M−1, . . . ,�i−1. Finally, consider the last term of (90).
Using Assumption 3, we obtain:

−2μδ(1−δ)E

⎡⎢⎣Tr

⎛⎜⎝�i−1

⎛⎜⎝Li− 1

M

i−1∑
j=i−M

L j

⎞⎟⎠
T

Ãi−1

⎞⎟⎠
⎤⎥⎦

= −2μδ(1 − δ)

×E

⎡⎢⎣Tr

⎛⎜⎝E
⎛⎜⎝�i−1

⎛⎜⎝Li− 1

M

i−1∑
j=i−M

L j

⎞⎟⎠
T∣∣∣∣Fi−M−1

⎞⎟⎠

× E

⎛⎜⎝Ãi−1

∣∣∣∣∣∣∣Fi−M−1

⎞⎟⎠
⎞⎟⎠
⎤⎥⎦

(85)= −2μδ(1−δ)E

⎡⎢⎣Tr

⎛⎜⎝E
⎛⎜⎝�i−1

⎛⎝Li− 1

M

i−1∑
j=i−M

L j

⎞⎠T
⎞⎟⎠

× E

(
Ãi−1

∣∣∣∣Fi−M−1

)⎞⎟⎠
⎤⎥⎦

(83)= μδ(1 − δ)E

⎡⎢⎣Tr

⎛⎜⎝O(1/M)E

⎛⎜⎝Ãi−1
∣∣Fi−M−1

⎞⎟⎠
⎞⎟⎠
⎤⎥⎦

= μδ(1 − δ)E
[
Tr
(
O(1/M)Ãi−1

)]
≤6 μ

(1 − δ)2

δ
O(1/M2) + μδ3

E‖Ãi−1‖2
F

= μO(1/δM2) + μE‖Ãi−1‖2
F · O(δ3). (101)

where in (83) the conditional expectation on Fi−M−1 is equal
to the full expectation because (85) equals to zero for both
full and conditional on Fi−M−1 expectations. Summarizing
the derivations above, we can transform (90) into:

E‖Ãi‖2
F ≤ αE‖Ãi−1‖2

F + μ2γ + μc, (102)

with γ = O(δ2), c = O(1/δM2) and α = 1 − μ(2ν +
O(δ3)) + O(μ2). Thus,

E‖Ãi‖2
F ≤ αi‖Ã0‖2

F + (μ2γ + μc
) i∑

t=0

αi

= αi‖Ã0‖2
F + (μ2γ + μc

) 1 − αi

1 − α
. (103)

For small enough μ, α is strictly less than one. Hence, we
obtain the following limiting MSD:

lim sup
i→∞

E‖Ãi‖2
F ≤ μ2γ + μc

1 − α

= O(μ) + O
(
1/δ3M2) (104)

APPENDIX D
PROOF OF THEOREM 2
First, using recursion (8), we rewrite (18) as:

L̂i−1(Ai) = 1

δM

i−1∑
j=i−M

(
� j − (1 − δ)AT

i� j−1

)

= 1

δM

i−1∑
j=i−M

(
(1 − δ)Ã

T
i� j−1 + δL j

)
(105)

Consider the mean square deviation of L̂i:

E‖L̂i−1 − L̄‖2
F

204 VOLUME 4, 2023

= E

∥∥∥ 1

M

i−1∑
j=i−M

L j − L̄
∥∥∥2

F

+ (1 − δ)2

δ2
E

∥∥∥Ã
T
i · 1

M

i−1∑
j=i−M

� j−1

∥∥∥2

F

+ 2
1 − δ

δ
E Tr

(
1

M
Ã

T
i

∑
j

� j−1

×
(

1

M

∑
j

L j − L̄
)T)

. (106)

Consider the first norm:

E

∥∥∥ 1

M

i−1∑
j=i−M

L j − L̄
∥∥∥2

F
= E

∥∥∥ 1

M

i−1∑
j=i−M

(L j − L̄) ∥∥∥2

F

= E Tr

(
1

M

i−1∑
i= j−M

(L j − L̄))(1

M

i−1∑
i= j−M

(L j − L̄))T

= 1

M2

i−1∑
i= j−M

Tr E
((L j − L̄) (L j − L̄)T)

= 1

M
Tr (RL) (107)

Let us study the second term of (106) using Assumption 3 and
Lemma 1. Conditioning on the history (51), we get

E

⎛⎝E
⎛⎝∥∥∥Ã

T
i · 1

M

i−1∑
j=i−M

� j−1

∥∥∥2

F

∣∣∣Fi−M−1

⎞⎠⎞⎠
≤ E

⎛⎝E
⎛⎝∥∥∥Ã

T
i

∥∥∥2

F
·
∥∥∥ 1

M

i−1∑
j=i−M

� j−1

∥∥∥2

F

∣∣∣Fi−M−1

⎞⎠⎞⎠

= E

⎛⎜⎝E(∥∥∥Ã
T
i

∥∥∥2

F

∣∣∣Fi−M−1

)

× E

⎛⎝∥∥∥ 1

M

i−1∑
j=i−M

� j−1

∥∥∥2

F

∣∣∣Fi−M−1

⎞⎠
⎞⎟⎠ (108)

According to (66), we can bound:

E

⎛⎝∥∥∥ 1

M

i−1∑
j=i−M

� j−1

∥∥∥2

F

∣∣∣Fi−M−1

⎞⎠ ≤ ‖�̄‖2
F (109)

Therefore, (108) can be bounded as follows:

E

⎛⎝E
⎛⎝∥∥∥Ã

T
i · 1

M

i−1∑
j=i−M

� j−1

∥∥∥2

F

∣∣∣Fi−M−1

⎞⎠⎞⎠
≤ E‖Ãi‖2

F · O(1) (110)

Now, consider the trace term in (106):

E Tr

⎛⎝Ã
T
i · 1

M

∑
j

� j−1

⎛⎝ 1

M

∑
j

LT
j − L̄T

⎞⎠⎞⎠
= E Tr

(
E

(
Ã

T
i · 1

M

∑
j

� j−1

×
(

1

M

∑
j

LT
j − L̄T

)∣∣∣∣Fi−M−1

))
(a)= E Tr

(
E

(
Ã

T
i

∣∣Fi−M−1

)
× E

(
1

M

∑
j

� j−1

(
1

M

∑
j

LT
j − L̄T

)∣∣∣∣Fi−M−1

))
(b)= E Tr

(
Ã

T
i · O(1/M)I

)
≤6 1

2
E‖Ãi‖2

F + O(1/M2) (111)

where (a) holds due to Assumption 3 and (b) holds due the
trick similar to (83). Summarizing the derivations above, we
can upper bound the expectation (106) as:

E‖L̂i−1 − L̄‖2
F

≤ 1

M
Tr (RL)

+ (1 − δ)2

δ2
E‖Ãi‖2

F · O(1)

+ 1 − δ

δ

(
E‖Ãi‖2

F + O(1/M2)
)

= 1

M
Tr (RL) + 1

δ2
E‖Ãi‖2

F · O(1) + O(1/δM2). (112)

By Theorem 1, we derive the following MSD in the limit:

lim sup
i→∞

E‖L̂i−1 − L̄‖2
F

≤ 1

M
Tr (RL) + O(μ/δ2) + O

(
1/δ5M2

)
(113)

APPENDIX E
In this section, we describe how we generate Bernoulli like-
lihood model parameters. Under hypothesis θ , each agent k
receives observation 0 with probability pk (θ), and observation
1 with probability qk (θ) = 1 − pk (θ). For hypotheses θ0, we
fix the probabilities as follows:

pk (θ0), qk (θ0) = [0.3, 0.7] (114)

And for all other θi �= θ0, we generate pk (θi) and qk (θi) with
the following procedure:

εpk , εqk ∼ G(0, 1), (115)

VOLUME 4, 2023 205

SHUMOVSKAIA ET AL.: DISCOVERING INFLUENCERS IN OPINION FORMATION OVER SOCIAL GRAPHS

and

pk (θi), qk (θi) = 1

pk (θ0) + σ 2
k εpk + qk (θ0) + σ 2

k εqk

× [pk (θ) + σ 2
k εpk , qk (θ0) + σ 2

k εqk

]
(116)

For “non-influential” agents, we take σ 2
k = 0.05, while for

“influential” ones we use σ 2
k = 0.5 to enlarge the KL-

divergences between different states. For additional compar-
ison in Fig. 5, we take σ 2

k = 0.2 for “influential” agents with
smaller (but yet significant) KL-divergences.

ACKNOWLEDGMENT
We thank our colleague Virginia Bordignon for her valuable
suggestions regarding the application to Twitter data.

REFERENCES
[1] V. Shumovskaia, M. Kayaalp, and A. H. Sayed, “Identifying opinion

influencers over social networks,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2023, pp. 1–5.

[2] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-Salehi, “Non-
Bayesian social learning,” Games Econ. Behav., vol. 76, no. 1,
pp. 210–225, 2012.

[3] A. Nedić, A. Olshevsky, and C. A. Uribe, “Fast convergence rates
for distributed non-Bayesian learning,” IEEE Trans. Autom. Control,
vol. 62, no. 11, pp. 5538–5553, Nov. 2017.

[4] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie, “Foundations of non-
Bayesian social learning,” Columbia Bus. Sch. Res. Paper, pp. 15–95,
2017.

[5] P. Molavi, A. Tahbaz-Salehi, and A. Jadbabaie, “A theory of non-
Bayesian social learning,” Econometrica, vol. 86, no. 2, pp. 445–490,
2018.

[6] V. Bordignon, V. Matta, and A. H. Sayed, “Adaptive social learning,”
IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 6053–6081, Sep. 2021.

[7] V. Bordignon, V. Matta, and A. H. Sayed, “Social learning with partial
information sharing,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2020, pp. 5540–5544.

[8] A. Lalitha, T. Javidi, and A. D. Sarwate, “Social learning and dis-
tributed hypothesis testing,” IEEE Trans. Inf. Theory, vol. 64, no. 9,
pp. 6161–6179, Sep. 2018.

[9] X. Zhao and A. H. Sayed, “Learning over social networks via diffu-
sion adaptation,” in Proc. Asilomar Conf. Signals, Syst. Comput., 2012,
pp. 709–713.

[10] D. Gale and S. Kariv, “Bayesian learning in social networks,” Games
Econ. Behav., vol. 45, no. 2, pp. 329–346, 2003.

[11] D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar, “Bayesian
learning in social networks,” Rev. Econ. Stud., vol. 78, no. 4,
pp. 1201–1236, 2011.

[12] Y. Inan, M. Kayaalp, E. Telatar, and A. H. Sayed, “Social learning under
randomized collaborations,” in Proc. IEEE Int. Symp. Inf. Theory, 2022,
pp. 115–120.

[13] M. T. Toghani and C. A. Uribe, “Communication-efficient dis-
tributed cooperative learning with compressed beliefs,” in IEEE
Trans. Control Netw. Syst., vol. 9, no. 3, pp. 1215–1226, Sep. 2022,
doi: 10.1109/TCNS.2022.3198791.

[14] J. Z. Hare, C. A. Uribe, L. Kaplan, and A. Jadbabaie, “Non-Bayesian
social learning with uncertain models,” IEEE Trans. Signal Process.,
vol. 68, pp. 4178–4193, 2020.

[15] C. A. Uribe, A. Olshevsky, and A. Nedić, “Nonasymptotic concen-
tration rates in cooperative learning–Part I: Variational non-Bayesian
social learning,” IEEE Trans. Control Netw. Syst., vol. 9, no. 3,
pp. 1128–1140, Sep. 2022.

[16] C. A. Uribe, A. Olshevsky, and A. Nedić, “Nonasymptotic concen-
tration rates in cooperative learning-Part II: Inference on compact
hypothesis sets,” IEEE Trans. Control Netw. Syst., vol. 9, no. 3,
pp. 1141–1153, Sep. 2022.

[17] M. Kayaalp, V. Bordignon, S. Vlaski, V. Matta, and A. H. Sayed,
“Distributed Bayesian learning of dynamic states,” Dec. 2022,
arXiv:2212.02565.

[18] J. Hkazla, A. Jadbabaie, E. Mossel, and M. A. Rahimian, “Bayesian
decision making in groups is hard,” Operations Res., vol. 69, no. 2,
pp. 632–654, 2021.

[19] M. Kayaalp, Y. Inan, E. Telatar, and A. H. Sayed, “On the arith-
metic and geometric fusion of beliefs for distributed inference,” 2022,
arXiv:2204.13741.

[20] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and
C. Zhong, “Interpretable machine learning: Fundamental princi-
ples and 10 grand challenges,” Statist. Surv., vol. 16, pp. 1–85,
2022.

[21] A. Heuillet, F. Couthouis, and N. Díaz-Rodríguez, “Collective explain-
able AI: Explaining cooperative strategies and agent contribution in
multiagent reinforcement learning with shapley values,” IEEE Comput.
Intell. Mag., vol. 17, no. 1, pp. 59–71, Feb. 2022.

[22] J. J. Ohana, S. Ohana, E. Benhamou, D. Saltiel, and B. Guez, “Ex-
plainable AI (XAI) models applied to the multi-agent environment
of financial markets,” in Proc. Workshop Explainable Transparent AI
Multi-Agent Syst., 2021, pp. 189–207.

[23] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez, “Ex-
plainable reinforcement learning via reward decomposition,” in Proc.
IJCAI/ECAI Workshop Explainable Artif. Intell., 2019, pp. 47–53.

[24] J. Ho and C.-M. Wang, “Explainable and adaptable augmentation in
knowledge attention network for multi-agent deep reinforcement learn-
ing systems,” in Proc. IEEE 3rd Int. Conf. Artif. Intell. Knowl. Eng.,
2020, pp. 157–161.

[25] M. Brandao, M. Mansouri, A. Mohammed, P. Luff, and A. Coles,
“Explainability in multi-agent path/motion planning: User-study-driven
taxonomy and requirements,” in Proc. Int. Conf. Auton. Agents Multia-
gent Syst., 2022, pp. 172–180.

[26] A. Georgara, J. A. R. Aguilar, and C. Sierra, “Building contrastive
explanations for multi-agent team formation,” in Proc. Int. Conf. Auton.
Agents Multiagent Syst., 2022, pp. 516–524.

[27] V. Shumovskaia, K. Ntemos, S. Vlaski, and A. H. Sayed, “Explainabil-
ity and graph learning from social interactions,” IEEE Trans. Signal Inf.
Process. Netw., vol. 8, pp. 946–959, 2022.

[28] V. Shumovskaia, K. Ntemos, S. Vlaski, and A. H. Sayed, “Online graph
learning from social interactions,” in Proc. Asilomar Conf. Signals,
Syst., Comput., 2021, pp. 1263–1267.

[29] J. Bisbee, J. Larson, and K. Munger, “#polisci Twitter: A descriptive
analysis of how political scientists use Twitter in 2019,” Perspectives
Politics, vol. 20, no. 3, pp. 879–900, 2022.

[30] D. Quercia, J. Ellis, L. Capra, and J. Crowcroft, “In the mood for being
influential on twitter,” in Proc. IEEE 3rd Int. Conf. Privacy, Secur., Risk
Trust IEEE 3rd Int. Conf. Social Comput., 2011, pp. 307–314.

[31] S. Jain and A. Sinha, “Identification of influential users on twit-
ter: A novel weighted correlated influence measure for Covid-
19,” Chaos, Solitons Fractals, vol. 139, 2020, Art. no. 110037.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0960077920304355

[32] M. Åkerlund, “The importance of influential users in (re) producing
Swedish far-right discourse on Twitter,” Eur. J. Commun., vol. 35, no. 6,
pp. 613–628, 2020, doi: 10.1177/0267323120940909.

[33] M. Pennacchiotti and A.-M. Popescu, “A machine learning approach to
Twitter user classification,” in Proc. Int. AAAI Conf. Web Social Media,
2011, vol. 5, no. 1, pp. 281–288.

[34] J. Lin and A. Kolcz, “Large-scale machine learning at Twitter,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2012, pp. 793–804.

[35] A. Hasan, S. Moin, A. Karim, and S. Shamshirband, “Machine learning-
based sentiment analysis for Twitter accounts,” Math. Comput. Appl.,
vol. 23, no. 1, 2018, Art. no. 11.

[36] S. Zervoudakis, E. Marakakis, H. Kondylakis, and S. Goumas, “Opin-
ionmine: A Bayesian-based framework for opinion mining using twitter
data,” Mach. Learn. Appl., vol. 3, 2021, Art. no. 100018.

[37] D. Camacho, Á. Panizo-LLedot, G. Bello-Orgaz, A. Gonzalez-Pardo,
and E. Cambria, “The four dimensions of social network analysis: An
overview of research methods, applications, and software tools,” Inf.
Fusion, vol. 63, pp. 88–120, 2020.

[38] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. ACM SIGKDD Conf.
Knowl. Discov. Data Mining, 2003, pp. 137–146.

206 VOLUME 4, 2023

https://dx.doi.org/10.1109/TCNS.2022.3198791
https://www.sciencedirect.com/science/article/pii/S0960077920304355
https://www.sciencedirect.com/science/article/pii/S0960077920304355
https://dx.doi.org/10.1177/0267323120940909

[39] D. Kempe, J. Kleinberg, and É. Tardos, “Influential nodes in a diffusion
model for social networks,” in Proc. Intern. Colloq. Automata, Lang.,
Program., 2005, pp. 1127–1138.

[40] Y. Li, J. Fan, Y. Wang, and K.-L. Tan, “Influence maximization on
social graphs: A survey,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 10,
pp. 1852–1872, Oct. 2018.

[41] M. Gomez-Rodriguez, L. Song, N. Du, H. Zha, and B. Schölkopf,
“Influence estimation and maximization in continuous-time diffu-
sion networks,” ACM Trans. Inf. Syst., vol. 34, no. 2, pp. 1–33,
2016.

[42] J. Qiu, J. Tang, H. Ma, Y. Dong, K. Wang, and J. Tang, “Deepinf: Social
influence prediction with deep learning,” in Proc. ACM SIGKDD Conf.
Knowl. Discov. Data Mining, 2018, pp. 2110–2119.

[43] W. Karoui, N. Hafiene, and L. Ben Romdhane, “Machine learning-
based method to predict influential nodes in dynamic social net-
works,” Social Netw. Anal. Mining, vol. 12, no. 1, pp. 1–18,
2022.

[44] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2001, pp. 57–66.

[45] K. Saito, R. Nakano, and M. Kimura, “Prediction of infor-
mation diffusion probabilities for independent cascade model,”
in Proc. Int. Conf. Knowl.-Based Intell. Inf. Eng. Syst., 2008,
pp. 67–75.

[46] M. Granovetter, “Threshold models of collective behavior,” Amer. J.
Sociol., vol. 83, no. 6, pp. 1420–1443, 1978.

[47] W. Chen, W. Lu, and N. Zhang, “Time-critical influence maximization
in social networks with time-delayed diffusion process,” in Proc. AAAI
Conf. Artif. Intell., 2012, pp. 592–598.

[48] L. Wu, P. Sun, Y. Fu, R. Hong, X. Wang, and M. Wang,
“A neural influence diffusion model for social recommendation,”
in Proc. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2019,
pp. 235–244.

[49] J. Goldenberg, B. Libai, and E. Muller, “Talk of the network: A complex
systems look at the underlying process of word-of-mouth,” Marketing
Lett., vol. 12, no. 3, pp. 211–223, 2001.

[50] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc.
Artif. Intell. Statist., 2016, pp. 920–929.

[51] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data
under Laplacian and structural constraints,” IEEE J. Sel. Topics Signal
Process., vol. 11, no. 6, pp. 825–841, Sep. 2017.

[52] S. Vlaski, H. P. Maretić, R. Nassif, P. Frossard, and A. H. Sayed,
“Online graph learning from sequential data,” in Proc. IEEE Data Sci.
Workshop, 2018, pp. 190–194.

[53] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Process.
Mag., vol. 36, no. 3, pp. 44–63, May 2019.

[54] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat,
“Characterization and inference of graph diffusion processes from ob-
servations of stationary signals,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 4, no. 3, pp. 481–496, Sep. 2018.

[55] D. Thanou, X. Dong, D. Kressner, and P. Frossard, “Learning heat
diffusion graphs,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 3,
pp. 484–499, Sep. 2017.

[56] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero, “Learning sparse graphs
under smoothness prior,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2017, pp. 6508–6512.

[57] R. Shafipour, S. Segarra, A. G. Marques, and G. Mateos, “Network
topology inference from non-stationary graph signals,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2017, pp. 5870–5874.

[58] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network topol-
ogy identification from spectral templates,” in Proc. IEEE Stat. Signal
Process. Workshop, 2016, pp. 1–5.

[59] S. Sardellitti, S. Barbarossa, and P. Di Lorenzo, “Graph topology infer-
ence based on transform learning,” in Proc. IEEE Glob. Conf. Signal
Inf. Process., 2016, pp. 356–360.

[60] H. P. Maretic, D. Thanou, and P. Frossard, “Graph learning under spar-
sity priors,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2017, pp. 6523–6527.

[61] M. Cirillo, V. Matta, and A. H. Sayed, “Learning Bollobás-Riordan
graphs under partial observability,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2021, pp. 5360–5364.

[62] Y. He and H.-T. Wai, “Online inference for mixture model of streaming
graph signals with sparse excitation,” IEEE Trans. Signal Process.,
vol. 70, pp. 6419–6433, 2022.

[63] S. S. Saboksayr and G. Mateos, “Accelerated graph learning from
smooth signals,” IEEE Signal Process. Lett., vol. 28, pp. 2192–2196,
2021.

[64] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of net-
work topology for distributed machine learning,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 2350–2358.

[65] S. Shahrampour, A. Rakhlin, and A. Jadbabaie, “Distributed detection:
Finite-time analysis and impact of network topology,” IEEE Trans.
Autom. Control, vol. 61, no. 11, pp. 3256–3268, Nov. 2016.

[66] P. Hu, V. Bordignon, S. Vlaski, and A. H. Sayed, “Optimal combination
policies for adaptive social learning,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2022, pp. 5842–5846.

[67] V. Matta, V. Bordignon, A. Santos, and A. H. Sayed, “Interplay between
topology and social learning over weak graphs,” IEEE Open J. Signal
Process., vol. 1, pp. 99–119, 2020.

[68] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covari-
ance estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3,
pp. 432–441, 2008.

[69] V. Matta, A. Santos, and A. H. Sayed, “Graph learning with partial
observations: Role of degree concentration,” in Proc. IEEE Int. Symp.
Inf. Theory, 2019, pp. 1312–1316.

[70] A. Brovelli, M. Ding, A. Ledberg, Y. Chen, R. Nakamura, and S. L.
Bressler, “Beta oscillations in a large-scale sensorimotor cortical net-
work: Directional influences revealed by granger causality,” Proc. Nat.
Acad. Sci., vol. 101, no. 26, pp. 9849–9854, 2004.

[71] R. A. Horn and C. R. Johnson, Matrix Analysis. New York, NY, USA:
Cambridge Univ. Press, 2013.

[72] A. H. Sayed, Inference and Learning From Data, vol. 1–3. Cambridge,
U.K.: Cambridge Univ. Press, 2022.

[73] A. H. Sayed, Adaptive Filters. Hoboken, NJ, USA: Wiley, 2008.
[74] A. H. Sayed, “Adaptation, learning, and optimization over networks,”

Found. Trends Mach. Learn., vol. 7, no. 4/5, pp. 311–801, 2014.
doi :10.1561/2200000051.

[75] A. H. Sayed, “Adaptive networks,” Proc. IEEE, vol. 102, no. 4,
pp. 460–497, Apr. 2014.

[76] D. Loureiro, F. Barbieri, L. Neves, L. E. Anke, and J. Camacho-
Collados, “TimeLMs: Diachronic language models from Twitter,” in
Proc. 60th Annu. Meeting Assoc. Comput. Linguistics: Syst. Demon-
strations, 2022, pp. 251–260.

VOLUME 4, 2023 207

https://dx.doi.org/10.1561/2200000051.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

