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ABSTRACT Quantized constant envelope (QCE) transmission is a popular and effective technique to reduce
the hardware cost and improve the power efficiency of 5G and beyond systems equipped with large antenna
arrays. It has been widely observed that the number of quantization levels has a substantial impact on the
system performance. This paper aims to quantify the impact of the number of quantization levels on the
system performance. Specifically, we consider a downlink single-user multiple-input-single-output (MISO)
system with M-phase shift keying (PSK) constellation under the Rayleigh fading channel. We first derive a
novel bound on the system symbol error probability (SEP). Based on the derived SEP bound, we characterize
the achievable diversity order of the quantized matched filter (MF) precoding strategy. Our results show
that full diversity order can be achieved when the number of quantization levels L is greater than the PSK
constellation order M, i.e., L > M, only half diversity order is achievable when L = M, and the achievable
diversity order is 0 when L < M. Simulation results verify our theoretical analysis.

INDEX TERMS Diversity order analysis, large antenna array, QCE transmission, SEP.

I. INTRODUCTION
Large antenna array is a promising technology to achieve
high data rate and high reliability of wireless communication
systems [1], [2], [3]. However, the power consumption and
hardware cost of the system also grow with the number of
antennas, which is a major concern for the practical imple-
mentation of the large antenna array technology. To address
such issues, it is necessary to employ low-cost and energy-
efficient hardware components at the base station (BS). It is
well known that the most power hungry components at the BS
are the power amplifiers (PAs) [4]. To improve the efficiency
of the PAs, transmit signals with low peak-to-average power
ratios (PAPRs) are desirable. In particular, constant envelope
(CE) transmission, where the transmit signals from each an-
tenna are restricted to have the same amplitude, has attracted
a lot of research interests as it facilitates the use of the most
efficient and cheapest PAs. It has been shown in the pioneering

works [5], [6] that with N transmit antennas at the BS, an
O(N ) array power gain is achievable for CE transmission, as
in the case of conventional transmission schemes without the
CE constraint. In addition, numerous well-designed CE trans-
mission strategies have been proposed and have been shown
(via simulations) to have good symbol error rate (SER) per-
formance, see, e.g., [7], [8], [9], [10], [11] and the references
therein. CE transmission has also found wide applications in
many other scenarios [12], [13], [14].

However, a practical issue associated with CE transmission
is that the digital-to-analog converters (DACs) at each antenna
element must have infinite or very high resolution to ensure
that the transmit signals can take any phase. This will lead
to high hardware cost and power consumption of the com-
munication system since high-resolution DACs are expensive
and the power consumption of the DACs increases exponen-
tially with the resolution number [15]. Due to this, a more
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practical transmission scheme called quantized constant enve-
lope (QCE) transmission [16] has been considered recently,
where low-resolution DACs are employed and the phases of
the transmit signals can only be selected from a (possibly
small) finite set.

Existing works on QCE transmission mainly focused on
precoding design [16], [17], [18], [19], [20], and in particular
one-bit precoding design [21], [22], [23], [24], [25], [26],
[27], [28], which is a special case of QCE transmission. The
only few works that considered the performance analysis all
focused on the one-bit case. Specifically, the authors in [21],
[29] derived lower bounds on the achievable rate of a one-
bit MIMO system. The result in [29] was further extended
to the frequency selective channel in [30]. In [31], the au-
thors considered the one-bit zero-forcing precoder and derived
closed-form symbol error probability (SEP) approximations
for large antenna array systems. To the best of our knowledge,
there is still a theoretical gap in the performance analysis of
general QCE transmission.

The motivation behind this work is based on the following
observations that have been drawn from the simulations in ex-
isting works. First, the CE transmission can generally achieve
good SER performance [6] while one-bit transmission some-
times suffers from a severe SER floor [21]. Second, slightly
increasing the resolution of DACs from 1 bit to 2 − 3 bits
can sometimes significantly improve the SER performance
of the system [20]. The goal of this paper is to theoretically
characterize the system performance of a simple but popularly
used QCE transmission strategy and shed some light on the
above observations.

In this paper, we consider a downlink single-user MISO
system with M-phase shift keying (PSK) modulation. The
main contributions of this paper are twofold. First, we derive a
new bound on the system SEP and the bound only involves an
elegant quantity known as the safety margin [32], [33], [34].
The bound is universal and independently interesting, because
it might be useful for the SEP analysis of possibly many
communication scenarios. Second and more importantly, we
characterize the diversity order of the quantized matched filter
(MF) precoder. The reasons for the choice of the quantized
MF precoder is that it is asymptotically optimal when the
number of quantization levels goes to infinity in the consid-
ered system, and it admits a closed-form expression and thus
is amenable to analysis. We show that the quantized MF pre-
coder is able to achieve full diversity order when the number
of quantization levels L is larger than M, while it can only
achieve half and zero diversity order when L = M and L < M,
respectively. The above results hold as long as L and M are
positive integers and M > 1. Simulation results show that the
analysis results are correct.

The remaining parts of this paper are organized as follows.
Section II describes the system model and the problem for-
mulation. Section III derives an important inequality on the
SEP, which serves as the main tool for our analysis. Section IV
gives the diversity order analysis. Simulation results are given

in Section V to verify our theoretical results and the paper is
concluded in Section VI.

Throughout the paper, we use x, x, and X to denote scalar,
vector, and set, respectively. For a scalar x ∈ C, |x|, arg(x),
R(x), and I (x) return the absolute value, the argument, the
real part, and the imaginary part of x, respectively. For a
vector x ∈ Cn, xi denotes the i-th entry of x and ‖x‖p denotes
the p-norm of x, where p ∈ {1, 2}; xT, x†, and xH denote
the transpose, the conjugate, and the Hermitian transpose of
x, respectively. For a random variable X , we use pX (·) and
FX (·) to denote its probability density function (PDF) and
cumulative distribution function (CDF), respectively. E[·] and
P (·) return the expectation and the probability of their cor-
responding argument, respectively. CN (0, σ 2) and N (0, σ 2)
represent the zero-mean circularly symmetric complex Gaus-
sian distribution and zero-mean Gaussian distribution (in the
real space) with variance σ 2, respectively. Finally, j denotes
the imaginary unit (satisfying j2 = −1).

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a MISO system where an N-antenna BS serves
a single-antenna user. Let h = (h1, h2, . . . , hN )T denote the
channel vector between the BS and the user and x =
(x1, x2, . . . , xN )T denote the transmitted signal from the BS.
The signal received by the user can then be expressed as

y = hTx + n,

where n ∼ CN (0, σ 2) is the additive white Gaussian noise.
We assume that the entries of h are independent and identi-
cally distributed (i.i.d.) following CN (0, 1).

In this paper, we consider QCE transmission, i.e., each
antenna is only allowed to transmit QCE signals. Mathemati-
cally, the QCE constraint can be expressed as

xi ∈XL �
{√

PT

N
e j (2l−1)π

L , l = 1, 2, . . . , L

}
, i = 1, 2, . . . , N,

where PT is the total transmit power at the BS and L is the
number of quantization levels, i.e., the number of points in
XL. In what follows, we set PT = 1 for simplicity. Let s be the
intended symbol for the user, which is independent of h and n.
We focus on M-PSK constellation, i.e., s is uniformly drawn

from SM = {e j 2π (m−1)
M , m = 1, 2, . . . , M}. We note here that in

practice, both L and M should be a power of 2, and an L-level
quantization corresponds to (log2 L − 1)-bit quantization of
DACs. However, since our analysis holds for arbitrary quan-
tization level L and constellation order M > 1, we choose to
present our analysis and results in the most general form and
just assume that L and M are positive integers and M > 1 in
the following.

In this paper, we adopt a simple QCE transmission strategy
called quantized MF precoding:

x = qL (sh†), (1)
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where qL (·) is the quantization function that maps its argu-
ment component-wise to the nearest points in XL. The reasons
for the choice of the quantized MF precoder are as follows.
First, it is asymptotically optimal when the number of quanti-
zation levels L goes to infinity. More specifically, when there
is no quantization (i.e., L = ∞), the transmitted signals of
quantized MF precoding can be expressed as

xi = 1√
N

e− j arg(hi )s, i = 1, 2, . . . , N, (2)

with which the useful signal power is maximized. Second,
the quantized MF precoder admits a closed-form expression
(i.e., (1)) and is of low computational complexity, which is
more practical and more amenable to analysis than many other
transmission strategies depending on numerical solutions of
certain discrete optimization problems (e.g., those in [17],
[18], [19], [20]). With quantized MF precoding, the system
model can be expressed as

y = hTqL (sh†) + n = 1√
N

N∑
i=1

|hi|e jθi s + n, (3)

where θi ∈ [−π
L , π

L ], i = 1, 2, . . . , N , are the quantization er-
ror (of angle). At the receiver side, we assume that nearest
neighbor decoding is employed, that is, the user maps its
received signal y to the nearest constellation point ŝ ∈ SM .

Our goal in this paper is to characterize the impact of the
number of quantization levels on the system performance. We
adopt the diversity order [35] as our performance metric1,
which is a classical metric that characterizes the rate at which
the SEP, i.e., P (ŝ �= s), tends to zero as the signal-to-noise-
ratio (SNR) grows. Its definition is given by

d = lim
ρ→+∞ − log P (ŝ �= s)

log ρ
, (4)

where ρ = 1
σ 2 is the SNR. Roughly speaking, the above defi-

nition says that in the high SNR regime, the SEP will scale as
ρ−d .

III. A NEW BOUND ON THE SEP
In this section, we derive a new bound on the system SEP.
The new bound will serve as the main tool for our subsequent
analysis and is independently interesting, because it might
also be useful for the SEP analysis of other communication
scenarios.

Consider the following system model:

y = βs + n, (5)

where s is uniformly drawn from M-PSK constellation, n ∼
CN (0, σ 2), and β ∈ C is a constant. Define

α = R(β ) − |I (β )| cot
π

M
. (6)

1There are also many other important performance metrics, including the
spectral and energy efficiency. Investigating the impact of the number of
quantization levels under these performance metrics can be interesting future
works.

FIGURE 1. An illustration of the decision region Ds1 of symbol s1 and its
safety margin α.

The above quantity is well-known as the safety margin in the
literature and is widely adopted as a performance metric for
precoding design [32], [33], [34]. Geometrically, it character-
izes the distance between the noise-free received signal and
the decision boundary of the intended symbol, as shown in
Fig. 1. It is widely believed that the safety margin has an
essential impact on the system SEP. In the following theorem,
we give a quantitative characterization of the relationship be-
tween the SEP and the safety margin α.

Theorem 1: The SEP of model (5) can be bounded as

Q

(√
2 sin π

M α

σ

)
≤ SEP ≤ 2Q

(√
2 sin π

M α

σ

)
, (7)

where α is given in (6) and Q(x) = 1√
2π

∫∞
x e− 1

2 x2
dx is the

tail distribution function of the standard Gaussian distribution.
Proof: Let Ds denote the decision region of symbol s and

let s1, s2, . . . , sM be the constellation points in SM , where

sm = e
j2π (m−1)

M . Then, the SEP can be expressed as

SEP = P (y /∈ Ds) = 1

M

M∑
m=1

P (y /∈ Ds | s = sm) , (8)

where the second equality holds since s is uniformly drawn
from SM . Due to the symmetry of the PSK constellation, each
probability in the above summation is equal and thus we only
need to consider one of them. For simplicity, we consider
P (y /∈ Ds | s = s1), where s1 = 1. Since nearest neighbor de-
coding is employed, the decision region of s1 is

Ds1 =
{

y | arg(y) ∈
(
− π

M
,

π

M

)}
=
{

y | |I (y)| < tan
π

M
R(y)

}
;

see Fig. 1 for an illustration of the decision region of s1. Based
on this, we can express P (y /∈ Ds | s = s1) as

P (y /∈ Ds | s = s1) = P (β + n /∈ Ds1 )

= P
(
|I (β + n)| ≥ tan

π

M
R(β + n)

)
,
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which can further be lower and upper bounded by

max
{
P
(
I (β + n) ≥ tan

π

M
R(β + n)

)
,

P
(
I (β + n) ≤ − tan

π

M
R(β + n)

)}
≤ P

(
|I (β + n)| ≥ tan

π

M
R(β + n)

)
≤ P

(
I (β + n) ≥ tan

π

M
R(β + n)

)
+ P

(
I (β + n) ≤ − tan

π

M
R(β + n)

)
.

(9)

For P (I (β + n) ≥ tan π
M R(β + n)), we have

P
(
I (β + n) ≥ tan

π

M
R(β + n)

)
= P

(
cot

π

M
I (n) − R(n) ≥ R(β ) − cot

π

M
I (β )

)

= Q

(√
2 sin π

M

σ

(
R(β ) − cot

π

M
I (β )

))
,

(10)

where the last equality holds since n ∼ CN (0, σ 2) and thus
cot π

M I (n) − R(n) ∼ N (0, σ 2

2 sin2 π
M

). Similarly, we can show

that

P
(
I (β + n) ≤ − tan

π

M
R(β + n)

)

= Q

(√
2 sin π

M

σ

(
R(β ) + cot

π

M
I (β )

))
.

(11)

Note that α = min{R(β ) − cot π
M I (β ),R(β ) + cot π

M I (β )}
and Q(·) is a decreasing function. Combining this with (8)–
(11), we have the desired result in (7), which completes the
proof. �

Several remarks on Theorem 1 are in order. First, the upper
bound in (7) has already been derived in [36]. Our proof
is different from that in [36] and can give both lower and
upper bounds in (7) simultaneously. It turns out that both the
lower and upper bounds in (7) are important in the following
diversity order analysis. Second, if β in (5) is a positive con-
stant, i.e., β > 0, then α = β and inequality (7) reduces to the
following well-known inequality [37]:

Q

(√
2 sin π

M β

σ

)
≤ SEP ≤ 2Q

(√
2 sin π

M β

σ

)
.

Finally, Theorem 1 enables to characterize the SEP of the
considered model (3), as shown in the following corollary.

Corollary 1: The SEP of model (3) can be bounded as

Eα

[
Q

(√
2 sin π

M α

σ

)]
≤ SEP ≤ 2Eα

[
Q

(√
2 sin π

M α

σ

)]
,

(12)
where

α = 1√
N

N∑
i=1

|hi|
(

cos θi − | sin θi| cot
π

M

)
. (13)

Proof: The considered model (3) is in the form of (5) with

β = 1√
N

N∑
i=1

|hi|e jθi . (14)

Note that β in (14) is a random variable, which is a function of
both h and θi, i = 1, 2, . . . , N . Applying the total probability
theorem, we can express the SEP of model (3) as

SEP = P (ŝ �= s) =
∫

β∈C
P (ŝ �= s | β = x) pβ (x)dx

= Eβ (P (ŝ �= s | β )) .

(15)

One can show that β and s are independent. Then it follows
from (15) and Theorem 1 that

Eα

[
Q

(√
2 sin π

M α

σ

)]
≤ SEP ≤ 2Eα

[
Q

(√
2 sin π

M α

σ

)]
,

where α is given in (13). �
In the following section, we will use Corollary 1 as the main

tool to analyze the diversity order of the considered system.

IV. DIVERSITY ORDER ANALYSIS
In this section, we will first present our main diversity order
results and give some explanations and discussions in Sec-
tion IV-A and then give a detailed proof in Section IV-B.

A. MAIN RESULTS
We first summarize the diversity order results in the following
theorem.

Theorem 2: For a single-user MISO system with N trans-
mit antennas and M-PSK modulation, the achievable diversity
order of the L-level quantized MF precoder in (1) is given by

d =
⎧⎨
⎩

N, if L > M;
N
2 , if L = M;
0, if L < M.

Theorem 2 clearly shows that the number of quantization
levels has a vital impact on the achievable diversity order
of the considered system. In particular, when the number of
quantization levels L is greater than the PSK constellation
order M, the system SEP will decrease quickly to zero as the
SNR goes to infinity; on the other hand, when L < M, there
will be a SEP floor, i.e., the system SEP will not decrease to
zero even when the SNR tends to infinity. The interesting case
is L = M where the SEP of the system will decrease to zero
as the SNR tends to infinity but with a slower rate compared
to the case where L > M. We also mention here a related
work [38], which gave diversity order analysis for an uplink
single-input-single-output (SISO) system with low-resolution
analog-to-digital converters (ADCs). Interestingly, the diver-
sity order results in [38] are consistent with our results in
Theorem 2 for N = 1, though they are derived for different
systems and communication scenarios using completely dif-
ferent analysis tools.
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In the rest part of this subsection, we will give an intuitive
explanation of the diversity order results in Theorem 2. The
discussions below are somewhat heuristic but shed useful
light on why different diversity order results are obtained for
the three different cases in Theorem 2. A rigorous proof of
Theorem 2 will be provided in the next subsection.

To begin, we give some intuitions on the relationship be-
tween the safety margin α in (6) and the system SEP. It is
obvious that in the noiseless case (i.e., ρ = ∞), the intended
symbol will be incorrectly decoded if and only if α ≤ 0, which
corresponds to the case where the noiseless received signal
lies outside the decision region of the intended symbol (see
Fig. 1), i.e., SEP = P (α ≤ 0). In the general case, roughly
speaking, the safety margin describes how large the order of
magnitude the additive noise is allowed to have such that the
received signal still lies within the decision region, in which
case an error will not occur. Note that as ρ tends to infinity, the
magnitude of the noise, i.e., |n|, is in the order of ρ− 1

2 . Then,
the above discussions imply that the SEP is in the same order
as P (α ≤ ρ− 1

2 ). Therefore, characterizing the diversity order
is equivalent to studying how fast the probability P (α ≤ ρ− 1

2 )
decreases as ρ tends to infinity, i.e.,

d = − lim
ρ→+∞

log P (α ≤ ρ− 1
2 )

log ρ
.

The above equality will be implicitly shown in the proof of
Theorem 2 in the next subsection.

Next we focus on the estimation of P (α ≤ ρ− 1
2 ). For the

considered model, α in (13) is a sum of N i.i.d. random
variables. We express α as α = 1√

N

∑N
i=1 αi, where

αi = |hi|vi and vi = cos θi − | sin θi| cot
π

M
(16)

with hi ∼ CN (0, 1) and θi uniformly distributed in [−π
L , π

L ].
Note that when L ≥ M, each αi in (16) is nonnegative, and
hence P (α ≤ ρ− 1

2 ) is in the same order as [P (αi ≤ ρ− 1
2 )]N

(see (25) and (30) further ahead for the rigorous expressions)
and

d = −N lim
ρ→+∞

log P (αi ≤ ρ− 1
2 )

log ρ
. (17)

We next investigate the three cases in Theorem 2, i.e., L >

M, L = M, and L < M, separately.
Case 1. L > M: In this case, vi in (16) is bounded from

below by a positive constant independent of ρ and thus has
no effect on estimating P (αi ≤ ρ− 1

2 ) when ρ tends to infinity.
As such, the distribution of |hi| will dominate in estimating
P (αi ≤ ρ− 1

2 ), whose CDF is in the order of O(x2) when x is
near 0, making P (αi ≤ ρ− 1

2 ) in the order of ρ−1. Then, from
(17), we have d = N .

Case 2. L = M: In this case, vi ≥ 0 and the probability of vi

being very close to 0 is nonzero. Consequently, either a small
vi or a small |hi| can result in a small αi, in which case the
CDF of αi becomes in the order of O(x) when x is near 0, and
thus P (αi ≤ ρ− 1

2 ) is in the order of ρ− 1
2 and d = N

2 .

Case 3. L < M: In this case, the probability of each vi being
negative is nonzero, and thus the probability of α being nega-
tive is also nonzero, i.e., P (α ≤ 0) is a constant independent
of ρ. Hence, d = 0.

B. PROOF OF THEOREM 2
In this subsection, we give the rigorous proof of Theorem
2. The key is to establish lower and upper bounds on the
SEP of the following form by applying inequality (12) and
characterizing the distribution of α in (13):

llow(ρ)−d + o(ρ−d ) ≤ SEP ≤ lup(ρ)−d + o(ρ−d ), (18)

where llow(ρ) and lup(ρ) are linear functions of ρ and o(ρ−d )
is a high-order infinitesimal of ρ−d , i.e., o(ρ−d )/ρ−d → 0.
Then we can conclude from the definition in (4) and (18) that
the diversity order is d . The most nontrivial steps of the proof
is to characterize the distribution of α in (13). Below is the
detailed proof of Theorem 2 in three separate cases.

1) PROOF OF THE DIVERSITY ORDER WHEN L > M
We first consider the case where L > M. To begin, we derive
upper and lower bounds on α in (13). Since the quantization
error θi ∈ [−π

L , π
L ], we have

α = 1√
N

N∑
i=1

|hi|
(

cos θi − sin θi cot
π

M

)

≥ 1√
N

N∑
i=1

|hi|
(

cos
π

L
− sin

π

L
cot

π

M

)

= c0‖h‖1√
N

≥ c0‖h‖2√
N

,

where c0 = cos π
L − sin π

L cot π
M is a positive constant when

L > M. Similarly, we have α ≤ ‖h‖1√
N

≤ ‖h‖2. Using inequal-
ity (12) and the above bounds on α, we obtain

SEP ≤ 2E

[
Q

(√
2 sin π

M c0‖h‖2√
Nσ

)]
(19a)

and

SEP ≥ E

[
Q

(√
2 sin π

M ‖h‖2

σ

)]
. (19b)

Note that 2‖h‖2
2 is a chi-square random variable with 2N de-

grees of freedom, i.e., 2‖h‖2
2 ∼ X 2(2N ). Hence, the moment

generating function of ‖h‖2
2 is

MGF‖h‖2
2
(t ) = E

[
et‖h‖2

2

]
= (1 − t )−N .
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Applying the well-known inequality Q(x) ≤ 1
2 e− 1

2 x2
, x ≥ 0

[37] to (19a), we can upper bound the SEP as

SEP ≤ MGF‖h‖2
2

(
− sin2 π

M c2
0

Nσ 2

)

=
(

1 + sin2 π
M c2

0

N
ρ

)−N

,

(20)

where the last equality holds since ρ = 1/σ 2.
On the other hand, by applying the Craig’s representation

of the Q-function [39], i.e.,

Q(x) = 1

π

∫ π
2

0
e
− x2

2 sin2 θ dθ, x ≥ 0, (21)

to (19b), we can lower bound the SEP as

SEP ≥ E

[
1

π

∫ π
2

0
e
− sin2 π

M ρ‖h‖2
2

sin2 θ dθ

]

= 1

π

∫ π
2

0
MGF‖h‖2

2

(
− sin2 π

M ρ

sin2 θ

)
dθ

= 1

π

∫ π
2

0

(
1 + sin2 π

M

sin2 θ
ρ

)−N

dθ,

where the first equality holds since the integrand is nonneg-
ative and thus we are free to change the order of integral
and expectation according to the Tonelli-Fubini Theorem (see,
e.g., [40]). Similar to [41, Section III-A], we can further obtain
the following lower bound on the SEP:

SEP ≥ 1

2
√

π (N + 1
2 )

(
1 + sin2 π

M
ρ
)−N

. (22)

It follows immediately from (20) and (22) that d = N in this
case.

2) PROOF OF THE DIVERSITY ORDER WHEN L = M
As discussed in Case 2 in Section IV-A, when L = M, both
|hi| and vi, i = 1, 2, . . . , N , will play roles in the diversity
order analysis, in which case the distribution of α needs to
be investigated carefully. The following two lemmas give the
PDF of αi and an upper bound on the PDF of α when L = M,
respectively, which are important for our analysis.

Lemma 1: When L = M, the PDF of αi is given by

pαi (x) =
{

2M sin π
M√

π
e− sin2 π

M x2
Q
(√

2 cos π
M x
)

, if x ≥ 0;
0, if x < 0.

Lemma 2: When L = M, the PDF of α can be upper
bounded as

pα (x) ≤ MN sin π
M√

π
, x ≥ 0.

The proofs of Lemmas 1 and 2 are given in Appendix A and
B, respectively. Now we are ready to give the diversity order
analysis for the case of L = M.

We first prove that d ≥ N
2 by giving an upper bound on the

SEP. Note that α ≥ 0 when L = M. Then from (12) and using
the fact that Q(x) ≤ 1

2 e− 1
2 x2

for x ≥ 0, we have

SEP ≤ Eα

[
e− sin2 π

M ρα2
]

=
∫ +∞

0
e− sin2 π

M ρx2
pα (x)dx.

(23)

For any given ε > 0, the integral in (23) can be split into the
sum of two integrals as∫ +∞

0
e− sin2 π

M ρx2
pα (x)dx

=
∫ ρ

− 1−ε
2

0
e− sin2 π

M ρx2
pα (x)dx +

∫ +∞

ρ
− 1−ε

2
e− sin2 π

M ρx2
pα (x)dx

� I1 + I2.

(24)

Next we give upper bounds on I1 and I2 separately. For I1,
recalling the relationship between α and αi and noting that
e− sin2 π

M ρx2 ≤ 1, we get the following inequality:

I1 ≤
∫ ρ

− 1−ε
2

0
pα (x)dx = P

(
0 ≤ α ≤ ρ− 1−ε

2

)

≤
N∏

i=1

P
(

0 ≤ αi ≤
√

Nρ− 1−ε
2

)
.

(25)

Moreover, it follows from Lemma 1 that

P
(

0 ≤ αi ≤
√

Nρ− 1−ε
2

)

= 2M sin π
M√

π

∫ √
Nρ

− 1−ε
2

0
e− sin2 π

M x2
Q
(√

2 cos
π

M
x
)

dx

≤ M
√

N sin π
M√

π
ρ− 1−ε

2 ,

where the inequality is due to e− sin2 π
M x2

Q(
√

2 cos π
M x) ≤ 1

2
for x ≥ 0. Combining the above inequality with (25), we have

I1 ≤
(

M
√

N sin π
M√

π

)N

ρ− N
2 (1−ε). (26)

Now we upper bound I2 by applying Lemma 2:

I2 ≤ MN sin π
M√

π

∫ +∞

ρ
− 1−ε

2
e− sin2 π

M ρx2
dx

= MN

√
ρ

Q
(√

2 sin
π

M
ρ

ε
2

)

≤ MN

2
√

ρ
e− sin2 π

M ρε

. (27)
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It follows from (23)–(27) that

SEP ≤
(

M
√

N sin π
M√

π

)N

ρ− N
2 (1−ε) + MN

2
√

ρ
e− sin2 π

M ρε

,

which implies that d ≥ N
2 (1 − ε). Since the above inequality

holds for any ε > 0, we have d ≥ N
2 .

Next we give a lower bound on the SEP, which in turn gives
an upper bound on d . Applying inequality (12) and the Craig’s
representation of the Q-function in (21), we have

SEP ≥ 1

π

∫ π
2

0

∫ +∞

0
e
− sin2 π

M ρx2

sin2 θ pα (x)dxdθ, (28)

where we have changed the order of integral according to the
Tonelli-Fubini Theorem. Focusing on the inner integral, we
have

∫ +∞

0
e
− sin2 π

M ρx2

sin2 θ pα (x)dx ≥
∫ ρ

− 1
2

0
e
− sin2 π

M ρx2

sin2 θ pα (x)dx

≥ P
(

0 ≤ α ≤ ρ− 1
2

)
e
− sin2 π

M
sin2 θ ,

which, together with (21) and (28), further implies

SEP ≥ Q
(√

2 sin
π

M

)
P
(

0 ≤ α ≤ ρ− 1
2

)
. (29)

The term P (0 ≤ α ≤ ρ− 1
2 ) in (29) can further be lower

bounded as

P
(

0 ≤ α ≤ ρ− 1
2

)
≥

N∏
i=1

P

(
0 ≤ αi ≤ ρ− 1

2√
N

)
. (30)

According to Lemma 1,

P

(
0 ≤ αi ≤ ρ− 1

2√
N

)

= 2M sin π
M√

π

∫ (Nρ)−
1
2

0
e− sin2 π

M x2
Q
(√

2 cos
π

M
x
)

dx.

When ρ is sufficiently large, we have

e− sin2 π
M x2

Q
(√

2 cos
π

M
x
)

≥ 1

4
, x ∈

[
0, (Nρ)−

1
2

]
,

and thus

P

(
0 ≤ αi ≤ ρ− 1

2√
N

)
≥ M sin π

M ρ− 1
2

2
√

Nπ
. (31)

Combining (29)–(31) yields the following lower bound on the
SEP:

SEP ≥ Q
(√

2 sin
π

M

)(M sin π
M ρ− 1

2

2
√

Nπ

)N

,

which further implies d ≤ N
2 . In conclusion, we have d = N

2 .

3) PROOF OF THE DIVERSITY ORDER WHEN L < M
Finally, we prove that d = 0 when L < M. Using inequality
(12) and the fact that Q(x) ≥ 1

2 for x ≤ 0, we have

SEP ≥ Eα

[
Q

(√
2 sin π

M α

σ

)]

≥ 1

2
P (α ≤ 0) ≥ 1

2

N∏
i=1

P (αi ≤ 0)

= 1

2

N∏
i=1

P (vi ≤ 0) ,

(32)

where the last equality holds since αi = |hi|vi (see (16)) and
|hi| ≥ 0. Using similar arguments as in Lemma 3 in Ap-
pendix A, we can derive the CDF of vi for L < M:

Fvi (x) = 1 − L

M
+ L arcsin

(
x sin π

M

)
π

, if L < M,

and hence

P (vi ≤ 0) = Fvi (0) = 1 − L

M
> 0. (33)

Substituting the above inequality into (32) gives

SEP ≥ 1

2

(
1 − L

M

)N

,

which, together with the definition in (4), shows

0 ≤ d ≤ lim
ρ→∞

− ln 1
2 (1 − L/M )N

ln ρ
= 0,

i.e., d = 0.

We remark here that (33) holds regardless of the channel
distribution, and hence the above diversity order result for L <

M (i.e., d = 0) holds for any generic channel.

V. NUMERICAL RESULTS
In this section, we provide simulation results to verify the
diversity order results in Theorem 2. All results are averaged
over 109 channel realizations.

In Figs. 2 and 3, we consider QPSK constellation with
N = 2 and 8-PSK constellation with N = 4, respectively. We
depict the SER as a function of the SNR and consider different
numbers of quantization levels, i.e., L = M − 1, L = M, L =
M + 1, and L = ∞, to demonstrate the effect of the number
of quantization levels on the diversity order. For clarity, we
also report the lines with slopes −N and −N

2 to compare the
simulation results with the analytical results. As shown in the
figures, the curve of L = M + 1 is parallel to the curve of
L = ∞ in the high SNR regime, both of which are parallel
to the line with slope −N ; when L = M, the slope of the SER
curve is nearly −N

2 when the SNR is high; and when L < M,
there is an SER floor at high SNRs, i.e., the slope of the SER
curve is 0. These observations are consistent with the diversity
order results in Theorem 2.

VOLUME 4, 2023 27



WU ET AL.: DIVERSITY ORDER ANALYSIS FOR QUANTIZED CONSTANT ENVELOPE TRANSMISSION

FIGURE 2. The SER versus the SNR, for different numbers of quantization
levels L with M = 4 and N = 2.

FIGURE 3. The SER versus the SNR, for different numbers of quantization
levels of L with M = 8 and N = 4.

VI. CONCLUSION
This paper characterized the diversity order of QCE transmis-
sion for a downlink single-user MISO system with M-PSK
modulation. It has been shown that for the L-level quantized
MF precoder, full diversity order is achievable when L > M,
while only half and zero diversity order can be achieved when
L = M and L < M, respectively. Simulation results verified
our diversity order results.

An important and interesting future work is to analyze the
SEP performance of the multi-user QCE system. By simula-
tions, we have observed that as the SNR grows, the SEP of
the multi-user system does not decrease to zero and there is
a positive SEP floor even when the number of quantization
levels is infinite, which is in sharp contrast to the single-user
case. Therefore, the diversity order considered in this paper
is no longer an appropriate performance metric in the multi-
user scenario. Instead, it would be interesting to characterize
the SEP floor at the infinite SNR for different numbers of
quantization levels. The SEP analysis of the multi-user system
requires more sophisticated tools due to the more complicated
system model.

APPENDIX A
PROOF OF LEMMA 1
Our goal in this section is to calculate the PDF of αi = |hi|vi

in (16) for the case where L = M. Note that 2|hi|2 ∼ X 2(2).

Then the PDF of |hi| is given by p|hi|(x) = 2xe−x2
, x ≥ 0. We

next calculate the PDF of vi.
Lemma 3: When L = M, the PDF of vi is given by

pvi (x) =
⎧⎨
⎩

M sin π
M

π

√
1−sin2 π

M x2
, if x ∈ [0, 1] ;

0, otherwise.

Proof: From the definition of vi in (16), we have

vi = cos θi − | sin θi| cot
π

M

= cos |θi| − sin |θi| cot
π

M

= sin
(

π
M − |θi|

)
sin π

M

,

(34)

where |θi| is uniformly distributed in [0, π
M ] and the second

equality holds since |θi| ≤ π
M ≤ π

2 . It follows immediately
that 0 ≤ vi ≤ 1. Therefore, if x /∈ [0, 1], pvi (x) = 0; if x ∈
[0, 1], the CDF of vi is

Fvi (x) = P (vi ≤ x)

= P
(
|θi| ≥ π

M
− arcsin

(
x sin

π

M

))

= M arcsin
(
x sin π

M

)
π

.

(35)

Taking the derivative with respect to x on both sides of (35)
gives the desired result. �

The following lemma gives the PDF of the product of two
independent random variables.

Lemma 4 ([42, p135]): Let X and Y be two independent
random variables with PDFs pX (·) and pY (·). Then the PDF
of Z = XY is

pZ (z) =
∫ +∞

−∞
1

|x| pX (x)pY

( z

x

)
dx.

With the above two lemmas, we are now ready to compute
the PDF of αi. Applying Lemma 4 to αi = vi|hi|, we have

pαi (x) =
{∫ 1

0
1
z pvi (z)p|hi|

( x
z

)
dz, if x ≥ 0;

0, if x < 0.

Now we simplify the above PDF expression for x ≥ 0:

pαi (x) = 2M sin π
M

π

∫ 1

0

x

z2
√

1 − sin2 π
M z2

e
− x2

z2 dz

z= sin θ

sin π
M 2M sin2 π

M

π

∫ π
M

0

x

sin2 θ
e
− sin2 π

M x2

sin2 θ dθ. (36)

Letting u = sin π
M x cot θ , then∫ π

M

0

x

sin2 θ
e
− sin2 π

M x2

sin2 θ dθ

= 1

sin π
M

e− sin2 π
M x2

∫ +∞

cos π
M x

e−u2
du
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=
√

πe− sin2 π
M x2

sin π
M

Q
(√

2 cos
π

M
x
)

.

Combining the above equality with (36) gives the PDF of αi

for x ≥ 0 and completes the proof.

APPENDIX B
PROOF OF LEMMA 2
In this section, we prove Lemma 2. Let Sn = ∑n

i=1 αi, n =
1, 2, . . . , N . Then α = SN√

N
. According to Lemma 1, the PDF

of each αi is zero when x < 0, and thus pα (x) is zero when
x < 0. When x ≥ 0, we claim that the following inequality
holds:

pSn (x) ≤ Mn sin π
M√

nπ
e− 1

n sin2 π
M x2

, x ≥ 0, (37)

which further implies that

pα (x) =
√

N pSN (
√

Nx) ≤ MN sin π
M√

π
, x ≥ 0.

We next prove (37) by induction. Note that Q(x) ≤ 1
2 for all

x ≥ 0, and thus the inequality holds immediately for n = 1.
Now suppose that (37) holds for some n with 1 < n < N .
Then for Sn+1, we have

pSn+1 (x)

=
∫ +∞

−∞
pSn (y)pαn+1 (x − y)dy

≤
∫ x

0

Mn sin π
M√

nπ
e− 1

n sin2 π
M y2 M sin π

M√
π

e− sin2 π
M (x−y)2

dy

≤ Mn+1 sin2 π
M√

nπ

∫ +∞

−∞
e− 1

n sin2 π
M y2

e− sin2 π
M (x−y)2

dy

= Mn+1 sin π
M√

(n + 1)π
e− 1

n+1 sin2 π
M x2

,

where the first inequality uses (37) for n and Lemma 1 and the
second inequality is due to the change of the integral interval.
The above inequality shows that (37) holds for n + 1 and
completes the proof.
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