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ABSTRACT The non-linear property of magnetics poses challenges for their loss modelling in power
electronics due to lacking full physical models. As a practical approach for their loss estimation, the
manufacturers can pre-measure the losses in standalone rigs and distribute the "loss maps" as interpolated
look-up tables/curves for the end users. However, with more factors discovered that impact the losses, e.g.,
DC bias and load conditions, the dimensions of the loss maps cannot be solved by conventional surface/curve
fitting methods. This paper addresses this problem by applying the Artificial Neural Network (ANN). For
both inductors and transformers, Neural Network-aided loss maps (NNALMs) are designed and evaluated
with comparisons against conventional loss maps to reveal the limitations of the latter caused by physically
intercoupled input variables. The NNALMs not only show superior accuracy throughout the whole datasets,
but also enable the loss maps to expand the dimensions to account for more factors (e.g., load conditions
in transformers) and generate multiple outputs (e.g., both the winding loss and core loss). The ANN-aided
loss maps can be distributed as digitized datasheets of standardized magnetics, enabling rapid, accurate and
user-friendly loss estimations for power electronics engineers.

INDEX TERMS Artificial neural network (ANN), machine learning, loss map, inductor, high-frequency (HF)
transformer.

I. INTRODUCTION
Nearly all power electronics applications involve magnetic
components for functionality and filtering purposes. As one
of the dominant components in size, weight and power losses,
magnetics significantly impact the performance of power con-
verters [1], [2], [3], [4]. However, there is no satisfactory
first-principle model for core loss in a magnetic component
due to the non-linear core loss mechanisms and the intercou-
pled factors involved, such as the DC bias [5], [6], [7], [8],
[9], [10], [11], [12]. In addition, similar to the core loss, the
winding loss also partly shares the nonlinearity due to the field
interactions with the core and complex geometries, which can
hardly be captured by the traditional equation-based methods
[13], [14].

While research on non-sinusoidal waves has been exten-
sively studied in recent years, the most widely used core
loss models/datasets are still based-on sinusoidal excita-
tions and simplified operating conditions (e.g., ignoring DC

bias) [15], [16], [17], [18]. However, the majority of high-
frequency magnetics in power converters do not operate with
a low-distortion sinusoidal waveform, zero DC bias or room
temperature. Therefore, the limited curves and data in a
common manufacturer’s datasheet cannot factor in all these
variables, although some exist models for calculating core
losses that factor in temperature based on manufacturer data
[19]. Meanwhile, the loss and electromagnetic properties in
magnetic materials can vary due to variations in frequency,
flux density, DC bias, temperature, and the shape of the exci-
tation waveform, and it is very challenging to measure, store
and share all these factors in a manufacturer datasheet [5],
[6], [14], [15], [16], [17], [18]. Moreover, geometry-related,
component-specific loss mechanisms, such as the gap losses
[3], cannot be reflected in the existing datasheets based on
materials.

Numerous research efforts have been made to factor in the
additional variables contributing to magnetic losses. For
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example, [4] proposes to draw the Steinmetz pre-
magnetization graphs (SPGs) to reflect the variation of
Steinmetz parameters against DC bias levels for core loss.
However, this approach does not solve the fitting problem,
given that these graphs have no applicable fitting expressions.
Moreover, this approach is still limited by the frequency
dependency of the original Steinmetz parameters [1] and the
dependency on the geometries of individual components (e.g.,
gap losses [3], ununiform flux distribution [20] and fringing
flux effect [21]). To consider the shape of waveforms, an
improved generalized Steinmetz equation (iGSE) is proposed
in [1], but it cannot solve the non-linear frequency-dependent
Steinmetz parameters or the DC bias effect. To consider
the gap losses, [3] also proposes to modify the Steinmetz
parameters, but it shares the same limitations. In [5] and [8],
while the DC bias effect is included, the dB/dt and frequency
factors are considered independent factors as a simplification
to reduce the dimensions and enable fitting, while in fact,
these factors are intercoupled with other variables, i.e., H0

and �B.
To address all the above challenges, shifting from material-

based to component-based datasheets based on empirical
measurements is necessary, especially given the growing pop-
ularity of standardized magnetics. Subsequently, for the end
users to utilize these measurements, it is crucial to realize
standardized loss maps with unified frameworks considering
multiple inputs (e.g., dB/dt, H0, �B, power factor) and out-
puts (e.g., core loss, winding loss). For this purpose, machine
learning has been proven highly effective in solving non-
linear multi-variable classification and regression problems,
especially with Neural Networks (NN) [22], [23]. Modelling
and designing magnetics in power electronics with the aid
of machine learning have been approached in many different
ways [15], [16], [17], [18], [24], [25], [26], [27], [28].

For example, the MagNet projects in [15], [16], [17], [18]
intend to support data-driven magnetic research using ma-
chine learning and neural networks. MagNet stores large
quantities of core loss data for many materials measured ex-
perimentally under different operating conditions. The input
of the MagNet neural network is frequency, voltage/flux-
density, duty cycle (single-value), and temperature, and the
output is core loss per volume [15], [16], [17]. The volt-
age and flux density (B) inputs are in the form of time
sequence waveforms in three shapes, i.e., sinusoidal, trian-
gular, and symmetric trapezoidal. However, the particular
challenge in the case of inductor core loss is caused by the
PWM operations in DC/AC converters, which involve varying
pre-magnetization (H0) and varying pulse widths (duty cycle)
[5], [6], [7]. As a result, the MagNet NN can only solve the
problems in limited cases, e.g., only DC/DC converters with
a fixed single duty cycle and H0 rather than PWM AC/DC
converters.

Moreover, with the composite waveform hypothesis
(CWH) [5], [6], [7] considered a proven approach to break-
down PWM waveforms and estimating the core loss on a
switching cycle basis, the required core loss data only needs to

be measured with symmetric 50-50 duty cycle, and there is no
need to embed duty cycle as an input variable in the magnetic
loss maps. In [18], the input of the NN is a sequence of B
(t), temperature, and frequency, and the output is magnetic
field intensity, H (t), instead of the core loss per volume. The
trained NN obtains the B-H loop and then computes the core
loss. The problem with this method, however, is that it might
not be suitable to model B-H loops because of its extreme
phase sensitivity between the measured and predicted H (t),
as the relative core loss error due to the phase discrepancy can
be very high and reach 200% and above. The shift error for
this work does not relate to the core material and is separate
from the phase discrepancy caused by the parasitic inductance
of the current sensors, e.g., the current probes. Instead, phase
shift here refers to the mismatch between the predicted H (t)
and the actual one that can be measured from the experiment.

This paper aims to construct loss maps for magnetic com-
ponents, given the challenge that multiple inputs and outputs
are involved in the loss map, where conventional curves
and formulas in the device datasheet are not sufficient to
express the non-linear relationships with multiple variables.
As a contribution, this work implements and evaluates NN
to solve the fitting problem in magnetic loss maps, which
has a unified framework and expandability for additional in-
put/output variables. In addition, by comparisons, this study
reveals significant errors in the conventional core loss maps
due to the oversimplification of intercoupled variables as lim-
ited by allowable dimensions. The proposed NN-aided loss
map (NNALM) is superior and more user-friendly than the
equation-based loss models. Beyond the core loss, this work
also extends the loss maps to include winding and total losses
as the output and an extended range of interlinked inputs
(e.g., temperature, load conditions, etc.) as an engineering
solution to provide rapid, accurate and complete loss esti-
mations of individual magnetic components. The proposed
NNALM estimation model is for already designed inductors
and transformers, which is helpful for magnetic component
sellers and power electronics designers rather than for mag-
netics designers. This paper builds on the authors’ previous
work on accurate core loss and winding loss measurement and
estimation for inductors and high-frequency (HF) transform-
ers [5], [6], [7], [11], [12], [13], [14].

In the following, Section II describes the conventional and
component-based loss maps and their limitations in estimating
the loss. Sections III and IV present the NN user-friendly
loss map for the inductors and HF transformers, respectively,
and compare the results with the traditional loss prediction
method. This work’s practical implementation is also ex-
plained in Section V.

II. CORE LOSS MAP APPROACH AND LIMITATIONS
A. CONVENTIONAL LOSS MAP
In empirical core loss models, frequency (f) and flux den-
sity swing (�B) are essential factors in determining the core
loss. The Steinmetz equation (SE) is widely accepted as an

VOLUME 3, 2022 887



RASEKH ET AL.: ARTIFICIAL NEURAL NETWORK AIDED LOSS MAPS FOR INDUCTORS AND TRANSFORMERS

empirically based model for core loss [5] as

PCore = k f α�Bβ (1)

The Steinmetz parameters, k, α, and β, are obtained by
curve fitting. The SE is, however, limited in accuracy, as the
coefficients are only accurate within a specific range of fre-
quencies [2]. Additionally, the SE only applies to sinusoidal
excitations, meaning it cannot be directly applied to magnetics
driven by other excitations, such as PWM. To solve this prob-
lem, the improved generalized Steinmetz equation (iGSE) was
developed for calculating any arbitrary flux waveform’s loss
[1] as (T is the period of one cycle)

PCore = 1

T

∫ T

0
ki

(∣∣∣∣dB

dt

∣∣∣∣
)α

(�B)β−α dt (2)

With iGSE, SE parameters are converted from sinusoidal
to rectangular excitation. iGSE works by breaking down a
complex waveform into individual B-H loops. In addition to
being widely accepted and proven accurate, the iGSE does
not take into account pre-magnetization effects [4].

"Loss map" is an approach proposed in [8] for incorporating
DC bias current (I0) effects. Using experimental B-H loop
measurements, a core loss profile can be constructed cover-
ing various magnetic components’ operating points [9]. As
a result, symmetric square-wave excitation of a closed B-H
loop is described by three variables, i.e., H0, �B, and flux
density change rate |dB/dt|, without considering the operating
temperature. In repetitive symmetric excitation, |dB/dt| can be
converted to f [10]. It is, however, more appropriate to refer to
this variable as |dB/dt| rather than the frequency for an instant
on the B–H trajectory. Besides, in power electronics, |dB/dt|
is proportional to the square-wave voltage amplitude applied
to the magnet component [5]. A loss map, or a database of
core loss, are therefore functions of these three variables, as
follows:

PCore = F1

(∣∣∣∣dB

dt

∣∣∣∣ , (�B) , H0

)
(3)

Loss maps generated from finite discrete measurements
can be used as look-up tables with interpolations or fitted
curves/surfaces [5], [6], [7], [8], [9], [10]. In these references,
the assumption is that the core loss is correlated |dB/dt| inde-
pendently of the other two variables (which is not accurate, as
will be explained later) and is expressed as similar to iGSE [4],
i.e., PCore�(|dB/dt|α). To specify the coefficient α, the factor
dB/dt can be determined independently by only one data set
(fixed �B and H0). Hence, the loss map is simplified by one
dimension. Other variables, �B and H0, affect the core loss in
a coupled manner. In view of this, a set of datasets covering
the possible operating region of interest formed by various �B
and H0 are to be assessed as follows, given a fixed (dB/dt) [5].

PCore =
(∣∣∣∣dB

dt

∣∣∣∣
)α

. F2 (�B, H0) (4)

To establish the loss maps in this paper, the magnetic struc-
ture is excited with a bidirectional half-bridge structure that

FIGURE 1. (a) The utilized test rig for loss measurements, (b) Simplified
schematic of the power stage.

TABLE 1. Components and Instruments in the Test Rig

has been presented in previous studies [5], [6], [7], [11], [12],
[13], [14]. Also, a refined discontinuous test procedure as a
triple pulse test (TPT) is performed, offered in [5], [6]. Fig. 1
and Table 1 illustrate the utilized experimental test rig and
power circuit built in the form of a two-winding method for
measuring magnetic component’s loss using high-bandwidth
voltage and current probes. The measured sensed voltage
(vSense) and excitation current (iExc) data are then processed
in MATLAB as the following expression for the core loss
calculation.

PCore = N1

N2

1

T

∫ T

0
iExc (t ) · vSense (t ) dt (5)

N1 and N2 are the numbers of the primary and secondary
winding turn, respectively. In the later sections, winding and
total losses will also be measured using the methods in [13],
[14]. In order to reduce phase discrepancy error for measur-
ing the core loss and total loss, the voltage/current probe is
aligned using Keysight U1880A deskew tool and calibrated
on the oscilloscope with the deskew function. As previously
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FIGURE 2. The loss map of the tested component, (a) Core loss versus �B,
H0 (dB/dt = 11100 T/s), (b) Core loss versus dB/dt (�B = 46 mT and H0 =
0 A/m).

evaluated in [11], the deskew method has acceptable accuracy
in the broad frequency range by less than a 5% error. Also,
the winding loss results are measured by the methods in [13],
[14], which are immune to the phase discrepancy error, using
the reactive voltage cancellation method.

Two steps are involved in the loss mapping process. Keep-
ing |dB/dt| constant, various �B and H0 operating points are
tested as a first step. Fig. 2(a) shows the results as a surface
interpolated using Thin-plate splines in MATLAB. For fitting
surfaces, the Thin-plate Splines method is one of the most
powerful approaches in MATLAB. For the results in Fig. 2(a),
the R-square is equal to 1. R-square can take on any value
between 0 and 1, with a value closer to 1 indicating that the
model accounts for a greater proportion of variance. Also, the
sum of squares due to error (SSE) is equal to 4.942 × 10−22.
An SSE value closer to 0 indicates that the model has a smaller
random error component and that the fit will be more useful
for prediction. These results are shown that the utilized surface
fitting method is highly accurate. Besides, the results indicate
that it is challenging to fit a generalized expression to �B, H0,
and the core loss and problematic to visualize in a datasheet
component’s loss profile.

The second step is constructing a set of points with con-
stants �B and H0 and varying |dB/dt|. Based on this set of
data, curve fitting is performed to define parameter α in (4).
As seen from Fig. 2(b), the measured data are well fitted to a
function with exponential growth. The core loss in Fig. 2(b)
is normalized to 11100 T/s (50 V), as the testing voltage and

|dB/dt| for Fig. 2(a) are ±50 V and 11100 T/s, respectively.
In summary, the core loss can be obtained from a loss map in
two steps: 1) find the energy using �B and H0 in Fig. 2(a),
and 2) scale the energy to the testing voltage using |dB/dt| in
Fig. 2(b).

B. COMPONENT-BASED (RATHER THAN MATERIAL-BASED)
LOSS MAP
A precise and convenient loss map can be attained if the
loss data is captured from the same core material, shape, and
winding arrangement of the aim magnetic device (component-
based), as explained previously in [5], [6], [14], in contrast to
conventional material-based loss maps. This is because, with
the same core/winding material, each component built can
have different characteristics, e.g., the core gap loss cannot be
captured by the material-based dataset. In addition, in power
electronics, it is common to use electrical and time-domain
variables as opposed to magnetic variables in the loss map.
The translation between these variables complicates calcu-
lating core losses and loss mapping. Additionally, due to
manufacturing tolerances, magnetic components have batch-
to-batch variations on their geometries/characteristics, which
can subsequently lead to slight loss variations.

In order to simplify core loss estimation and to facilitate
a straightforward loss map procedure, a method has been
developed in [5] that relies solely on time-domain and electri-
cal variables, replacing the conventional magnetic variables.
Using the user-friendly loss map, one operating cycle of a
magnetic component can be characterized by three variables:
primary voltage (VPri as dB/dt), volt-second product (VPri . T
as �B), and DC bias current (I0 as H0). This allows the loss
map to be expressed as (6)

PCore = F3 (VPri, VPri . T, I0) (6)

Compared to the magnetic-domain loss map shown in
Fig. 2, this loss map will not only simplify core loss calcu-
lation, but also simplify the loss mapping process that only
needs to include the 50% duty cycle with the CWH approach
[7]. Using the user-friendly loss map with an aimed operating
point, the TPT’s electrical and time-domain parameters (pulse
width and height) can be derived directly without having to
translate from magnetic to electrical domains. This idea is
to have a component-based loss map - the tested component
should be identical (or at least representative regarding phys-
ical structure) to the component to be predicted. This loss
map can be a practical idea of what new loss datasheets will
look like for the pre-characterized inductors/HF-transformers,
analogous to the commercial switching devices’ loss data [5],
[6], [14].

Similar to the core loss, the winding loss characteristic is
subject to the large-signal level, as investigated in [13] and
[14]. Also, the measured winding AC resistance is found to
be correlated with the load level/feature in HF transformers.
Hence, on the condition that the experimental measurement
carries out on the specific magnetic component design, and
to simplify/improve the loss extraction process, the measured
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FIGURE 3. Error of core loss calculated from datasheet against
measurement results.

winding loss, together with the core loss (total loss), can be
distributed in the form of a user-friendly loss map [6], [14].
As a result, these three variables also describe the winding
loss. DC winding loss can be expressed with I0. Another two
variables as VPri and VPri . T, demonstrate individual square
excitation and the waveform of current flowing in a magnetic
component, which indicates the ac loss of winding.

C. LIMITATIONS
Using the loss map approach developed in previous studies
in practice is not straightforward. It is impossible to provide
all potential scenarios designers may have to deal with in
classical datasheets for magnetic materials. To begin with,
a conventional loss map is usually offered and used as a
three-dimensional look-up table presented in a datasheet [8],
[9], [10]. Although it will be more feasible for manufacturers
to print the energy loss suggested in [5] against electrical
parameters on datasheets, neither the user nor the loss map
can accurately interpret or cover the full range of possible data
points.

Furthermore, the loss map has limitations regarding the
number of variables and how they should be displayed. A
datasheet cannot accurately predict the behaviour of mag-
netic materials under sophisticated operating conditions [18].
Aside from the three variables in the loss map, some other
parameters, such as the temperature, also affect the loss value.
Besides, when it comes to HF transformers or coupled in-
ductors, the load’s type/value, as well as the power factor,
contribute to the core and winding losses [12], [14]. Thus, the
parameters will be increased from 3 to 6 as voltage, frequency,
DC bias current, temperature, load impedance, and power
factor. This detailed loss map cannot be displayed in a graph
or look-up table like Fig. 2 in datasheets, and the loss cannot
be easily read and obtained by curve/surface fitting.

To show the difference between the most conventional
model and the TPT measurement, the core loss is calculated
based on the magnetic core’s datasheet and compared with
measurement results in Fig. 3. The conventional datasheet,
such as the one used in [29] provides a core loss formula
based on the sinusoidal excitation with two input variables:

FIGURE 4. "|dB/dt|" scaling models - core loss versus dB/dt and various
fixed conditions of �B and H0.

peak flux density and frequency. Also, the peak flux density
should be calculated with a separate equation based on the
excitation voltage, frequency, and magnetic core properties,
i.e., winding number of turns and core cross-sectional area.
This method ignores the DC bias effect and the difference
between sinusoidal and rectangular waveforms. The result
reveals that the datasheet core loss differs significantly from
the measured ones. Increasing the DC bias current increases
the error since the conventional datasheets cannot account
for the DC bias effect. Therefore, as also stated in [4], [5],
traditional loss datasheets and methods based on sinusoidal
excitation are unreliable tools for predicting square voltage
excitations with DC biases.

As another important limitation in conventional-fitting-
based loss map, Fig. 4 shows that the loss scaling over |dB/dt|
is correlated to the other two variables, which means the three
variables (H0, �B, and |dB/dt|) are physically intercoupled
with each other. This demonstrates that the conventional loss
map approach ([4], [5]) made an oversimplification to con-
sider the |dB/dt| as an independent variable, as in (4) and (6).
The four models shown in Fig. 4 are later applied in Section III
as examples.

This work aims to overcome these limitations by imple-
menting neural networks in a user-friendly digital loss map.
NNALM can resolve the problem related to the different and
multiple input and output parameters. NNALM is, therefore,
superior to conventional surface/curve fitting that is prone to
error and difficult to display in datasheets. NN files, which
are only a few kilobytes in size, only need to be trained and
provided by the manufacturers to the user for each magnetic
component in a user-friendly loss map format. The NNALM
for inductors and HF transformers will be discussed in the
next two sections, along with the error regarding conventional
loss maps compared to the NNALM.

III. NN AIDED INDUCTOR LOSS MAP
This Section introduces the neural network structure used in
the user-friendly loss map for inductors. A comparison is then
made between the NNALM and the conventional loss maps
for the core loss of the inductors.
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FIGURE 5. An example of NNALM structure for the inductors with four
inputs, three outputs, and three hidden layers.

A. NNALM STRUCTURE
The neural network is the most commonly used and
straightforward method for solving multi-variable non-linear
regression problems [15], [16], [17], [18]. Magnetic compo-
nents can be designed/modelled more effortlessly with NNs,
which have proven effective in solving problems where pre-
cise physical understanding does not exist [24], [25], [26],
[27], [28]. This part uses an NNALM to develop and digitalize
a user-friendly loss map model for inductors. An example
of a 5-layer NNALM is shown in Fig. 5. Specifically, this
network has one input layer, one output layer, and three hidden
layers. As a result of using a user-friendly loss map, the input
layer has four input variables: the inductor primary voltage,
excitation frequency, DC bias current, and temperature. Three
parameters are included in the output layer: core loss, winding
loss, and total loss, which can be in different units like Joule
or Watt. The total loss can be obtained simply by summating
the core and winding losses or using the direct total loss
approach using the two-winding method and primary voltage
[14]. NNALM with a total loss is an accelerated option for
the power electronics designers to know the entire loss of
the magnetic components when the separated loss is not of
interest.

The hidden layers contain multiple neurons, and the num-
ber of layers and neurons in the hidden part should be
optimized. It has to be noted that the choice of the ANN
structure is not unique, and many different structures may
give good performances. Also, regarding the number of lay-
ers and neurons, there is no general principle to determine
their exact numbers [24]. A trade-off between network size
and performance needs to be considered when determining
the number of neurons in each hidden layer [15], [16], [17],
[18], [22], [23], [24], [25], [26], [27], [28]. A small network
may have limited learning capability and cannot provide good
predictions, while a large network is more prone to overfit-
ting. ANN designers often use trial and error to find the best
performance for their system, which has also been done in
this work [24]. Using the trained NN, the user can attain the
magnetic component losses based on input parameters. For an
accurate NN to be trained, it is essential to have a consider-
able amount of reliable data, particularly data collected under

different conditions. Initially, a large dataset of measurements
is collected, and then core and winding losses are calculated,
as the data acquisition part described in Section II-A. The NN
is trained using these data, and its structure and parameters
are saved when the training is complete. The NN can finally
be used directly to predict losses for user-defined inputs.

This work uses the built-in MATLAB neural network Tool-
box as a NN engine. The NN is designed as a two-layer
feedforward network with 15 sigmoid hidden neurons and
linear output neurons, which is suitable for regression tasks
[25], [30]. Based on the results in the following, a 15-neuron
structure per hidden layer is a good balance between per-
formance and computational cost in this work. It is worth
mentioning that the use of shallow neural networks may not
pose a challenge regarding computational cost. Consequently,
overfitting could serve as a better criterion for the network
scale of the shallow NN with only one hidden layer. The Tool-
box training process determines the weights and biases of the
NN automatically. Three subsets are randomly selected from
the entire dataset: a training set (70%), a validation set (20%),
and a test set (10%). A Levenberg-Marquardt backpropaga-
tion algorithm with mean square error as a metric is employed
for the training algorithm. To determine if overfitting is occur-
ring, the error metrics of the training and validation subsets
are compared in the Toolbox automatically.

For the inductor case, the dataset includes 75 core losses,
75 winding losses, and 75 total losses; in different excitation
voltages, frequencies and DC bias currents. Due to the short
testing transition (e.g., <100 μs) of each run, the temperature
in the TPT does not cause a temperature rise in the testing.
Therefore, all experiments in this paper are conducted at room
temperature (e.g., T = 25 °C). Although the temperature is not
evaluated as a variable in this work, the ANN-aided loss map
can include the temperature effects as one additional input
variable, given it can change the loss significantly [15], [16],
[17], [18]. Though, adding the temperature to the conventional
loss maps as one additional dimension is difficult due to the
limitation of fitting – in this sense, only ANN-aided loss maps
can facilitate this one extra variable considering the possibility
that it could be coupled with other variables due to cores’ non-
linearity. As a result, the NNALM can include the temperature
factor if needed, as indicated in Fig. 5.

Fig. 6 depicts the predicted NNALM results and measured
loss for the inductor case. The results demonstrate a solid
alignment of the data points around the reference target (Pre-
dicted = Measured, YAxis = XAxis). Although the test set
is not large and the NNALM results can be improved by
enhancing the database, the predicted value has demonstrated
acceptable and consistent accuracy. Also, Fig. 7 shows the
histogram, a graphical representation of data points and the
relative error between the predicted NN and reference values.

Fig. 8(a)–(c) compares the NN predicted and measured
losses of the inductor core, winding, and total, in different �B
values. In Fig. 8(a)–(c), the voltage is selected as 25 V, 50 V,
and 75 V, and the frequency is selected as 10 kHz, 15 kHz,
20 kHz, 50 kHz, and 100 kHz. DC bias current in these
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FIGURE 6. NN loss prediction results against the inductor’s measured values for (a) Training set, (b) Validation set, (c) Test set, and (d) All the data sets.

FIGURE 7. The error histogram of the three different data sets of the
inductor.

circumstances is 0 A, 5 A, 10 A, 15 A, and 20 A; therefore,
each loss in Fig. 8 has 75 data points. As the �B is propor-
tional to the inductor voltage and frequency, the data points
are scattered, similar to those shown in Fig. 8(a)–(c). Results
from the neural network demonstrate that it can achieve com-
parable results to TPT measurements and effectively trace
the results. For quantitative analysis of loss prediction accu-
racy, the relative error between measured losses and predicted
losses is calculated as follows and depicted in Fig. 8(d) for
each sample:

Loss Error (%) =
(

PMeasured − PPredicted

PMeasured

)
× 100 (7)

According to (7), the calculated error can be negative when
NNALM predicts a loss that is more than the measured value.
Thus, the average error should be calculated using the absolute
value of the relative errors. Despite a few data points with
errors exceeding 50%, for the core loss, winding loss, and total
loss sets, the average relative error (ARE) is 8.32%, 10.14%,
and 6.61%, respectively. Hence, the average relative error is
within 10% in all three cases.

B. CORE LOSS MAP COMPARISON
In this part, the results of the inductor NNALM and conven-
tional loss map are compared in various conditions. In the first
case, the excitation frequency and DC bias current are fixed
to 35 kHz and 0 A, respectively, and the voltage/flux density

varies. In this Section, neither the NNALM nor the conven-
tional loss map (surface fitting method) does not include the
target test data, so the results should be entirely predicted.
Based on the conventional loss map proposed in Fig. 2 and
the NNALM results, Fig. 9 illustrates the core loss comparison
for the inductor when the curve fitted of core loss versus dB/dt
fixed at �B = 46 mT and H0=0 A/m (Model 1).

According to Fig. 9(b), the calculated error between the
reference measured value and the NNALM is much lesser than
the surface fitting method, especially in the lower �B. Al-
though the data in lower �Bs are more in number in Fig. 2(a)
compared to the higher �Bs in the surface fitting, the average
error value for the NNALM is around 8.31%; however, the
conventional loss map is about 53.70%. Since the core loss is
much smaller in the lower �Bs, surface fitting cannot provide
an accurate prediction in this area of the loss map, and only a
slight discrepancy can make a considerable error.

Applying the different four models shown in Fig. 4 to factor
in dB/dt, Fig. 10 displays the core loss results and the calcu-
lated error against the reference measured value for each case.
As described previously in Section II-C and depicted here, the
core loss is closely related to all three parameters in the con-
ventional loss map, and the results are significantly affected by
the different core loss scaling models versus dB/dt curves. In
comparison to NNALM, this is one of the main disadvantages
of the surface fitting. For better comparisons, it is helpful to
note that NNALM results are close to measurement results in
Fig. 10, as demonstrated before in Fig. 9(a).

In the next case, the excitation frequency and DC bias
current increase to 75 kHz and 2 A, respectively, and the volt-
age/flux density varies. Fig. 11 shows the core loss results, the
error difference between the two methods and the reference
value.

Similar to Fig. 9, the error between the reference mea-
sured value and the NNALM is lower than the surface fitting
method. The average error value for the NNALM is around
9.45%, and the conventional loss map is about 50.86%. Fig. 12
displays the core loss of the measurement and the conven-
tional loss map methods when using different fitted curves
for the core loss versus dB/dt curves; and the calculated error
between the reference measurement value and various surface
fitting results. The average error value for the various curves
in Fig. 12(b), from black to green, is around 50.8%, 48.4%,
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FIGURE 8. The NN predicted and measured losses of the inductor for (a) Core losses, (b) Winding losses, (c) Total losses, and (d) the calculated relative
errors.

FIGURE 9. (a) The core loss results from measurement, NN, and surface
fitting, (b) the calculated error between the measured results and the NN
and surface fitting methods.

60.8%, and 58.2%, which confirms that different curves re-
sulted in varying accuracy levels in conventional loss maps.

In the following case, the excitation voltage and DC bias
current are fixed to 100 V and 0 A, respectively, and the exci-
tation frequency/flux density varies. A comparison of different
methods and the reference value is shown in Fig. 13. The error
between the reference measured value and the NNALM is
lower than the surface fitting method, similar to the results
in Figs. 9 and 11. The average error value for the NNALM is
around 9.88%, and the conventional loss map is about 65.07%.
Similarly to the previous results, error increases when �B, as
well as the core loss, is decreased in the conventional loss map
method.

Fig. 14 indicates the core loss along with the conventional
loss map when using different fitted curves for the core loss

FIGURE 10. (a) The core loss of the measurement and the conventional
loss map methods when using different fitted curves for the core loss
versus dB/dt curves, (b) the calculated error between the reference
measurement value and various surface fitting results.

versus dB/dt curves and the calculated error between the ref-
erence measurement value and various surface fitting results.
The average error value for the various curves in Fig. 14(b),
from black to green, is around 65.0%, 78.9%, 59.1%, and
61.8%, clarifying that various fitted curves cause different loss
estimations.

C. SUMMARY
As the results show, surface fitting is incapable of predicting
the loss with precision in different situations, especially where
the core loss is small and can be significantly changed by a
minor wrong prediction. In addition, the obtained loss is re-
markably changed with the conventional loss map method by
selecting different fixed sets of �B and H0 for the fitted curve,
similar to Fig. 4. This difficulty has therefore been addressed

VOLUME 3, 2022 893



RASEKH ET AL.: ARTIFICIAL NEURAL NETWORK AIDED LOSS MAPS FOR INDUCTORS AND TRANSFORMERS

FIGURE 11. (a) The core loss results from measurement, NN, and surface
fitting, (b) the calculated error between the measured results and the NN
and surface fitting methods.

FIGURE 12. (a) The core loss of the measurement and the conventional
loss map methods when using different fitted curves for the core loss
versus dB/dt curves, (b) the calculated error between the reference
measurement value and various surface fitting results.

FIGURE 13. (a) The core loss results from measurement, NN, and surface
fitting, (b) the calculated error between the measured results and the NN
and surface fitting methods.

FIGURE 14. (a) The core loss of the measurement and the conventional
loss map methods when using different fitted curves for the core loss
versus dB/dt curves, (b) the calculated error between the reference
measurement value and various surface fitting results.
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using the NNALM. In every tested case, NNALM could trace
the measured loss accurately and predict it, resulting in an
average error of less than 10%. By enhancing the database,
both the conventional loss map and the NNALM methods can
be improved, but the curve fitting problem for the loss map
cannot be solved since the core loss parameters are intercon-
nected. Furthermore, even other parameters like temperature
can change these fitted curves. Therefore, NNALM can be
more practical for estimating the loss, which is easier to be
used by the user with the user-friendly loss map inputs. In this
way, power electronics designers will no longer have to spend
hours extracting and extrapolating parameters from datasheets
prone to accessibility or clarity issues.

IV. NN AIDED HF TRANSFORMER LOSS MAP
NNALM for HF transformers is introduced in this Section,
where a greater number of input parameters should be in-
cluded to ensure accuracy, which is beyond the capabilities
of conventional models. Besides the four input variables in
the loss map, some other parameters also affect the loss value.
In addition to the temperature, the load condition can affect
HF transformers’ core and winding losses [12], [14]. Different
load conditions change the primary and secondary currents’
amplitude and power factor, resulting in changes in the loss.
Hence, it is crucial to include more input parameters in the
NNALM than previously proposed ones.

Both the magnitude and phase of the load impedance
can affect the loss. There are different ways in which load
impedance can be incorporated into the NNALM, depending
on the loss map creators or applications of the HF transformer.
The impedance magnitude can be expressed with the ohm
unit, and the impedance phase can be characterized by the
load power factor, as used in this work for input variables.
Depending on the application, for example, if the load is in
inductive form, the inductance in H or inductive reactance
in ohm can be included instead of the power factor in the
NNALM for simplification, besides the impedance resistive
magnitude. This allows the user to obtain accurate loss val-
ues by adding load information, such as magnitude in ohm,
alongside the power factor to the NNALM.

As an example, a 5-layer HF transformer NNALM is shown
in Fig. 15, with six inputs, three outputs, and three hidden
layers. Similar to the inductor NNALM, The NN is designed
as a two-layer feedforward network with 15 sigmoid hidden
neurons and linear output neurons. A total of three subsets of
the dataset are chosen randomly: a training set (70%), a vali-
dation set (20%), and a test set (10%). The training algorithm
employs Levenberg-Marquardt backpropagation with mean
square error as a metric. For the HF transformer case, the
dataset includes 375 core losses, 375 winding losses, and 375
total losses; in different excitation voltages, frequencies, DC
bias currents, and load conditions. Due to the TPT, all dataset
temperatures are at T = 25 °C and have the same environment
temperature, which means the thermal effects have not been
included in this NNALM. Moreover, if the no-load condition

FIGURE 15. An example of NNALM structure for the HF transformers with
six inputs, three outputs, and three hidden layers.

TABLE 2. Prediction Results for Different Types of Loss

for the input values is selected, the transformers NNALM can
also be used for the inductor cases as well.

Fig. 16 depicts the predicted NNALM results and measured
loss for the transformer case. The results demonstrate a sat-
isfactory alignment of the data points around the reference
target (Predicted = Measured, YAxis = XAxis). Additionally,
Fig. 17 shows the graphical representation of data points and
the relative error between the predicted NN and reference
values.

Fig. 18(a)–(c) compares the NN predicted and measured
losses of the HF transformer core, winding, and total, in dif-
ferent excitation conditions. NNALM has demonstrated that
it can achieve results comparable to TPT measurements and
trace them effectively. Despite a few data points with errors
exceeding 50%, for the core loss, winding loss, and total loss
sets, the ARE is calculated from (7) and shown in Fig. 18(d)
as 7.51%, 7.89%, and 3.48%, respectively. Thus, the average
relative error is less than 8% in all three cases.

Table 2 summarizes different evaluations for the NNALM
output of the inductor and HF transformer used. The R-
Squared-Error (RSE) closer to one implies a higher prediction
accuracy from the NNALM [15], which is defined as follows:

RSE =
∑(

PPredicted − P̄Measured (Average)
)2

∑(
PMeasured − P̄Measured (Average

)2 (8)

The NNALM is more accurate in predicting transformer
losses due to a four-fold increase in the dataset from the
different input conditions, compared to the inductor case by
roughly 30%. For both the transformer and inductor cases, the
ANN structure used in this paper has less than 10% average
error for each of the three outputs: core loss, winding loss, and
total loss. To illustrate how the error changes across various
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FIGURE 16. NN loss prediction results against the HF transformer’s measured values for (a) Training set, (b) Validation set, (c) Test set, and (d) All the
data sets.

FIGURE 17. The error histogram of the three different data sets of the
transformer.

ANN structures, for instance, with decreasing the number of
neurons to 10 from 15, the average error for the inductor case
is less than 20%, and for the transformer case, it is less than
18%. For another example, by fixing the number of neurons
to 15 and adding one more hidden layer, the average error for
the inductor case is less than 17%, and for the transformer
case, it is less than 13%. Therefore, as explained, there is no
general principle to determine the exact numbers of layers and
neurons, and each structure can change nonlinearly.

Fig. 19 presents the results of the HF transformer NNALM
and conventional loss map in various load impedance mag-
nitudes. Dc bias current, excitation voltage, frequency, and
power factor are set to 0 A, 50 V, 50 kHz, and one, respec-
tively. The dB/dt fitted curve does not need to be used here as
the voltage is set to 50 V.

Similar to the results for the inductor case, the error be-
tween the reference measured value and the NNALM is lower
than the surface fitting method. NNALM’s average error value
is around 7.77%, while the conventional loss map method is
about 44.11%. In line with the previous results, the error in-
creases slightly when �B, as well as the core loss, is decreased
in heavier loads [12] for the conventional loss map method.

In some cases, manufacturers may not be feasible to build
a loss measurement platform and collect enough reliable data
for model training, especially if multiple factors are included,
similar to the HF transformer cases. To overcome the data
limitations, transfer learning techniques can be applied [16].
Machine learning techniques, such as transfer learning, use

the knowledge gained from solving one problem to solve a
related one. In transfer learning, the principal goal is to reduce
the amount of new data required. To begin with, a generic
model that captures the common characteristics and patterns
of magnetic component losses should be created (like the
no-load condition or inductor case) and then used to develop
loss models for other specifications, such as other load val-
ues or power factors, through transfer learning. As a result,
many different load conditions do not need to be measured for
the HF transformer database, facilitating the data acquisition
process.

To sum up, the NNALM is a valuable tool to assist the
power electronics designer in estimating the magnetic com-
ponent losses, particularly for the higher input parameters
condition such as HF transformers or coupled inductors,
which is challenging or impossible with other methods.

V. PRACTICAL IMPLEMENTATION
The ultimate goal is to provide power electronics designers
with a tool that will reduce the errors, time and effort spent
on extracting and extrapolating parameters from datasheets.
In this research, NNALM demonstrates superior accuracy
throughout the whole dataset, and it also enables loss maps to
account for more factors and generate multiple outputs as
both winding and core losses. As a result, the manufacturers
can perform all the measurements on representative samples
from a batch/design of the component and then generates an
NNALM file (e.g., a few kilobytes in size) to distribute to
the end-users, which enables rapid, accurate and user-friendly
loss estimations. To shift from material-based to component-
based datasheets, the NNALM demands large datasets to
effectively predict losses of individual components, which is
enabled by rapid loss characterization tools/equipment, such
as TPT [5], [6], MADMIX [31] and the rig applied in [17].
The power electronics engineers can then incorporate this
NNALM file in their analytical models or real-time simulation
models as interpolated look-up tables in black boxes to esti-
mate the loss of a standardized magnetics part in their circuits.
In this way, power electronics designers will no longer have
to spend hours extracting and extrapolating parameters from
datasheets prone to error to achieve the ideal inductors and HF
transformers design.
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FIGURE 18. The NN predicted and measured losses of the HF transformer for (a) Core losses, (b) Winding losses, (c) Total losses, and (d) the calculated
relative error.

FIGURE 19. (a) The core loss results from measurement, NN, and surface
fitting, (b) the calculated error between the measured results and the NN
and surface fitting methods.

VI. CONCLUSION
This paper demonstrates using Artificial Neural Networks
(ANNs) to aid the generation of user-friendly loss maps
as an alternative to traditional datasheets of magnetics. To
achieve accurate modelling, an extended range of intercou-
pled input variables (e.g., DC bias and load conditions) and
output variables (e.g., both the core loss and copper loss)
can be realized in ANN-aided loss maps. According to the
results, the proposed NNALM can achieve consistent and
accurate fitting of measured losses under various conditions,
which shows less than 10% average error. Comparisons re-
veal that the conventional loss maps can lose accuracy due
to oversimplifications of physically interlinked variables as
limited by the allowable dimensions in classic curve/surface
fitting. Moreover, thanks to the ease of training, the NNALM
can adapt to the increased fitting demand to shift from
material-based to component-based datasheets for magnet-
ics, improving accuracy by factoring in the geometry-related,
component-specific, large-signal effects (e.g., gap losses). The

NNALM file, which is only a few kilobytes in size, can be
generated by the manufacturers and distributed to the end
users for individual standardized magnetics.
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