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ABSTRACT Since the work of detection network (DetNet) by Samuel, Diskin and Wiesel in 2017, deep
unfolding for MIMO detection has become a popular topic. We have witnessed significant growth of this
topic, wherein various forms of deep unfolding were attempted in the empirical way. DetNet takes insight
from the proximal gradient method in terms of the use of the network structure. In this paper, we endeavor to
give an explanation of DetNet—in a fundamental way—by drawing connection to a homotopy optimization
approach. The intuitive idea of homotopy optimization is to gradually change the optimization landscape,
from an easy convex problem to the difficult MIMO detection problem, such that we may follow the solution
path to find the optimal MIMO detection solution. We illustrate that DetNet can be interpreted as a homotopy
method realized by the proximal gradient method. We also illustrate how this interpretation can be extended
to the Frank-Wolfe and ADMM variants of realizing the homotopy optimization approach, which result in
new DetNet structures. Numerical results are provided to give insights into how these homotopy-inspired
DetNets and their respective non-deep homotopy methods perform.

INDEX TERMS Deep MIMO detection, deep unfolding, homotopy optimization, proximal gradient, Frank-
Wolfe, ADMM.

I. INTRODUCTION
Lately there has been much enthusiasm for using deep learn-
ing to perform MIMO detection. In SPAWC 2017, Samuel,
Diskin and Wiesel made the first attempt to design a structured
detection network (DetNet) for MIMO detection by means
of deep unfolding [1]. Unlike the standard black-box deep
learning approach, deep unfolding is an approach that builds
structured deep neural networks based on other iterative algo-
rithms [2]. DetNet mimicked a proximal gradient algorithm
for the maximum-likelihood (ML) MIMO detection problem,
and the authors demonstrated competitive detection perfor-
mance and reasonable computational time with DetNet. The
success of DetNet triggered many efforts to try unfolding dif-
ferent MIMO detection algorithms, ranging from optimization
methods [3], [4], [5], [6], [7] to statistical inference meth-
ods [8], [9].

As an appealing feature, deep unfolding-based MIMO
detection provides good intuition on explaining the opera-
tional mechanisms of the deep MIMO detectors. In building
such deep MIMO detectors, it is common to introduce some

activation function that we typically see in deep learning.
Clipping function and sigmoid functions are most widely
used, as they can force the network output to be close to the
desired constellation points [1], [4], [6], [7]. With the use
of these activation functions, deep MIMO detectors become
different from their predecessor algorithms. An intriguing
question arises: is there any theoretical basis for the deep
MIMO detectors to use these activation functions?

In this paper we attempt to provide an explanation on the
use of the activation functions in DetNet. We do so by drawing
a connection between DetNet and homotopy optimization.
Homotopy optimization is a general principle for non-convex
optimization that has a variety of applications [10], [11], [12],
[13], [14]. The idea is to gradually change the optimization
landscape, from an easy problem to the difficult target prob-
lem, such that we may track the solution path to reach the
optimal solution of the target problem. In our previous study,
we developed a homotopy formulation for ML MIMO detec-
tion with binary constellation points [7]. The present study
is built upon our previous homotopy formulation. We show
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how a specific proximal gradient-based implementation of
the homotopy method leads to an algorithm structure that is
similar to DetNet. In particular, the choice of different penalty
functions for the homotopy formulation gives rise to differ-
ent activation functions, including the clipping and sigmoid
functions. We also show a similar connection with the Frank-
Wolfe and ADMM methods, suggesting that there are other
structures for DetNets. Our homotopy interpretation of Det-
Net can be extended to the higher-order constellation case, as
we will show. While our interest lies in giving explanation and
drawing connections, we will also provide numerical results to
demonstrate the performance of the new homotopy-inspired
DetNets arising from our study, as well as the performance of
their original non-deep counterparts.

We should mention that, in the broad scope of signal pro-
cessing and machine learning, researchers have recently taken
interest in better connecting deep methods with model-based
or theory-driven concepts [15], [16], [17], [18]. While the ma-
jority of these studies consider compressive sensing or inverse
problems in imaging (see the aforementioned references),
which are different from MIMO detection, it is worth saying
that our study has a similar flavor in terms of working toward a
better understanding of model-based and structure-exploiting
deep methods for specific problems.

Some notations are as follows. The notations ‖ · ‖ and 〈·, ·〉
denote the Euclidean norm and inner product, respectively.
Let f : Rn → R. The gradient of f is denoted by ∇ f . We
say that f has L f -Lipschitz continuous gradient if ‖∇ f (x) −
∇ f (x′)‖ ≤ L f ‖x − x′‖ for all x, x′ ∈ Rn. We denote IX as
the indicator function of X , i.e., IX (x) = 0 if x ∈ X and
IX (x) = ∞ otherwise.

II. BACKGROUND
A. MIMO DETECTION PROBLEM
Our main interest focuses on the following problem

min
x∈{−1,1}n

f (x), (1)

where f : Rn → R is convex and has L f -Lipschitz continu-
ous gradient. Our study is motivated by MIMO detection. In
MIMO detection, we have a signal model y = Hx + v, where
y ∈ Rn is a received signal, x ∈ {±1}n is a symbol vector,
H ∈ Rm×n is the channel matrix, and v is noise. Our goal is
to detect x from y, with H being known. A typical MIMO de-
tection formulation is the maximum-likelihood formulation,
which takes the form of (1) with

f (x) = 1

2
‖y − Hx‖2.

The above f has σmax(H )2-Lipschitz continuous gradient,
where σmax(H ) denotes the largest singular value of H . The
problem setup in (1) also applies to one-bit MIMO detec-
tion, in which the signal model is y = sgn(Hx + v) and the

FIGURE 1. The clipping and sigmoid activation functions.

maximum-likelihood objective function is

f (x) = −
m∑

i=1

log�

(
yih�

i x
σv

)
,

where �(x) = ∫ x
−∞ (2π )−1/2e−z2/2dz, hi is the ith row of H ,

and σ 2
v is the noise power; see, e.g., [19]. The above f has

σmax(H )2/σ 2
v -Lipschitz continuous gradient [20].

B. DEEP MIMO DETECTION
Lately there has been much interest in MIMO detection us-
ing deep unfolding, which builds deep networks for MIMO
detection by borrowing insights from other algorithms. Par-
ticularly, in DetNet [1], the first deep unfolding endeavor for
MIMO detection, the authors consider a network structure that
resembles a gradient descent algorithm

xk+1 = ραk (xk − ηk∇ f (xk )), k ≥ 0, (2)

where ρα is a nonlinear activation function with parameter
α, and ηk is a step size. In the original DetNet work, ρα
is chosen as an elementwise clipping function, specifically,
ρα (z) = (ρα (z1), . . . , ρα (zn)), ρα (z) = ρ(αz), and

ρ(z) =
{

z, |z| ≤ 1
sgn(z), otherwise.

One may also choose a sigmoid function [4], [20]

ρ(z) = 2

1 + e−z
− 1,

which, more accurately, is called the hyperbolic tangent func-
tion in the literature. The above activation functions are
illustrated in Fig. 1. In DetNet we learn the parameters αk’s
and ηk’s of the network (2) by deep learning. In particular,
the idea is to generate a large quantity of instances {y,H, x}
according to a signal model, and use them as training data to
learn the αk’s and ηk’s. For more details with deep unfolding,
the reader is referred to the literature [1], [2], [3], [4], [5], [6],
[7], [8], [9], [15], [16], [17], [18].

It should be noted that the original DetNet in [1] considers a
network structure that is more general than (2), but the insight
largely comes from the basic form in (2). We shall omit those
details for the sake of simplicity.

A basic question is how we can give an explanation of
(2). In particular, is there any basis that we can provide for
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FIGURE 2. Illustration of h in (5).

(2) from a theoretical viewpoint? A way to explain (2) is to
consider the non-convex proximal gradient (PG) method for
(1). To describe this, consider the following problem

min
x∈Rn

f (x) + h(x), (3)

where h : Rn → R ∪ {+∞} may be non-convex. The non-
convex PG method for (3) is given by

xk+1 = proxηkh(xk − ηk∇ f (xk )), k ≥ 0, (4)

where ηk > 0 is the step size, and

proxh(x) ∈ arg min
z∈Rn

1
2‖x − z‖2 + h(z)

denotes the proximal operator of h. The main problem (1)
can be rewritten as problem (3) with h(x) = I{−1,1}n (x). The
corresponding PG method is given by

xk+1 = sgn(xk − ηk∇ f (xk )).

We see that the above PG method resembles the DetNet struc-
ture (2). Particularly, the DetNet structure looks like a soft sign
version of the PG method.

In fact, the above DetNet explanation is well known in the
literature. The next question is whether this explanation can be
used to say that DetNet would usually converge to a good local
minimum. It is known that, under some technical assumptions,
the PG method can guarantee some form of convergence to a
critical point of problem (3) [21]. But this is not very useful
for providing an explanation for convergence to good local
minima, as any point x in {−1, 1}n is a local minimum of
problem (3) with h(x) = I{−1,1}n (x).

III. AN EXPLANATION BY HOMOTOPY OPTIMIZATION
To attempt to provide a better explanation for DetNet, we
consider the following problem

min
x∈Rn

f (x) + λ (I[−1,1]n (x) − 1
2‖x‖2)︸ ︷︷ ︸

:=h(x)

, (5)

where λ > 0. As illustrated in Fig. 2, h serves as a penalty
that discourages x to fall outside {−1, 1}n. It can be shown
that, for a sufficiently large λ, problem (5) is equivalent to the
main problem (1) in the following sense.

Fact 1 ([22]): If λ > L f , then any optimal solution to (5) is
also an optimal solution to (1).

The upshot with the formulation in (5) is that it is a continu-
ous optimization problem. However, (5) is still a non-convex

problem and can suffer from convergence to local minima.
In [7] we employed a homotopy strategy to try to deal with
this issue. The idea is to gradually increase λ when we try to
solve (5). For example, by applying the previously reviewed
non-convex PG method to (5), we may do

xk+1 = proxηkλI[−1,1]n
(xk − ηk∇gλk (xk ))

= ρ1(xk − ηk∇gλk (xk )), (6)

where gλ(x) = f (x) − λ‖x‖2/2, ρα is the elementwise clip-
ping function (cf., the previous section), and {λk} is a se-
quence that has a gradually increasing trend. The homotopy
strategy is based on two arguments: (i) (5) should be easier to
solve for smaller λ, as (5) is convex when λ = 0; (ii) a small
change of λ should lead to mild changes with the optimization
landscape. Hence, by gradually increasing λ, we hope that
the algorithm will trace the solution path of (5) (with respect
to λ) and lead us to the optimal solution of (1). The reader
is referred to [7] for more inspirations with the homotopy
strategy. In this present work, we will study how we can draw
a connection between the homotopy strategy and the DetNet
structure (2).

A. A HOMOTOPY METHOD AND DETNET
As a variation of the above homotopy strategy, consider the
following. Let L̄ be any constant such that L̄ > L f . Consider

min
x∈Rn

f (x) + L̄hγ (x), (7)

where γ > 0,

hγ (x) = − 1
2‖x‖2 + I[−1,1]n (x) + γφ(x)︸ ︷︷ ︸

:=ψγ (x)

, (8)

and φ : Rn → R ∪ {+∞} is some function that is β-strongly
convex on [−1, 1]n. If we set γ = 0, (7) is the same as (5) with
λ = L̄; and the latter is equivalent to the main problem (1).
Also, if γ ≥ 1/β, hγ is convex. This leads us to a variation
of the previous homotopy method: start with a large γ , and
gradually reduce γ when we try to solve (7). Let us consider
the non-convex PG method for (7):

xk+1 = proxηk L̄hγ (xk − ηk∇ f (xk )). (9)

Here we consider a fixed γ , but later we will make γ varying
as in (6). The PG method in (9) can lead to convergence to a
critical point of problem (7) if the step size satisfies 0 < ηk <

1/L f [21]. Let us choose ηk = 1/L̄. Let

LOh(x) ∈ arg min
z∈Rn

〈x, z〉 + h(z)

denote the linear optimization (LO) oracle of h. From

1
2‖z − x‖2 + hγ (z)

= 1
2‖x‖2 − 〈z, x〉 + 1

2‖z‖2 − 1
2‖z‖2 + ψγ (z)

= 1
2‖x‖2 − 〈z, x〉 + ψγ (z),
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FIGURE 3. Illustration of hγ in Fact 2.

we have

proxηk L̄hγ (x) = proxhγ (x) = LOψγ (−x). (10)

By putting (10) and ηk = 1/L̄ back to (9), and by allowing γ
to be varying to perform homotopy optimization, we are led
to the following PG-based homotopy method

xk+1 = LOψγk
(L̄−1∇ f (xk ) − xk ). (11)

Intriguingly, the above method resembles the DetNet structure
in (2). In particular, the LO oracle basically serves the same
role as the DetNet activation function ρα . Even more interest-
ingly, we know what form φ takes if we want the LO oracle
LOψγk

to be a clipping or sigmoid function.

Fact 2: We have the following results.

(a) Let φ(x) = ‖x‖2/2. The function φ is 1-strongly convex,
and it holds that LOψγ (x) = ργ−1 (−x), where ρα is the
clipping function in Section II-B.

(b) Let

φ(x) =

⎧⎪⎨
⎪⎩

(1+x) ln(1+x)+(1 − x) ln(1 − x), if x ∈ (−1, 1)

2 ln 2, if |x| = 1

+∞, otherwise
(12)

and let φ(x) = ∑n
i=1 φ(xi ). The function φ is 2-strongly

convex, and it holds that LOψγ (x) = ργ−1 (−x), where ρα
is the sigmoid function in Section II-B.

The proof of Fact 2.(a) is trivial. The LO oracle result in Fact
2.(b) was shown in [23]. The strong convexity result in Fact
2.(b) can be shown by checking the Hessian of φ; specifically
it can be verified that (12) has ∇2φ(x) = 2

1−x2 for x ∈ (−1, 1).
To give more insights, Fig. 3 plots hγ for the above two cases
of φ.

To summarize, the DetNet structure (2) may be explained
as an outcome of the PG-based homotopy method (11). The
choice of the strong convex function φ in the homotopy
method leads to the form the DetNet activation function takes.

The homotopy parameter γ and the activation function param-
eter α have a direct correspondence, specifically, γ = α−1.
This gives rise to the implication that, if we choose a smaller γ
so that problem (7) approximates the main problem (1) better,
and we choose one of the φ’s in Fact 2, the corresponding
activation function ρα is closer to the sign function—this
makes sense, intuitively.

B. FRANK-WOLFE DETNET
Previously we implemented the homotopy strategy by the
non-convex PG method. We can consider other implemen-
tation alternatives, and we want to see what new DetNet
structures will arise from such alternatives. In this subsection
we consider the non-convex Frank-Wolfe (FW) method [24],
[25]. To describe it, reformulate (7) as

min
x∈Rn

Fγ (x) := f (x) − L̄
2 ‖x‖2︸ ︷︷ ︸

:=g(x)

+L̄ψγ (x). (13)

The FW method for (13) is given by

xk+1 = xk + ξk (dk − xk ), dk = LOL̄ψγ (∇g(xk )),

where ξk ∈ [0, 1] is a step size. Under an appropriate step-
size rule, such as ξk = arg minξk∈[0,1] Fγ (xk + ξk (dk − xk )),
the FW method can lead to convergence to a critical point
of problem (13) [24], [25]. It can be verified that dk =
LOψγ (L̄−1∇ f (xk ) − xk ). Also, by Fact 2, we may write dk =
ργ−1 (xk − L̄−1∇ f (xk )) for some activation function ρα . By
having γ varying in iterations, we are led to a FW variant of
the DetNet structure

xk+1 = xk + ξk (ραk (xk − ηk∇ f (xk )) − xk ),

where αk, ηk, ξk are the parameters to be learnt.

C. ADMM DETNET
We consider the non-convex alternating direction method of
multipliers (ADMM) method [26], [27] as another homotopy
implementation alternative. Rewrite (7) as

min
x∈Rn,z∈Rn

f (x) + L̄hγ (z) s.t. x = z. (14)

The associated augmented Lagrangian function is given by

L(x, z,u) = f (x) + L̄hγ (z) + 〈u, z − x〉 +
n∑

i=1

τi

2
|zi − xi|2,

where u is the dual variable associated with the constraint z =
x, and τ > 0 is a given parameter. The non-convex ADMM
method for (14) is given by

xk+1 = arg min
x∈Rn

L(x, zk,uk )

= (H�H + Diag(τ))−1(H�y + uk + τ � zk )

zk+1
i = arg min

z
hγ (zi ) + τi

2L̄
|zi − (xk+1

i − uk
i /τi )|2,∀i

uk+1 = uk + τ � (zk+1 − xk+1),

VOLUME 4, 2023 111



SHAO ET AL.: EXPLANATION OF DEEP MIMO DETECTION FROM A PERSPECTIVE OF HOMOTOPY OPTIMIZATION

FIGURE 4. Illustration of H in (18). D = 2.

where Diag(τ) denotes a diagonal matrix with diagonal ele-
ments being τ, and � is the elementwise product. Here, the
function φ associated with hγ is assumed to take one of the
forms in Fact 2. In the z update step, if we choose τi = L̄ for
all i, then, by the same spirit of the preceding study, we have

zk+1
i = ργ−1 (xk+1

i − L̄−1uk
i ),∀i.

This leads to an ADMM DetNet variant

xk+1 = (H�H + τkI)−1(H�y + uk + τkzk )

zk+1 = ραk (xk+1 − ηkuk ),

uk+1 = uk + τk (zk+1 − xk+1), (15)

where τk, αk, ηk are the parameters to learn. Equation (15)
resembles the ADMM DetNet in [5]. It is interesting to note
that the choice τi = L̄ for all i coincides with one of the
sufficient conditions for the non-convex ADMM method to
converge to a stationary point of problem (14); see [26], [27].

D. BEYOND THE {−1, 1} CASE
We can generalize the result to the multilevel case

min
x∈{±1,±3,...,±(2D−1)}n

f (x), (16)

where D is a positive integer. Consider the following problem

min
x∈Rn

f (x) + λH (x), (17)

where λ > 0, H (x) = ∑n
i=1 H (xi ),

H (x) = min
c∈C

h(x − c), h(x) = − 1
2 |x|2 + I[−1,1](x),

C = {0,±2, . . . ,±(2D − 2)}. (18)

As illustrated in Fig. 4, H is a multilevel extension of the
penalty h in (5). We can show that, for a large enough λ, (17)
is an equivalent formulation of (16).

Proposition 1: If λ > L f , then any optimal solution to (17) is
also an optimal solution to (16).

Proof of Proposition 1: Problem (17) can be rewritten as

min
x∈Rn

f (x) + λmin
c∈Cn

(
∑n

i=1 h(xi − ci ))

= min
c∈Cn

min
x′∈Rn

f (x′ + c) + λ(
∑n

i=1 h(x′
i )), (19)

where we perform a change of a variable x′ = x − c. Con-
sider the inner minimization problem in (19). Since f has
L f -Lipschitz continuous gradient, f (x′ + c) also has L f -
Lipschitz continuous gradient. By Fact 1, if λ > L f , then any

FIGURE 5. Illustration of Hγ in (21). D = 2, φ is given by (12).

optimal solution to the inner minimization problem in (19)
is an optimal solution to minx′∈{±1}n f (x′ + c). Putting this
result back to (19), (17) is seen to be equivalent to (16). The
proof is complete. �

Next we examine the application of the homotopy strategy
in Section III-A to (17). Consider

min
x∈Rn

f (x) + L̄Hγ (x) (20)

where L̄ > L f , Hγ (x) = ∑n
i=1 Hγ (xi ),

Hγ (x) = min
c∈C

hγ (x − c), (21)

and hγ follows the definition in (8). We should note the caveat
that Hγ is non-convex in general; see Fig. 5. This is unlike
the binary counterpart hγ . Still we want to see what happens.
Consider the following result.

Proposition 2: Suppose that φ is symmetric (i.e., φ(x) =
φ(−x)). We have proxHγ (x) = c̄ + proxhγ (x − c̄), where c̄ ∈
arg minc∈C |c − x|.
The proof of Proposition 2 is relegated to the Appendix. By
following the same non-convex PG development in Section
III-A, the PG-based homotopy method is given by

xk+1 = P
γ−1

k
(xk − L̄−1∇ f (xk )), (22)

where Pα (z) = (Pα (z1), . . . ,Pα (zn)),

Pα (z) = c̄ + ρα (z − c̄), c̄ ∈ arg min
c∈C

|z − c|.
We see that (22) resembles the DetNet structure (2). Fig. 6
illustrates Pα for the sigmoid case. In the figure we also illus-
trate the typically used multilevel sigmoid function

P̂α (z) =
∑
c∈C

(c + ρα (z − c)).

We see that P̂α closely approximates Pα when α is large.
Hence, by approximating Pα with P̂α in (22), we are led to
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FIGURE 6. Illustration of Pα and P̂α for {±1, ±3}.

a multilevel version of the DetNet in (2). Following this same
line of development, we also have a FW DetNet structure

xk+1 = xk + ξk (P̂αk (xk − ηk∇ f (xk )) − xk ), (23)

where {ξk, αk, ηk} are the trainable network parameters.

IV. SIMULATIONS
While providing explanations and drawing connections are
the focus of this study, it is still interesting to show some
numerical results. We train DetNets according to the DetNet
structures shown in the last section. Specifically, for the PG
DetNet structure (22), we consider the following variant

zk = xk + ξk (xk − xk−1)

xk+1
i = P̂αk (zk − ηk∇ f (zk )), (24)

where zk is an extrapolated point between two successive
layers, P̂α is the multilevel sigmoid function, and {αk, ξk, γk}
are the trainable network parameters. The above structure
takes insight from the accelerated PG method for convex op-
timization [28], [29]. For the FW DetNet structure, we follow
(23). For the ADMM DetNet structure, we follow (15). In
the training phase, we randomly generate {x,H, y} in each
training epoch. We optimize {αk, ξk, γk} to minimize the loss
function

‖xK − x‖2.

The training phase is implemented on pytorch 1.12 on Python
3.8. We use Adam stochastic gradient descent with learning
rate 0.001. The batch size in each training iteration is 200. We
set K = 20 layers.

We are also interested in the homotopy methods, or the
non-deep counterparts of DetNet. We implement the homo-
topy PG (HoT-PG) method in (22). We initialize HoT-PG

by the solution of box relaxation (i.e., problem with h(x) =
I[−(2D−1),2D−1]n (x)), or equivalently, γ0 = 2. We start the
algorithm with γ1 = 3, and gradually reduce γk by γk+1 =
γk/βk for some βk ≥ 1. We set βk+1 = 2 if ‖xk+1 − xk‖ ≤ ε

for ε = 10−3, and we set βk+1 = 1 otherwise. We stop the
algorithm when γk is sufficiently small. We also implement
the homotopy FW (HoT-FW) method in (23) and homotopy
ADMM (HoT-ADMM) by the same way.

We consider the standard MIMO detection problem. The
simulation data is first generated by a complex signal model
ỹ = H̃x̃ + ṽ, where H̃ is the complex MIMO channel, x̃ is a
complex QAM symbol vector, and ṽ is noise. The channel
H̃ is randomly generated, following an element-wise inde-
pendent and identical distributed (i.i.d.) circular Gaussian
distribution with zero mean and unit variance. The noise term
ṽ is generated as an element-wise i.i.d. circular Gaussian ran-
dom vector, with zero mean. We transform the complex model
to the real model y = Hx + v by

y=
[
�(ỹ)

�(ỹ)

]
,H =

[
�(H̃ ) −�(H̃ )

�(H̃ ) �(H̃ )

]
, x=

[
�(x̃)

�(x̃)

]
, v=

[
�(ṽ)

�(ṽ)

]
.

We also consider the DetNet originally developed by
Samuel, Diskin and Wiesel [1]. We will call this DetNet
“OrigDetNet,” to avoid confusion with the above introduced
PG, FW and ADMM DetNets. OrigDetNet is implemented by
the open source code1. In addition, we consider several classic
MIMO detectors that are not deep learning based. Specifi-
cally, for 4-QAM (or the {−1, 1} case), we consider the linear
minimum mean square error (MMSE) detector, semidefinite
relaxation (SDR) with fast row-by-row implementation [30]
and box relaxation (h(x) = I[−(2D−1),2D−1]n (x) in (5)); for
16-QAM (or the {±1,±3} case), we consider MMSE, BC-
SDR [31] and box relaxation.

We show the bit-error rate (BER) performance. The number
of trials to obtain the BER results is 10,000. We implement by
MATLAB and ran our simulations on a laptop with Intel Core
i7-9750H and 16 GB memory. First, consider the 4-QAM
case. Fig. 7 shows the result for a 60 × 40 MIMO system,
which is a setting considered by OrigDetNet [1]. It is seen
that, except for MMSE, all the algorithms show comparable
performance, and their BER performances are within 3 dB
from the no-interference lower bound. In particular, although
PG, FW and ADMM DetNets are simpler than OrigDetNet
and have much less network parameters than OrigDetNet, they
show promising performances as OrigDetNet does. Also, we
see that PG, FW and ADMM show enhanced performance
over HoT-PG, HoT-FW and HoT-ADMM, their non-deep
counterparts.

We increase the difficulty by considering critically deter-
mined MIMO systems. The results are shown in Figs. 8 and 9.
The OrigDetNet work [1] did not consider these settings. We
tried to train OrigDetNet under these settings, but we were

1[Online]. Available: https://github.com/neevsamuel/DeepMIMO
Detection
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FIGURE 7. BER, 4-QAM; m = 60, n = 40.

FIGURE 8. BER, 4-QAM; m = 80, n = 80.

FIGURE 9. BER, 4-QAM; m = 160, n = 160.

not successful in training a high-performance OrigDetNet.
Luckily, we found that PG, FW and ADMM DetNets are
easy to train under these settings, and their performances are
promising. In addition, the BER curves of HoT-PG, HoT-FW,
HoT-ADMM and box relaxation are several dBs away from
the no-interference performance lower bound.

The average runtimes of considered algorithms are shown
in Table 1. It it seen that PG, FW and ADMM DetNets are
computationally competitive; this is because their structures

TABLE 1. Average Runtimes of (In Sec.); 4-QAM

FIGURE 10. BER, 16-QAM; m = 100, n = 80.

FIGURE 11. BER, 16-QAM; m = 160, n = 140.

are simple and they use only 20 layers. By comparison, HoT-
PG, HoT-FW and HoT-ADMM need more iterations in apply-
ing homotopy optimization, and they consume more runtime.

Now we turn our attention to the 16-QAM case. Figs. 10–11
show the BER performance under different problem sizes.
OrigDetNet did not consider such large MIMO sizes, and we
were unsuccessful in obtaining reasonable results as of the
writing of this paper. Hence we do not include OrigDetNet in
the simulation. It is seen that the PG-, FW- and ADMM-based
homotopy methods, with and without deep unfolding, work
well. Also, with deep unfolding, PG, FW and ADMM DetNets
again show enhanced detection performance. The average
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TABLE 2. Average Runtimes (In Sec.). 16-QAM

FIGURE 12. BER, 16-QAM; m = 80, n = 80.

runtime performances of these algorithms are summarized in
Table 2. Again, we see that PG, FW and ADMM DetNets are
computationally competitive.

We have been showing positive results for PG, FW and
ADMM DetNets. Fig. 12 shows a less satisfactory result,
wherein we consider a critically determined MIMO system
and 16-QAM. Perhaps more complex network structures and
more advanced deep learning skills may help improve the
performance, and this is left as future work. Also, HoT-PG,
HoT-FW and HoT-ADMM give similar performance as in the
previous cases.

It is interesting to unpack the deep MIMO detectors and
see the trend of the learned homotopy parameter {αk}. Fig. 13
shows the learned homotopy parameter sequences {αk} of the
PG DetNet under 4-QAM and 16-QAM. Interestingly, the
learned sequence exhibits an increasing trend, which agrees
with the rationale of homotopy optimization.

V. CONCLUSION
To conclude, we drew a connection between DetNet and ho-
motopy optimization. Using such connection, we argued that
DetNet can be explained as a homotopy method. As future
work, it would be interesting to study how this connection
provides further insights into building better DetNets for more
challenging scenarios (such as the one in Fig. 12) and for other
types of constellations.

FIGURE 13. Learned homotopy parameter αk .

APPENDIX
PROOF OF PROPOSITION 2
The problem associated with proxHγ can be expressed as

min
z∈R,c∈C

1
2 |z − x|2 + hγ (z − c).

The above problem can be reformulated as follows. Let

ν(c) = min
−1≤u≤1

1
2 |z − x + c|2 + hγ (u), (25)

and let ū(c) be any solution to (25) (note that ū(c) ∈
proxhγ (x − c)). By letting c̄ ∈ arg minc∈C ν(c), we have c̄ +
ū(c̄) ∈ proxHγ (x). To best illustrate the proof idea, consider
the following example. We have x ∈ [0, 1], C = {0,−2, 2}.
We want to show that c̄ = 0. To do this, we first consider
c = −2. Since u − x ≤ 1 for u ∈ [−1, 1], and

1
2 |u − x − 2|2 = 1

2 |u − x|2 − 2(u − x) + 2 ≥ 1
2 |u − x|2

for u ∈ [−1, 1], we have ν(−2) ≥ ν(0). Second, we consider
c = 2. It can be verified that the following identity

1
2 |u + x|2 = 1

2 |u − x + 2|2 + 2(x − 1)(u + 1)

holds for any u, x. It follows that for x ∈ [0, 1], u ∈ [−1, 1],
we have

1
2 |u + x|2 ≤ 1

2 |u − x + 2|2.
This further implies that

ν(2) = 1
2 |ū(2) − x + 2|2 + hγ (ū(2))

≥ 1
2 |(−ū(2)) − x|2 + hγ (−ū(2))

≥ ν(0),

where we have used the symmetry of hγ in the second equa-
tion. The proof of c̄ = 0 for the above example is done. Using
the same proof method, the result in Proposition 2 for the
general case can be shown to be true.
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