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ABSTRACT In this article, we consider multi-channel sampling (MCS) for graph signals. We generally
encounter full-band graph signals beyond the bandlimited ones in many applications, such as piecewise
constant/smooth graph signals and union of bandlimited graph signals. Full-band graph signals can be
represented by a mixture of multiple signals conforming to different generation models. This requires the
analysis of graph signals via multiple sampling systems, i.e., MCS, while existing approaches only consider
single-channel sampling. We develop a MCS framework based on generalized sampling. We also present
a sampling set selection (SSS) method for the proposed MCS so that the graph signal is best recovered.
Furthermore, we reveal that existing graph filter banks can be viewed as a special case of the proposed MCS.
In signal recovery experiments, the proposed method exhibits the effectiveness of recovery for full-band
graph signals.

INDEX TERMS Multi-channel sampling, full-band graph signals, sampling set selection.

I. INTRODUCTION
Graph signal processing (GSP) is a fundamental theory for
analyzing graph-structured data, i.e., graph signals [1]. Sam-
pling of graph signals is one of the central research topics in
GSP [2]. Sampling theory for graph signals, hereafter we call
it graph sampling theory, can be applied to various applica-
tions, including sensor placement [3], traffic monitoring [4],
semi-supervised learning [5], [6], and graph filter bank de-
signs [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17].

Most studies on graph sampling theory focus on the ban-
dlimited graph signal model as an analog of the classical
sampling theory for time-domain signals [18], [19], [20], [21].
However, we often encounter full-band graph signals in many
applications. For example, piecewise smooth graph signals
and multi-band graph signals are classified into full-band sig-
nals. While some works study graph signal sampling beyond
the bandlimited model [22], [23], [24], they consider signals
under one signal model: Signals with the mixture of two or
more signal models cannot be recovered properly.

Generally, full-band signals can be represented by a mixture
of multiple signals conforming to different generation models.

For recovering such signals, we need to consider multiple
sampling systems, i.e., multi-channel sampling (MCS), where
its single-channel sampling and recovery correspond to one
signal model.

For standard time-domain signals, MCS has been studied as
the Papoulis’ sampling theorem [25]: The ideally-bandlimited
signal can be recovered from samples obtained by MCS with
arbitrary M sampling methods, e.g., non-uniform sampling
and bandpass sampling. Later, it was extended into the full-
band case [26], [27], [28]. This can be viewed as a special
case of generalized sampling [29]. It is composed of sampling,
correction, and reconstruction transforms. Sampling and re-
construction transforms can be arbitrarily chosen while the
correction transform compensates for their non-ideal behav-
iors, ensuring that the reconstructed signal is in some sense
close to the original signal. From a generalized sampling per-
spective, MCS can be viewed as one of the possible sampling
transforms. While numerous works have been presented for
time-domain MCS [26], [27], [28], [30], [31], there has been
no approach to MCS in the graph setting in spite of having
various full-band graph signals in many applications.
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In this paper, we consider MCS for GSP to recover full-
band graph signals. The proposed MCS is derived from the
above-mentioned generalized sampling by extending the sam-
pling transform for the graph setting [29]. We also design
the sampling transform for MCS on graphs. It requires the
selection of a subset of vertices, i.e., sampling set selection
(SSS). We select the sampling set such that graph signals are
best recovered.

One can notice that MCS is related to filter banks. In fact,
sampling of full-band graph signals has been studied in a
different line of research: Graph filter bank (GFB) designs [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. GFBs are
composed of multiple (typically low- and high-pass) graph
filters and down- and up-sampling operators, which are also
components in MCS. Typically, perfect reconstruction (PR)
GFBs are designed based on the properties of the given graph
operator (e.g., adjacency matrix or graph Laplacian).

Bipartite graph filter banks (BGFB) are one of the PR GFBs
and they are designed so that graph signals on bipartite graphs
are perfectly recovered [8], [11], [12], [13], [14], [15]. While
BGFBs can satisfy several desirable properties of GFB, they
have two major limitations: 1) their PR property is limited to
signals on the bipartite graph, and 2) BGFBs as well as many
GFBs require the eigendecomposition of the graph operator to
implement analysis and synthesis filters [11], [12], [13], [14],
[15],1 which is computationally expensive for large graphs.
The proposed method overcomes the limitations of BGFBs
by viewing GFBs as a special case of MCS for graph signals:
MCS can guarantee PR for arbitrary graph signals indepen-
dent of the graph operator. Therefore, it does not require
the graph simplification (typically bipartition). Furthermore,
MCS allows for the use of arbitrary graph filters and down-
and up- sampling operators. Our MCS can be implemented
without eigendecomposition by utilizing polynomial filters
for both analysis and synthesis, while many existing methods
require eigendecomposition for achieving PR. Recovery ex-
periments demonstrate that the proposed method outperforms
exiting GFBs.

Notation: Bold lower and upper cases represent a vector
and matrix, respectively. We denote �2 and spectral norms by
‖ · ‖ and ‖ · ‖2, respectively. AXY and AX denote submatrices
of A indexed by X and Y, and X and X, respectively. Axy

denotes the (x, y)th element of A. AT denotes the transpose
of A. Mc denotes the complement set of M. |M| represents
the cardinality of the set M. We denote the Kronecker delta
function centered at the yth element by δy.

We consider a weighted undirected graph G = (V⇔E),
where V and E represent sets of vertices and edges, respec-
tively. The number of vertices is N = |V| unless otherwise
specified. The adjacency matrix of G is denoted by W where
its (m, n)-element Wmn ≥ 0 is the edge weight between the
mth and nth vertices; Wmn = 0 for unconnected vertices. The
degree matrix D is defined as D = diag (d0, d1, . . . , dN−1),

1There are few exceptions like methods in [8], [16], but they typically need
careful filter designs.

FIGURE 1. The framework of single-channel sampling.

where dm = ∑
n Wmn is the mth diagonal element. We use

graph Laplacian L := D − W as a graph operator. A graph
signal x ∈ R

N is defined as a mapping from the vertex set to
the set of real numbers, i.e., x[n] : V → R.

The graph Fourier transform (GFT) of x is defined as
x̂ = UTx where the GFT matrix U is obtained by the eigen-
decomposition of the graph Laplacian L = U�UT with the
eigenvalue matrix � = diag (λ0, λ1, . . . , λN−1). We refer to
λi as a graph frequency.

II. SAMPLING FRAMEWORK FOR GRAPH SIGNALS
In this section, we briefly review preliminary works on single-
channel graph signal sampling [24]. First, we introduce a
generalized sampling framework on graphs [2]. Second, we
introduce the SSS under subspace priors.

A. SAMPLING UNDER SUBSPACE PRIORS
Suppose that graph signals are characterized by the following
linear model:

x := Ad, (1)

where A ∈ R
N×K (K ≤ N ) is a known generator matrix and

d ∈ R
K are expansion coefficients. The generator matrix A

specifies the signal subspace A.
Let ST ∈ R

K×N be a sampling operator. Regardless of the
choice of ST (and A), the best possible recovery is always
given by [22], [23], [29]

x̃ = AHc = A(STA)†STx, (2)

where † is the Moore-Penrose inverse. The framework is illus-
trated in Fig. 1. The sampling matrix ST specifies the sampling
subspace S. The correction matrix is therefore represented as
H = (STA)†. If A and S together span R

N and only intersect
at the origin, perfect recovery, i.e., x̃ = x, is obtained with
(STA)−1. We refer to this condition as the direct sum (DS)
condition [2].

While this paper focuses on the case that the signal sub-
space is known, we can recover signals without the exact
knowledge of A with appropriate priors such as smoothness
and stochastic priors [22], [23], [29], [32].

B. SAMPLING SET SELECTION FOR FULL-BAND GRAPH
SIGNALS
We introduce vertex domain sampling in the single-channel
setting. Since there is no regular sampling in the graph set-
ting, it requires the selection of a subset of vertices, which is
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hereafter referred to as sampling set selection (SSS). Vertex
domain sampling operator is defined as follows:

Definition 1 (Vertex domain sampling): Let IMV ∈
{0, 1}K×N be the submatrix of the identity matrix indexed by
M ⊂ V (|M| = K ) and V. The sampling operator is defined
by

ST := IMVG, (3)

where G ∈ R
N×N is an arbitrary graph filter. A sampled graph

signal is thus given by y = STx.
There exist several approaches of SSS, i.e., the design of

IMV, however, most methods assume the bandlimited graph
signals. In this paper, we consider sampling of full-band graph
signals since the analysis of graph signals beyond the ban-
dlimited assumption is generally necessary in a multi-channel
setting. To this aim, we introduce the quality of sampling
based on the DS condition: We consider the following prob-
lem as a sampling set selection:

M∗ = arg max
M⊂V

det(ZM), (4)

where Z = GAATGT. Since det(ZM) = det(STAATS) =
| det(STA)|2, (4) encourages that the DS condition is satisfied.
The cost function in (4) is designed based on the D-optimal
design, ensuring that the direct sum condition is satisfied.
Unlike other SSS methods, (4) is applicable to a wide range
of signal models beyond the bandlimited assumption. Further
details can be found in [24].

The direct maximization of (4) is combinatorial and is
practically intractable. Therefore, we apply a greedy method
to (4). Suppose that rank(Z) ≥ K . By applying the Schur
determinant formula [33] to (4), it results in

y∗ = arg max
y∈Mc

det(ZM∪{y})

= arg max
y∈Mc

det(ZM) · (Zy,y − Zy,M(ZM)−1ZM,y)

= arg max
y∈Mc

Zy,y − Zy,M(ZM)−1ZM,y, (5)

where we omit the multiplication with det(ZM) in the third
equivalence because it does not depend on y∗.

Still, (5) is computationally expensive due to the matrix
inversion, which typically requires O(|M|3) computational
complexity. To alleviate this, we utilize the Neumann series
for (ZM)−1. We omit the detail due to the limitation of the
space. Please refer to [24]. As a result, the SSS algorithm is
described by Algorithm 1.

In the following, we extend the single-channel sampling to
the multi-channel sampling. The MCS parallels most of the
formulation of the single-channel one.

III. PROPOSED MULTI-CHANNEL SAMPLING ON GRAPHS
In this section, we build a MCS framework by extending the
single channel sampling introduced in the previous section.
The framework is illustrated in Fig. 2. In addition, we convert
the MCS into an equivalent subband-wise expression. This

FIGURE 2. The framework of MCS in the case of J = 2.

Algorithm 1: Single-Channel SSS.

allows for an efficient computation of the recovery transform.
Based on the framework, we develop the SSS for our MCS
such that full-band graph signals are best recovered.

A. FRAMEWORK OF MULTI-CHANNEL SAMPLING
Suppose that the number of the sampling set in the �th channel
is K�. We now assume that graph signals are generated with J
generators, i.e.,

x =
J−1∑
�=0

A�d�, (6)

where A� ∈ R
N×K� and d� ∈ R

K� are the �th generator and
expansion coefficients, respectively.

We often encounter the graph signal model in (6) for many
applications. For example, in multiscale analysis of graph
signals [34], piecewise-smooth graph signals are often con-
sidered. These signals are composed of a combination of
piecewise constant and globally smooth signal models. This
situation includes sensor network data [4].

The sampling operator ST ∈ R
(K0+···+KJ−1)×N is given by

ST =

⎡⎢⎢⎣
ST

0
...

ST
J−1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
IM0VG0

...

IMJ−1VG1

⎤⎥⎥⎦ , (7)

where M� is the �th sampling set and G� ∈ R
N×N is an

arbitrary graph filter for the �th subband.
According to (2), the recovered graph signals are given

by [29, pp. 226–235]

x̃ =
[
A0 · · · AJ−1

]
M†

S,A

⎡⎢⎢⎣
ST

0
...

ST
J−1

⎤⎥⎥⎦ x, (8)
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where

MS,A =

⎡⎢⎢⎣
ST

0A0 · · · ST
0AJ−1

...
. . .

...

ST
J−1A0 · · · ST

J−1AJ−1

⎤⎥⎥⎦ . (9)

This implies recovery performance essentially depends on the
invertibility of MS,A.

Hereafter, we focus on the two-channel sampling, i.e., J =
2, for simplicity. To extend the following MCS for J > 2,
we may cascade the two-channel MCS [10], and perform the
proposed sampling scheme recursively.

B. SUBBAND-WISE REPRESENTATION OF MCS
Since the MCS requires the matrix inversion of (9), it could
be computational consuming especially for large graphs.
To reduce its computational cost, we rewrite (9) as a
computationally-efficient form.

For simplicity, this paper focuses on the critically-sampled
case, i.e., M1 = Mc

0 (please refer to the notation in Sec-
tion II-B), but any sampling ratio can be applied to our MCS
including over- and under-sampled cases. Suppose that ST

0A0

and ST
1A1 are invertible. Under this condition, M†

S,AST can be
rewritten as [33]

M†
S,AST

=
[

ST
AA0 0
0 ST

BA1

]†

×
[

I −ST
0A1(ST

1A1)−1

−ST
1A0(ST

0A0)−1 I

][
ST

0

ST
1

]

=
[

ST
AA0 0
0 ST

BA1

]† [
ST

A

ST
B

]
, (10)

where

ST
A := ST

0 − ST
0A1(ST

1A1)−1ST
1

ST
B := ST

1 − ST
1A0(ST

0A0)−1ST
0. (11)

By viewing ST
A and ST

B as new sampling operators, (8) can be
expressed by

x̃ =
[
A0 A1

]
M̃†

S,A

[
ST

A

ST
B

]
x, (12)

where

M̃S,A =
[

ST
AA0 0
0 ST

BA1

]
. (13)

In comparison with (8), we notice that (12) can be viewed as
the subband-wise MCS. The modified framework is illustrated
in Fig. 3. Obviously, the inverse of (13) requires the lower
computational complexity than that of (9).

FIGURE 3. The framework of the subband-wise MCS.

In contrast to the single channel setting, we need to simul-
taneously consider the best M0 and M1 in the multi-channel
case. In the following, we extend the SSS to that for MCS.

C. SSS FOR MCS
Based on (12), we design the SSS for the graph MCS. Recall
that we assume that ST

0A0 and ST
1A1 in (11) are invert-

ible. To satisfy this condition, we maximize the product of
det(ST

0A0AT
0S0) and det(ST

1A1AT
1S1) (see (4)). We consider the

following problem:

M∗ = arg max
M⊂V

det([Z0]M) det([Z1]Mc ), (14)

where Z0 = G0A0AT
0GT

0 and Z1 = G1A1AT
1GT

1. By maximiz-
ing det([Z0]M) det([Z1]Mc ), the inverses of ST

0A0 and ST
1A1

become stable. The cost function in (14) is designed such that
the graph signal is maximally separated into two subbands
based on the expression in (12). While the PR condition is not
structurally guaranteed, it is known that PR can be practically
realized in many cases [18].

By applying the Schur determinant formula [33] to (14),
the greedy SSS algorithm of the proposed graph MCS selects
a node y∗ one-by-one that maximizes the following equation:

y∗ = arg max
y∈Mc

det([Z0]M∪{y}) det([Z1]M\{y})

= arg max
y∈Mc

det([Z0]M) det([Z1]M)

·
(

[Z0]y,y − [Z0]y,M([Z0]M,M)−1[Z0]M,y

[Z1]y,y − [Z1]y,M([Z1]M,M)−1[Z1]M,y

)

= arg max
y∈Mc

[Z0]y,y − [Z0]y,M([Z0]M,M)−1[Z0]M,y

[Z1]y,y − [Z1]y,M([Z1]M,M)−1[Z1]M,y
,

(15)

where M = V\(M ∪ {y}). We omit the multiplication with
det([Z0]M) det([Z1]M) in the third equivalence because it
does not depend on y∗.

We apply the Neumann series approximation to the invere-
ses of [Z0]M,M and [Z1]M,M in (15) (see Algorithm 1). As a
result, the proposed algorithm is described by Algorithm 2.

In the following, we clarify relationship between the above
MCS and existing BFBs.

IV. RELATIONSHIP BETWEEN MCS AND BGFB
In this section, we reveal that existing BGFBs are a special
case of our MCS in (8). We depict the framework of PR
BGFBs in Fig. 4.
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FIGURE 4. Framework of two-channel PR GFBs.

Algorithm 2: Two-Channel SSS.

Let Gbpt = (VL,VH , E) be a bipartite graph, where VL and
VH are two disjoint sets of vertices such that every edge is con-
nected between a vertex in VL and that in VH . In other words,
no edges exist within VL and VH . We denote the normalized
Laplacian matrix for Gbpt by Lbpt. Its eigendecomposition is
given by Lbpt = V�bptVT, where

V :=
[

ULL ULL

UHL −UHL

]
. (16)

Let ST
ana,� and Ssyn,� be the �th analysis and synthesis trans-

forms, respectively. Following [10, Th. 2], analysis and
synthesis transforms in a BGFB can be expressed by

ST
ana,� := IMVH� = ULL

[
IN/2 JN/2

]
Ĥ�VT

Ssyn,� := G�IT
McV = VĜ�

[
IN/2

−JN/2

]
UT

LL

for � = 1, 2,

(17)

where Ĥ� = H�(�bpt), Ĝ� = G�(�bpt), and J is the counter-
identity matrix. Note that the PR condition in GFBs can be
expressed by [8], [11]

Ssyn,0ST
ana,0 + Ssyn,1ST

ana,1 = I. (18)

In graph filter bank designs, Ĥ� and Ĝ� in (17) are designed
so that (18) is satisfied.

From a perspective of generalized sampling [29] (cf.
Fig. 3), we can view that ST

ana,0 = ST
A, ST

ana,1 = ST
B, Ssyn,0 =

A0(ST
AA0)−1, and Ssyn,1 = A1(ST

BA1)−1. Consequently, the
PR condition of GFBs in (18) is rewritten as a MCS as fol-
lows:

Ã0ST
A + Ã1ST

B = I, (19)

where Ã0 = A0(ST
AA0)−1 and Ã1 = A1(ST

BA1)−1. While the
GFB form (18) and the MCS form (19) are not identical in
general, they coincide each other with bipartite graphs. This
can be stated in the following theorem.

Theorem 1: Let ST
0 ∈ R

K×N and ST
1 ∈ R

(N−K )×N be two
sampling operators, and let A0 ∈ R

N×K and A1 ∈ R
K×(N−K )

be generation operators such that ST
0A0 and ST

1A1 are invert-
ible. If sampling and reconstruction are performed on the
bipartite graph defined by (17), it follows that

Ã0ST
A + Ã1ST

B = S syn,0ST
ana,0 + S syn,1ST

ana,1 = I. (20)

That is, the PR condition for the graph MCS is reduced to that
of the conventional BGFBs as long as the graph is bipartite
and the normalized Laplacian is used as the graph operator.

Proof: By definition in (11), we need to show Ã0ST
0Ã1ST

1 +
Ã1ST

1Ã0ST
0 = 0. This can be verified by

VT(Ã0ST
0Ã1ST

1 + Ã1ST
1Ã0ST

0)V

= 2(Ĝ0

[
I J

]
Ĥ0Ĝ1

[
I −J

]
Ĥ1)

= 2(Ĝ0Ĥ0Ĝ1Ĥ1 + Ĝ0Ĥ′
0Ĝ1Ĥ1

− Ĝ0Ĥ0Ĝ1Ĥ′
1 − Ĝ0Ĥ0Ĝ1Ĥ1)

= 2(Ĝ0Ĥ′
0Ĝ1Ĥ1 − Ĝ0Ĥ0Ĝ1Ĥ′

1)

= 2Ĝ0Ĝ1(Ĥ′
0Ĥ1 − Ĥ0Ĥ′

1)

= 2Ĝ0Ĝ1(Ĥ0JĤ1 − Ĥ0JĤ1) = 0, (21)

where Ĥ′ = JĤ = ĤJ. This completes the proof. �
Note that (20) can be expressed as

[
A0 A1

] [ST
AA0 0
0 ST

BA1

]−1 [
ST

A

ST
B

]

=
[
A0 A1

] [ST
0A0 0
0 ST

1A1

]−1 [
ST

0

ST
1

]

=
[
Ssyn,0 Ssyn,1

] [ST
ana,0

ST
ana,1

]
= I. (22)

For the second equality, we replace the notations with
ST

ana,0 = ST
0, ST

ana,1 = ST
1, Ssyn,0 = A0(ST

0A0)−1, and Sana,1 =
A1(ST

1A1)−1 [35]. According to Theorem 1 and (22), we
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directly obtain ST
A = ST

0 and ST
B = ST

1 if sampling and recon-
struction are performed on the bipartite graph. This statement
also follows for graph spectral sampling [10].

V. RECOVERY EXPERIMENTS
In this section, we validate performances of the proposed
SSS for the graph MCS. We perform graph signal recovery
experiments with synthetic and real-world graphs.

A. SYNTHETIC GRAPHS
1) SETUP
The experiments are performed on random sensor and Swiss
roll graphs with N = 256. The sampling ratio is set to K =
|M0| = N/2. For both graphs, we generate two synthetic
graph signals:

Piecewise smooth (PWS) graph signals [36]: It is com-
posed of piecewise constant components and smooth compo-
nents:

x = [1T1 · · · 1TP ]d1 + UBd2, (23)

where the number of clusters is set to P = 4 and the band-
width is set to |B| = K/4.

Union of band-pass (UBP) graph signals: It is composed
of several band-pass components:

x = U
2∑

�=1

G�(�)d�, (24)

where generation (synthesis) filters G�(�) are implemented
by Meyer wavelet kernel [37].

In both cases, analysis filters are given by Mexican hat
wavelet kernel [37].

We calculate the average MSE of reconstructed graph
signals for 30 independent runs. We compare the result to
the well-known BGFBs, graphQMF [11] and graphBior [8].
GraphQMF is an orthogonal graph filter bank, which requires
eigendecomposition to achieve exact PR. This is because
the polynomial approximation of filters results in recon-
struction errors. In contrast, GraphBior is a PR graph filter
bank that utilizes polynomial graph filters and can be imple-
mented without requiring eigen-decomposition of the graph
operator.

We apply the Harary’s decomposition algorithm [38] to
those BGFBs for the graph bipartition. We also perform recon-
struction with the single channel sampling as a benchmark.
For all methods, we implement analysis and synthesis graph
filters with the 50th order polynomial approximation [39].

2) RESULTS
The reconstruction MSEs in decibels are summarized in
Table 1 and examples of the reconstructed graph signals are
visualized in Figs. 5–8. As observed in Table 1, the proposed
MCS best recovers graph signals for both signal models and
both graphs. The single-channel sampling failed to recover.
That is, the conventional single-channel sampling does not
work well for a mixture of multiple graph signal models.

TABLE 1. Average MSEs (in decibels) of 30 Independent Runs. RS is the
Random Sensor Graph and SR is the Swiss Roll Graph

FIGURE 5. Examples of recovery for PWS graph signals on sensor graphs.

GraphQMF presents the low MSE but it involves slight er-
rors caused by polynomial approximations of graph filters.
GraphBior and the proposed method can be regarded as PR
in machine precision but our method presents the lowest MSE
for all methods regardless of the graphs.

Note that our MCS can achieve PR with a user-specified
graph operator, while the other methods require to the use of
the normalized graph Laplacian or graph simplification prior
to sampling.

B. REAL-WORLD GRAPH
We then perform a sampling experiment for a real-world
graph.
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FIGURE 6. Examples of recovery for UBP graph signals on sensor graphs.

FIGURE 7. Examples of recovery for PWS graph signals on Swiss roll
graphs.

FIGURE 8. Examples of recovery for UBP graph signals on Swiss roll
graphs.

1) SETUP
We utilize a traffic network dataset from the Caltrans Perfor-
mance Measurement System.2 Vertices represent stations of
17 highways in Alameda county, CA, where N = 593. Edges
connect the vertices if the stations are adjacent on the same
highway or if there is a junction close to the stations on dif-
ferent highways. Hereafter, we refer to this graph as Alameda
graph.

We consider a synthetic signal on Alameda graph to ob-
jectively measure the reconstruction quality since there is no
ground-truth available.3 In this experiment, we generate PWS
graph signals according to (23) where we divide Alameda
graph into three clusters with spectral clustering [41]. The
sampling ratio is set to K = |M0| = 297. Analysis filters are
the same as the previous experiment.

We calculate the average MSE of reconstructed graph sig-
nals for 30 independent runs, and compare it with the existing
methods from the previous experiment.

2This dataset is publicly available http://pems.dot.ca.gov.
3Note that estimating generator functions (both for single- and multi-

channel cases) is an open problem while some recent studies are undergo-
ing [22], [40].
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TABLE 2. Average MSEs (in decibels) of 30 Independent Runs for Recovery
on Alameda Graph

FIGURE 9. Examples of recovery for PWS graph signals on Alameda graph.

2) RESULTS
The MSEs in decibels are summarized in Table 2 and recon-
structed graph signals are visualized in Fig. 9. Similar to the
previous experiment, we observe that the proposed MCS ex-
hibits the lowest MSEs among all the methods. This suggests
that our MCS can be applied to real-world datasets, regardless
of the topology of graphs.

VI. CONCLUSION
In this article, we develop the first MCS framework for graph
signals, by extending the single-channel graph signal sam-
pling to the multi-channel setting. We present a SSS method
for our MCS such that graph signals are best recovered. We
reveal that existing BGFBs are a special case of the pro-
posed MCS. We demonstrate the effectiveness of the proposed

method by showing that our MCS outperforms the existing
BGFBs and the single-channel sampling.
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