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ABSTRACT This two-part paper presents a general method to model three-phase ac-dc converters in the
frequency domain for power system stability studies. In the developed approach, an ac-dc converter is treated
as a two-port network connecting an ac and a dc power system, and is characterized by a set of self and
transfer immittances. The transfer immittances describe two types of small-signal coupling that are unique to
three-phase ac-dc converters: The first type describes the coupling between the ac and dc port and involves a
frequency shift by the fundamental; the second type models the coupling over frequency in the ac port current
response and involves a frequency shift by twice the fundamental. Together with the self-immittances of each
port, the developed models can be used as building blocks to support impedance-based stability analysis of
various power systems that involve such converters, including ac, dc, and hybrid ac-dc power generation,
transmission and distribution systems. Part I of the paper explains the two-port modeling approach and
develops the associated models for a two-level voltage-source converter. Part II presents applications of
the developed models for stability analysis of different systems.

INDEX TERMS Ac-dc power conversion, frequency domain analysis, power system, stability, two-port
circuits.

I. INTRODUCTION
Small-signal characterization of power converters at their ter-
minals is the foundation for system stability analysis. Ter-
minal characteristics of dc-dc converters have been studied
since the 1970s. The impedance-based approach originally
developed in [1] for studying converter-filter interactions has
evolved into a general method for stability analysis of dc
power electronics systems, including space and satellite power
systems that were the focus of early research [2], as well as dc
distributed power systems [3] and dc microgrids [4] in more
recent years. In addition to input and output impedances, mod-
eling of dc-dc converters as two-port networks using Y (ad-
mittance) and H (hybrid) parameters have also been proposed
[2]. Key to these successful developments and applications
is a systematic method to model dc-dc converters based on
averaging and linearization [8].

A. AC-DC CONVERTERS AND THEIR MODELING
Converters performing power conversion from ac to dc or
dc to ac have been traditionally called ac-dc converters and

dc-ac converters, respectively. The different names have been
used to indicate the different directions of power flow through
the converter. This naming convention becomes ambiguous in
applications where the power flow is bidirectional. To avoid
confusion, we will refer to both types collectively as ac-dc
converters in this work regardless of power flow direction.
Accordingly, the terminals of such a converter will be called
the ac and dc port (or terminal) instead of input and output.
The ac port may be single-phase or three-phase in general.
This work focuses on three-phase ac-dc converters.

Compared to the modeling of dc-dc converters, small-signal
terminal characterization of ac-dc converters did not draw
much attention until recent years. Early work in this area
was limited to input impedance modeling of PWM rectifiers
[5]–[7]. A principal difficulty with small signal modeling of
ac-dc converters in general is the periodical variation of volt-
age, current and control at the fundamental frequency. Direct
linearization of such a converter model leads to a linear time-
periodic (LTP) model that is difficult to work with in practice.
The input impedance model presented in [5] for single-phase
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power factor correction (PFC) converters avoided this diffi-
culty by treating the dc bus as an ideal voltage source, which
effectively rendered the converter model linear, thereby avoid-
ing the need for linearization. The method proposed in [6] and
[7] for three-phase PWM rectifiers used dq transformation to
remove time-periodic variables and develop models in a dq
reference frame that rotates synchronously with the converter
terminal voltage.

The work on impedance modeling of PFC converters and
PWM rectifiers reviewed above was mainly concerned with
the stability of individual converters in the presence of input
filters [5], [7], or small-scale (e.g., mobile) power systems
with actively regulated loads, such as those found on electric
ships [6] and more-electric aircraft [8]. There were scattered
efforts (e.g., [9] and [10]) to model power electronic loads for
stability study of utility power grids. However, this subject did
not gain general attention because practical system stability
problems related to power electronic loads in the grid are still
rare (with the exception when such loads are highly concen-
trated, such as in data centers [11] or railway power systems
[12]–[14]). The type of load models required for traditional
power system stability studies are also relatively simple and
developing such models for ac-dc converters did not require a
concerted effort by the power electronics community at large.

This changed significantly in recent years due to the rapid
development of converter-based generation from renewable
sources. Since the best solar and wind resources are usually
at remote locations, their development often requires high-
voltage dc (HVDC) and other converter-based transmission
technologies. As a result, converters are becoming ubiquitous
in the power grids, penetrating all aspects of the system, in-
cluding generation, transmission, and distribution, in addition
to traditional applications on the load side. With the plans
already announced by many countries and regions to achieve
carbon neutrality and 100% renewable by 2050 or sooner,
future power systems will undoubtedly be based on converters
and be fundamentally different from today’s grid. Developing
such converter-based power systems will require new model-
ing and analysis methods at both the converter and the system
level as well as new system stability theories and design tools.

From power system point of view, converters are very dif-
ferent from synchronous generators because converters em-
ploy much faster control but have very limited ability to with-
stand overvoltage and overcurrent. The fast control makes a
system more dynamic and prone to new stability problems
that are uncommon in today’s grid. Indeed, new stability
problems encountered in recent years in renewable energy
and HVDC transmission systems are almost all above the
frequency range of traditional power system stability stud-
ies, spreading into multiple kilohertz in some cases [15]–[1].
Fundamental-frequency (RMS-value) models that have been
used for many decades for traditional power system stability
studies cannot capture such high-frequency stability prob-
lems; instead, electromagnetic transient (EMT) models that
include the fast dynamics of converters must be used. As a
result, EMT simulation has become an important tool for the

development of renewable energy, HVDC transmission and
other converter-based power systems [19].

EMT simulation, however, has several limitations in terms
of model availability, fidelity, computation time, and scal-
ability. Numerical simulation is a useful tool for check-
ing/confirming system stability and other transient behavior
under specific conditions, but cannot be relied upon for deter-
mining system stability in general. It is also difficult to gain
insights and develop general solutions to instability problems
based solely on numerical simulation. As with existing power
system stability theories, frequency-domain analysis based
on small-signal models is necessary for practical develop-
ment. This requires systematic modeling methods and well-
characterized frequency-domain models for ac-dc converters
that are the fundamental building blocks for power electronics
application in the grid.

The dq-frame linearization method reviewed before pro-
vides a possible framework to study small-signal dynamics
of three-phase ac-dc converters. However, its reliance on a
rotating transformation for linearization creates several limita-
tions for practical applications, including difficulties to verify
models by measurement, need for the generalized Nyquist
criterion because of coupling between d- and q-axis dynamics,
and difficulties to handle unbalanced, distorted, asynchronous,
or multi-frequency systems [8]. Converters that involve more
than one frequency and cannot be linearized in a dq reference
frame include modular multilevel converters (MMC) with
second-harmonic circulating current control, type-III turbines
where the rotor and stator operate at two different frequencies,
as well as type-IV turbines when the rectifier and generator
dynamics are to be considered at the same time. Since individ-
ual converters are modeled in their own dq reference frames,
they must be converted to a common reference frame in order
to be interconnected to form a system model. The method
proposed in the literature to make this conversion requires the
voltages at all converter terminals to remain stationary with
respect to each other during system transient [20], [21], which
is unjustified especially for utility power systems where line
impedance plays a central role in system stability and cannot
be assumed to cause only a constant voltage angle shift at the
fundamental frequency [22].

B. HARMONIC LINEARIZATION
Harmonic linearization is a method to develop small-signal
models for ac-dc converters directly in the frequency domain
[8]. Compared to linearization in the dq reference frame,
harmonic linearization involves no reference frame change,
hence the resulting models can be readily connected with
each other to form a system model no matter how many
converters may be involved. It does not rely on balanced
three-phase operation to remove the time-periodic terms, as
in the case of dq-frame modeling, hence can be applied to un-
balanced (including single phase), distorted, asynchronous, or
multi-frequency systems. The general principle of harmonic
linearization can be applied to develop small-signal models
analytically [23], experimentally based on measurements, or
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numerically based on EMT simulation [1], including real-time
and control hardware-in-the-loop simulation [25], [26].

One successful application of the method has been in
impedance-based stability study of wind, PV and HVDC con-
verters and systems. The impedance-based stability criterion
presented in [27] is an extension of the method developed in
[1] for dc-dc converters and is applied to three-phase systems
based on impedances in different sequences, also referred to as
sequence impedances [28]. Harmonic linearization provided a
general method to develop small-signal sequence impedance
models for this application and has been applied to different
types of PV inverters, wind turbines, and HVDC convert-
ers, see e.g., [29]. Unlike dq-frame impedances, sequence
impedances can be directly measured and, since they are usu-
ally uncoupled, are also much easier to understand and use.

Most small-signal sequence impedance models used in the
literature have been derived from the basic impedance models
of a two-level voltage-source converter (VSC) [23]. Like in
the modeling of single-phase PFC converters in [5], the dc
bus of the VSC was treated as an ideal voltage source in
[23]. The reduced-order models capture the effects of con-
verter current control, phase lock loop (PLL) and control
delay, and have been used successfully in the analysis and
mitigation of practical renewable energy and HVDC system
stability problems related to these control function. However,
neglecting dc bus dynamics makes the model inaccurate at low
frequencies, especially within 10-30 Hz of the fundamental
in which dc bus voltage control has significant effects on
converter impedances. The ideal dc bus assumption in effect
also neglects any coupling between the ac and dc systems
interfaced by the converter, hence will miss an important class
of practical system stability problems for which such coupling
plays a role, such as stability of HVDC transmission lines
connected to weak ac grids, dc microgrids operating in grid-
parallel mode, and hybrid ac-dc power systems [30]–[34].

C. MODELING OF AC-DC CONVERTERS AS
TWO-PORT NETWORKS
While the procedure used to develop the existing small-signal
sequence impedance models can be expanded to include dc
bus dynamics for specific applications, as demonstrated in
[35], this paper take a more general approach and tackles it
in a new framework by modeling a three-phase ac-dc con-
verter as a two-port network, with the three-phase ac termi-
nals treated as one port and the dc terminal as another. The
two-port network is characterized in the frequency domain
by a set of transfer functions in the form of self and transfer
impedance and admittance. Since impedance and admittance
share many common properties and are exchangeable, they
will be collectively referred to as immittance, a term used first
in 1945 by Hendrik W. Bode in his classical book [36].

The self and transfer immittances introduced in this work
are a generalization of the immittance models of conventional
two-port networks, including dc-dc converter Y and H matrix
models reviewed at the beginning of this section. The immit-
tance models of ac-dc converters that have been used in the

literature correspond to the self immittances of the converter
at one port when the other port connects to an ideal voltage
source. The transfer immittance models are new and describe
two types of coupling that are unique to ac-dc converters:
� Coupling between ac and dc port. This manifests in

small-signal current responses at one port when the volt-
age at the other port is perturbed. The different oper-
ation frequencies (ac fundamental and dc) of the two
ports cause a frequency shift in the current small-signal
response when it traverses the converter. Four transfer
immittances are defined to model this type of coupling.

� Coupling over frequency at the ac port. This manifests in
a second ac port current response at frequency fp + 2 f1

or fp − 2 f1 when ac port voltage is perturbed at fre-
quency fp, f1 being the fundamental frequency. The fre-
quency shift by +2 f1 or −2 f1 depends on the sequence
of voltage perturbation. Two transfer immittances are
defined to model this type of coupling.

The first type of coupling also exists in conventional two-
port networks but does not involve a frequency shift and
requires only two transfer immittances. The doubled number
of transfer immittances required to model this coupling in a
three-phase ac-dc converter is due to its three-phase nature,
which necessitates a distinction between positive and negative
sequence. The second type of coupling does not exist in con-
ventional two-port networks or dc-dc converters. Altogether,
the two-port modeling method gives rise to nine small-signal
immittance models that fully define small-signal characteris-
tics of a three-phase ac-dc converter at its terminals.

D. SCOPE AND ORGANIZATION OF THE PAPER
The two-port network models defined above can meet the
requirements of existing applications reviewed in Subsec-
tion I.B as well as new applications that have not been at-
tempted so far. They provide a general framework to charac-
terize small-signal dynamics of ac-dc converters and stability
of different power systems (ac, dc, hybrid ac-dc, or asyn-
chronous ac) that involve such converters. The objective of
this paper is to present the development and application of the
two-port network models. The paper is divided into two parts:
� Part I examines frequency-domain characteristics of ac-

dc converters as two-port networks, defines the self and
transfer immittances that will be modeled, and presents
the development and validation of analytical models.

� Part II [37] shows how the developed models are used
to study the stability of different power systems, with
an emphasis on renewable energy generation, HVDC
transmission, and future hybrid ac-dc grids.

The self and transfer immittances introduced in this paper
are general and can be applied to different types of three-
phase ac-dc converters, including two-level, multilevel and
modular multilevel (MMC) converters. However, to stay fo-
cused and be able to present specific models, the work will
be limited to two-level voltage-source converters (VSC) that
are most widely used in power systems. Multilevel converters
and MMC will be treated in a separate paper. The method
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applied to develop the immittance models is based on the gen-
eral principle of harmonic linearization reviewed before. To
simplify the algebra and to keep track of multiple frequency
components in the linearization process in a more systematic
manner, a matrix formulation similar to that presented in [38]
for the modeling of MMC will be used.

A preliminary version of the transfer immittance models
was presented in [39] for a particular application – to in-
clude dc bus dynamics in the output impedance of a grid-
connected VSC to improve the accuracy of stability analysis
at the converter-grid interface point. The presentation in [39]
was brief and did not consider the broad application that this
paper aims at. Given the general applicability of the modeling
method and the resulting models, development in this paper
will be presented in much greater detail to serve also as a
tutorial on frequency-domain modeling and stability analysis
of ac-dc converters and systems in general.

The rest of Part I is organized as follows: Section II defines
the circuit and control of the two-level VSC that will be
modeled in this work, explains its representation as a two-
port network, and identifies the coupling phenomena in the
converter’s frequency-domain responses. Section III formally
defines the immittance models to be developed and reviews
the general modeling method based on multi-harmonic lin-
earization. Section IV presents step-by-step development of
the defined immittance models, giving each model in an an-
alytical form at the end. Sequence relationship will also be
presented to reduce the number of independent models. Sec-
tion V presents validation of the developed analytical models,
possible ways to simplify them, and important characteristics
revealed by the models. Section VI concludes Part I of the
work.

II. AC-DC CONVERTERS AS TWO-PORT NETWORKS
Fig. 1(a) shows the principal circuit of the two-level ac-dc
converter that will be modeled in this work. The converter is
a common building block for many grid-related applications,
including type-III and type-IV turbines, PV inverters, STAT-
COM, energy storage and HVDC transmission.

Control of the converter is illustrated in Fig. 1(b)–(d) and
includes three-phase current control (Fig. 1(b)), dc bus voltage
control (Fig. 1(c)), and synchronization to the ac voltage by
a phase lock loop (PLL, Fig. 1(d)). Ac current control is
assumed to be performed in the dq reference frame, which
is common in grid applications.

A. CONVERTER MODELS AND LINEARIZATION
Based on the notations introduced in Fig. 1(a)), dynamics
of the converter power stage are described by the following
switching-cycle averaged model, where dx (x = a, b, c) de-
note the duty ratio of the upper switch in each phase and vm

is the voltage of the middle of the dc bus (relative to the same
neutral reference point to which the phase voltages va, vb and

FIGURE 1. Circuit and control of the two-level three-phase ac-dc converter
modeled in this work: (a) converter circuit; (b) ac-port current control in dq
frame; (c) dc bus voltage control; and d) phase-locked loop (PLL).

vc are measured):

L
d

dt

⎡⎣ ia
ib
ic

⎤⎦ =
⎡⎣ da

db

dc

⎤⎦ vdc −
⎡⎣ va

vb

vc

⎤⎦−
⎧⎨⎩1

2

⎡⎣ vdc

vdc

vdc

⎤⎦−
⎡⎣ vm

vm

vm

⎤⎦⎫⎬⎭
(1)

C
dvdc

dt
= i0 − (daia + dbib + dcic) (2)

The terms inside the curly brackets in (1) are the same
among the three phases. Each represents the common-mode
voltage of the converter and will be denoted as vcm in the
following development. This voltage does not cause a current
response at the ac terminal and will eventually be eliminated.

Each equation in (1) includes a nonlinear (bilinear) term in-
volving the duty ratio and dc bus voltage. Similar nonlinearity
exists in the dc bus voltage model (2). Control of the converter
is usually linear, but the transformation between the phase
(abc) and the dq frame introduces another nonlinear function,
which is also part of the PLL and is defined as follows in this
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work:[
xd

xq

]
= Tdq (θ )

⎡⎣ xa

xb

xc

⎤⎦ (3)

Tdq (θ ) =
√

2

3

[
cos θ cos

(
θ − 2π

3

)
cos

(
θ + 2π

3

)
− sin θ − sin

(
θ − 2π

3

) − sin
(
θ + 2π

3

) ]
Each of these nonlinear terms must be linearized when

developing small-signal models for the converter. To re-
duce complexity, the dc bus voltage was assumed constant
in the development of the small-signal sequence impedance
models presented in [23]. This assumption rendered (1) lin-
ear and (2) unnecessary, such that only control nonlinearity
has to be dealt with. The resulting positive- and negative-
sequence impedance models are accurate above the second
harmonic frequency (2 f1) in general. In conjunction with the
impedance-based stability criterion presented in [27], these
models provided a practical method for the modeling and mit-
igation of new stability and resonance problems in renewable
energy and HVDC systems.

Most problems considered in the early work on impedance-
based stability modeling and analyses were in the “harmonic
frequency” range for which the basic sequence impedance
models presented in [23] were adequate. The basic models
also captured the negative damping effects introduced by the
PLL, hence can be used to analyze PLL-related resonance and
instability problems, which are typically below or near the
fundamental frequency. For example, the models were used
to characterize and solve subsynchronous resonance (SSR) of
type-III turbines with series-compensated overhead transmis-
sion lines in [1]–[42] and of type-IV turbines and PV inverters
with weak grids in [43]–[44]. However, as the interests in
SSR and other low-frequency stability problems grew, it also
became apparent that small-signal models incorporating the
dc bus dynamics are required.

The modeling procedure used in [23] can be expanded to
include dc bus dynamics, which was the approach taken in
[35]. However, the resulting models are highly complex and
implicit because they have to be solved from a set of ma-
trix equations. The difficulty is partly caused by the control-
oriented approach adopted in [35] in which perturbation is
applied at the ac and dc terminal of the converter simulta-
neously to linearize the entire model at once. The resulting
models are complete but virtually impossible to work with
analytically. To overcome this difficulty, we present here a
network-oriented approach, which treats the converter as a
two-port network and linearizes it as such by applying a volt-
age perturbation at one port at a time. The approach is similar
to that used in [2] to characterize dc-dc converters.

B. DEFINITION OF TWO-PORT NETWORK
To represent and model the VSC of Fig. 1 as a two-port net-
work, we have to define the two-port network first. There are
several options for this definition. Our goal is to define it such
that the resulting two-port models are as generally applicable

FIGURE 2. Two-level voltage-source converter (a) and its representation as
a two-port network (b).

as possible while keeping them simple and their development
mathematically trackable.

At the ac terminal, the three inductors and their current
control are an integral part of any three-phase VSC. Excluding
these inductors would require the two-port network to inter-
face with current sources at the ac terminal, which has to be
characterized differently. The dc capacitor is also a necessary
part of a VSC, but it may be shared by two or more converters,
such as in the case of two VSCs connected back-to-back. If the
dc capacitor were considered part of the two-port network,
one would have to decide how to split the dc bus capaci-
tance between two or more converters that share a common
dc bus, which adds unnecessary ambiguity and complication.
Including the dc capacitor as part of the two-port network also
increases the order of the converter circuit model, adding more
complexity to the development as well as the final results. On
the other hand, the dc capacitor is a linear component by itself
and can be easily added to the two-port network model after
linearization.

Based on these considerations, we define the two-port net-
work to include three ac phase inductors but exclude the dc
bus capacitor, as illustrated in Fig. 2. All three control func-
tions defined in Fig. 1 are also included, although they are not
explicitly shown in Fig. 2.

Compared to dc-dc converters or conventional two-port net-
works, the two-port network defined here has three phases at
its ac port. An alternative might be to treat each phase as a
separate port and model the converter as a multiport network.
However, since the three phases are always controlled and op-
erated together, it makes no sense to treat them as independent
ports. On the other hand, the added degree of freedom at the
ac port necessitates a generalization to the existing two-port
network theory and characterization method. The three phase
currents are also dependent of each other, hence cannot all be
used as port variables.
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The technique we apply to deal with these complexities is
based on the symmetrical component theory, which represents
a set of three-phase variables by decomposing each into a
positive-sequence, a negative-sequence, and a zero-sequence
component. The components in each sequence are balanced
among the three phases and follow a specific sequence. Ap-
plication of the symmetrical component theory had been lim-
ited to steady-state (fundamental) fault current calculation in
traditional power systems, but the method, defined by the
complex transformation matrix S given below, is applicable
to three-phase variables at any frequency.

S = 1
3

⎡⎣1 1 1
1 a a2

1 a2 a

⎤⎦ , a = e j 2π
3 (4)

To characterize the two-port network defined in Fig. 2 in the
frequency domain, we apply a voltage perturbation at certain
frequency to one of the ports and find the current responses at
both ports. Since the ac port has three phases, the perturbation
has to be of three phase as well. Denoting the frequency of
perturbation as fp, we can write the perturbed three-phase
voltages as follows where V1 is the fundamental voltage am-
plitude, f1 is the fundamental frequency, ω1 = 2π f1, ωp =
2π fp, and the magnitude of perturbation {�Va,�Vb,�Vc}
should be much smaller than V1:⎡⎣ va

vb

vc

⎤⎦ = V1

⎡⎣ cos (ω1t )
cos

(
ω1t − 2π

3

)
cos

(
ω1t − 4π

3

)
⎤⎦+

⎡⎣�Va cos
(
ωpt + ϕa

)
�Vb cos

(
ωpt + ϕb

)
�Vc cos

(
ωpt + ϕc

)
⎤⎦
(5)

Note that the fundamental components are balanced and
in the positive sequence. This assumption will be made for
all steady-state operations of the converter. The three small-
signal perturbations are at the same frequency but have dif-
ferent amplitudes and their initial phase angles are not nec-
essarily symmetrical; in other words, they are unbalanced in
general. This is necessary for keeping the perturbations inde-
pendent among the three phases so as to avoid perturbing the
converter in a particular manner that may limit the usefulness
of the resulting models. However, unbalanced three-phase
signals are difficult to work with. To simplify the problem,
we first express the unbalanced three-phase perturbations by a
set of symmetrical components by applying the symmetrical
component transformation (4) to (5):⎡⎣�Va cos

(
ωpt + ϕa

)
�Vb cos

(
ωpt + ϕb

)
�Vc cos

(
ωpt + ϕc

)
⎤⎦ = �Vp

⎡⎣ cos
(
ωpt + ϕp

)
cos

(
ωpt + ϕp − 2π

3

)
cos

(
ωpt + ϕp − 4π

3

)
⎤⎦

+�Vn

⎡⎣ cos
(
ωpt + ϕn

)
cos

(
ωpt + ϕn − 4π

3

)
cos

(
ωpt + ϕn − 2π

3

)
⎤⎦+ �V0

⎡⎣ cos
(
ωpt + ϕ0

)
cos

(
ωpt + ϕ0

)
cos

(
ωpt + ϕ0

)
⎤⎦

(6)
This relationship indicates that, instead of three-phase per-

turbations with independent amplitudes and phases, character-
ization of the defined two-port network at the ac port may use
a linear combination of balanced three-phase perturbations in
the positive, negative and zero sequence. Based on (6), these

FIGURE 3. Two-port network representation of a three-phase VSC for
mathematical modeling based on symmetrical components.

sequence components should be applied all at once. However,
this can be further simplified based on the following consider-
ations:
� Without a neutral connection, the converter does not

respond to voltages in the zero sequence; hence the zero-
sequence components in (6) can be excluded, such that
only positive- and negative-sequence perturbations are
needed.

� The converter response to small-signal perturbation
should be linear. Therefore, the response to a combined
positive- and negative-sequence perturbation can be ob-
tained by separately applying a perturbation in one se-
quence at a time and combining the responses after-
wards.

� Since small-signal response should be time-invariant and
independent of the time at which the perturbation is
injected, the initial phase angles {ϕp, ϕn} in (6) can be
set to zero to simplify the notation further.

Accordingly, small-signal characterization of the defined
two-port network at its ac port can be performed by applying
the following voltage perturbations one at a time:
� Positive Sequence:⎡⎣ v̂a

v̂b

v̂c

⎤⎦ = �Vp

⎡⎣ cos ωpt
cos

(
ωpt − 2π

3

)
cos

(
ωpt − 4π

3

)
⎤⎦ (7)

� Negative Sequence:⎡⎣ v̂a

v̂b

v̂c

⎤⎦ = �Vn

⎡⎣ cos ωpt
cos

(
ωpt − 4π

3

)
cos

(
ωpt − 2π

3

)
⎤⎦ (8)

Note that a set of balanced three-phase perturbation is fully
defined when its sequence and phase-a component are speci-
fied. For instance, (7) is defined when we specify it as a posi-
tive sequence with �Vp cos ωpt as the phase-a voltage. There-
fore, for the purpose of mathematical development, phase b
and c are redundant and can be removed from the two-port
network defined in Fig. 2, with the understanding that any
variable of the remaining phase-a terminal actually represents
a symmetrical component among three phases. This leads to a
semantically “true” two-port network depicted in Fig. 3, with
phase a as one port and the dc terminal as the second port.

C. TRANSFER CHARACTERISTICS
In conventional network theory, a two-port network is charac-
terized by an 2 × 2 immittance matrix. Each diagonal element
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of the matrix defines the response of a port current to the volt-
age applied at the same port. Off-diagonal elements describe
the transfer (or transmission) between the two ports and are
referred to as a transfer immittance in this work. When the
network is nonlinear, a linearized model is developed based
on small-signal responses at each port of the network. This
was how the admittance (Y) matrix model was developed in
[2] for dc-dc converters.

The method to characterize the two-port network defined
above for ac-dc converters follows the same principle but is
different in several aspects. First, because of the presence of
variables at the fundamental frequency, linearization must be
performed in the frequency domain by assuming a sinusoidal
perturbation (harmonic linearization) instead of an arbitrary
function of time. Secondly, unlike in a dc-dc converter or
any network operating with dc at both ports, there is a fre-
quency shift between the ac and dc port of an ac-dc converter.
This frequency shift also appears in the converter’s small-
signal response and requires the transfer immittances to be
defined differently. Thirdly, the two-port network has to be
characterized by a positive-sequence as well as a negative-
sequence perturbation at the ac port, which implies more
transfer functions have to be developed. The general principle
of harmonic linearization has been reviewed in Subsection I.B
and will be further discussed in the next section. In the fol-
lowing, we will address the remaining two aspects in order
to understand the behavior that will be modeled by transfer
immittances.

To see how frequency shifts when a perturbation traverses
an ac-dc converter, assume first that the converter operates in
a steady state with balanced (positive-sequence) currents at
the fundamental frequency f1, as specified below where the
symbol “∝” means “is proportional to”:⎡⎣ ia

ib
ic

⎤⎦ ∝
⎡⎣ cos ω1t

cos
(
ω1t − 2π

3

)
cos

(
ω1t − 4π

3

)
⎤⎦ (9)

Consider now that a positive-sequence voltage perturbation
at frequency fp, as defined by equation (7), is applied at
the ac port. Through interaction with the steady-state currents
specified by (9), this voltage perturbation causes a variation in
the power flowing out of the ac port:

�p ∝
2∑

k=0
cos

(
ωpt − 2kπ

3

)
· cos

(
ω1t − 2kπ

3

)
=

3
2 cos

[(
ωp − ω1

)
t
]+ 1

2

2∑
k=0

cos
[(

ωp + ω1
)

t − 4kπ
3

] (10)

Note that the terms at frequency ωp + ω1 on the right-
hand side of (10) are symmetrical and add to zero, leaving
only the term at frequency ωp − ω1. Under lossless op-
eration assumption of the converter, the power defined by
(10) has to be balanced by a similar variation in the dc-port
power, which implies a current at frequency fp − f1 into
the dc port. Therefore, the transfer admittance defining the

relationship from a positive-sequence perturbation in the ac-
port voltage to the dc-port current response has to include
a downshift of frequency by f1. Similarly, it can be shown
that the transfer admittance defining the relationship from a
negative-sequence perturbation in the ac-port voltage to the
dc-port current response has to include an upshift of frequency
by f1.

There is a similar shift in frequency in the ac-port cur-
rent response to a dc-port voltage perturbation. To see that,
note that the duty ratios of the converter in steady state
are balanced (positive sequence) and vary at the fundamen-
tal frequency. Without losing generality, ignore the possible
phase difference between the duty ratio and the phase current
(9), such that the three duty ratio signals can be expressed
as follows: ⎡⎣ da

db

dc

⎤⎦ ∝
⎡⎣ cos ω1t

cos
(
ω1t − 2π

3

)
cos

(
ω1t − 4π

3

)
⎤⎦ (11)

Assume now that a perturbation at frequency fp is added
to the dc-port voltage. This voltage perturbation will also
be modulated by the steady-state duty ratios (11), causing a
perturbation at two different frequencies (ωp ± ω1) in each
phase of the converter ac-terminal voltages:

cos ωpt

⎡⎣ cos ω1t
cos

(
ω1t − 2π

3

)
cos

(
ω1t − 4π

3

)
⎤⎦ = 1

2

⎡⎣ cos
(
ωp − ω1

)
t

cos
((

ωp − ω1
)

t − 4π
3

)
cos

((
ωp − ω1

)
t − 2π

3

)
⎤⎦

+ 1

2

⎡⎣ cos
(
ωp + ω1

)
t

cos
((

ωp + ω1
)

t − 2π
3

)
cos

((
ωp + ω1

)
t − 4π

3

)
⎤⎦ (12)

The resulting ac-terminal voltage perturbation at each fre-
quency will in turn cause a response in the phase cur-
rent at the same frequency. Therefore, two transfer admit-
tances are required to describe the transfer from dc-port
voltage to ac-port current, each of which involves a shift
in frequency either up or down by the fundamental. Note
also from (12) that the responses at fp + f1 form a pos-
itive sequence while the ones at fp − f1 form a negative
sequence.

The frequency shift phenomena explained above can be
traced back to the bilinear terms involving duty ratios in the
converter models (1)–(2). They correspond to the first type of
coupling discussed in Subsection I.B.

The bilinear terms are also responsible for the second type
of coupling that requires additional transfer immittance mod-
els. To explain that, recall from (10) that a positive-sequence
voltage perturbation at fp causes the dc-port current to vary at
frequency fp − f1. Through impedance of the dc bus capaci-
tor, this current produces a perturbation in the dc-port voltage
at the same frequency, which, when modulated by the steady-
state duty ratios (11), leads to two frequency components in
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the phase voltages (hence also phase currents):

cos
(
ωp − ω1

)
t

⎡⎣ cos ω1t
cos

(
ω1t − 2π

3

)
cos

(
ω1t − 4π

3

)
⎤⎦ = 1

2

⎡⎣ cos ωpt
cos

(
ωpt − 2π

3

)
cos

(
ωpt − 4π

3

)
⎤⎦

+ 1

2

⎡⎣ cos
(
ωp − 2ω1

)
t

cos
((

ωp − 2ω1
)

t − 4π
3

)
cos

((
ωp − 2ω1

)
t − 2π

3

)
⎤⎦ (13)

The first term on the right-hand side of (13) are at the same
frequency and in the same (positive) sequence as the original
voltage perturbation; it is modeled by the self admittance of
the ac port. The second term, at frequency fp − 2 f1, is in the
negative sequence and represents an additional component in
the ac-port current that is not modeled by any of the admit-
tance or transfer admittance discussed so far.

A similar coupling occurs in the response to a negative-
sequence voltage perturbation. However, since the frequency
of the dc-port current is fp + f1 when a negative-sequence
voltage perturbation at fp is applied, this second current re-
sponse will be at frequency fp + 2 f1 and is in the positive
sequence, as can be seen from the following expansion:

cos
(
ωp + ω1

)
t

⎡⎣ cos ω1t
cos

(
ω1t − 2π

3

)
cos

(
ω1t − 4π

3

)
⎤⎦ = 1

2

⎡⎣ cos ωpt
cos

(
ωpt − 4π

3

)
cos

(
ωpt − 2π

3

)
⎤⎦

+ 1

2

⎡⎣ cos
(
ωp + 2ω1

)
t

cos
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ωp + 2ω1
)

t − 2π
3

)
cos

((
ωp + 2ω1

)
t − 4π

3

)
⎤⎦ (14)

III. IMMITTANCE MODELS AND MODELING METHOD
This section defines the immittances that will be modeled,
discusses the completeness of these models, and explains the
method to develop the models.

A. MATHEMATICAL DEFINITION
It can be concluded from last section that an ac-dc converter
as a two-port network can be characterized by applying a
voltage perturbation to one of the ports at a time and modeling
the resulting current responses at both ports. Perturbation at
the ac port should use positive and negative sequences. With
each perturbation, the current of the same port at the same
frequency defines the self immittance of that port, while the
current of the other port or of the same port but at another
frequency defines a transfer immittance.

For the purpose of mathematical development, we will
denote the small-signal component of a variable at certain
frequency by a “hat” above the variable and the frequency in
parentheses next to it. For example, v̂dc( fp) denotes the small-
signal component at frequency fp in the dc bus voltage vdc. To
shorten the expression, angular frequency will be used in place
of ordinary frequency whenever convenient and be denoted
by symbol ω with the same subscript, for instances, ω1 =
2π f1, ωp = 2π fp and ω = 2π f . In the final models, the
complex frequency s will also be used in place of jωp.
For instance, îa( fp + f1) may be written as îa( jωp + jω1)

or îa(s + jω1). Since we are working with multiple frequen-
cies, the following frequency variables will also be used to
shorten the expressions whenever appropriate:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
fp−1

�= fp − f1

fp+1
�= fp + f1

fp−2
�= fp − 2 f1

fp+2
�= fp + 2 f1⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ωp−1
�= ωp − jω1

ωp+1
�= ωp + jω1

ωp−2
�= ωp − j2ω1

ωp+2
�= ωp + j2ω1⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s−1
�= s − jω1

s+1
�= s + jω1

s−2
�= s − j2ω1

s+2
�= s + j2ω1

Each self and transfer immittance will be denoted by double
subscripts using three letters {p, n, d} that specify the port
and sequence of variables involved in the definition: p for
positive sequence at the ac port, n for negative sequence at
the ac port, and d for the dc port. The first subscript indicates
the port at which the voltage perturbation is applied and its
sequence (if it is at the ac port). The second subscript indicates
the port (and sequence) of the current response that the trans-
fer function measures. For example, Ypd denotes the transfer
admittance from a positive-sequence voltage perturbation at
the ac port to the current response at the dc port. For transfer
immittances, the notation does not indicate the frequency shift
between the voltage perturbation and the current response;
this aspect is embedded in the definition and can be inferred
from the principle of coupling discussed before.

Using these nomenclatures, Table I gives the mathematical
definition of the immittance models describing the two-port
network. The negative signs in front of the transfer functions
defined by a voltage perturbation at the ac port are included to
account for the particular current reference direction given in
Figs. 1 and 3 and to make the definitions consistent with that
of conventional two-port networks. The nine transfer func-
tions are all defined as admittances but can also be expressed
as impedances. They are divided into three groups, each as the
result of a voltage perturbation at the ac or dc port:
� With a positive-sequence voltage perturbation v̂p( fp) at

the ac port, the converter responds with a) a positive-
sequence current at frequency fp at the ac port, which
defines the positive-sequence admittance Ypp(s) of the
ac port; b) a current at frequency fp − f1 at the dc port,
which defines a transfer admittance of the first type and
is denoted as Ypd (s); and c) a negative-sequence current
at frequency fp − 2 f1 at the ac port, which defines a
transfer admittance of the second type and is denoted as
Ypn(s).
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TABLE I. Mathematical Definition of Immittance Models

� With a negative-sequence voltage perturbation v̂n( fp) at
the ac port, the converter responds with a) a negative-
sequence current at frequency fp at the ac port, which
defines the negative-sequence admittance Ynn(s) of the
ac port; b) a current at frequency fp + f1 at the dc port,
which defines a transfer admittance of the first type and
is denoted as Ynd (s); and c) a positive-sequence current
at frequency fp + 2 f1 at the ac port, which defines a
transfer admittance of the second type and is denoted as
Ynp(s).

� With a voltage perturbation v̂dc( fp) at the dc port, the
converter responds with a) a current at frequency fp

at the dc port, which defines the self admittance
Ydd (s) of the dc port; b) a positive-sequence current at
frequency fp + f1 and a negative-sequence current at
frequency fp − f1 at the ac port, which define the last
two transfer admittances denoted as Yd p(s) and Ydn(s),
respectively.

The positive- and negative-sequence impedance models de-
veloped in [23] correspond to the self admittances Ypp and Ynn

defined in Table I. The dc-port self admittance Ydd has been
modeled in the literature for HVDC system stability analysis
and is usually developed by linearization of the converter
model in the dq frame or by assuming ideal current control
[45]. The coupled ac-port current response at frequency fp ±
2 f1 caused by PLL nonlinearity was discussed in [46]. The
transfer admittances Ypn and Ynp defined in this work provide
a more general framework to describe this phenomenon and
makes it possible to include not only the PLL but also dc bus
dynamics and other types of nonlinearity. The remaining four
transfer admittances, namely, Ypd , Ynd (s), Yd p(s) and Ydn(s),
describe small-signal coupling between the ac and dc port that
have not been considered in the literature but are important for
a number of existing and emerging applications, as discussed
in Section I and will be presented in Part II of the paper.

B. COMPLETENESS OF THE DEFINED MODELS
As pointed out before, the frequency shift in each of the
transfer admittances is due to the nonlinearity in the converter
and control model. Since the nonlinearity acts on all frequency
components continuously, one might ask if this may lead to
a chain of reaction and create responses at more frequencies
besides fp ± f1 and fp ± 2 f1, thereby necessitating the use

of more transfer immittances. More generally, could there be
currents at frequency m fp ± n f1 (with m > 1 and n > 2) that
also have to be included as part of the small-signal model?

To answer this question, recall first that small-signal analy-
sis is about responses that are linearly proportional to the per-
turbation. With a perturbation at frequency fp, generation of a
small-signal response at frequency 2 fp ± n f1 would require
the “interaction” (e.g., multiplication) of two small-signal
variables at fp. Since the amplitude of each small-signal
variable is supposed to be proportional to the perturbation, the
product of two such signals is a higher-order term of the per-
turbation, hence can be neglected in small-signal modeling.
Therefore, we only need to consider responses at frequency
fp ± n f1 in small-signal analysis.

To see if small-signal responses at fp ± n f1 with n > 2
may exist, recall from the discussion in Subsection II.C that
a shift in frequency by ± f1 is created when a small-signal
variable is multiplied with a steady-state variable at the fun-
damental frequency. (Since such multiplication involves only
one small-signal variable, the result is linearly proportional to
the perturbation, hence would have to be included in small-
signal modeling.) Consider as an example the second current
response at fp − 2 f1 produced by a positive-sequence voltage
perturbation at the ac port. Like a perturbation at fp, this cur-
rent also interacts with the fundamental voltage and causes the
dc-port power (hence also the current) to vary. Since the cur-
rent at fp − 2 f1 is in negative sequence, the frequency of the
resulting dc-port current variation is the upshift of fp − 2 f1 by
f1, which is the same as the frequency of the dc-port current
induced by the original positive-sequence perturbation at fp:

(
fp − 2 f1

)+ f1 = fp − f1

Therefore, { fp, fp − f1, fp − 2 f1} represent the frequen-
cies of all possible small-signal responses when a positive-
sequence voltage perturbation is applied to the ac-port. This
closed “chain of reaction” is illustrated in Fig. 4(a). Similarly,
it can be shown that { fp, fp + f1, fp + 2 f1} are all the small-
signal components produced by a negative-sequence voltage
perturbation at the ac-port, and { fp, fp + f1, fp − f1} repre-
sent all small-signal components that a dc-port voltage per-
turbation may generate, as illustrated in Fig. 4(b) and 4(c),
respectively. Therefore, the three self admittances and six
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FIGURE 4. Frequencies of small-signal responses induced by a voltage
perturbation at frequency fp at (a) ac port in positive sequence, (b) ac port
in negative sequence, and (c) dc port.

transfer admittances defined in Table I form a complete set
of small-signal models for a three-phase ac-dc converter.

The closed “chain of reaction” explained above is unique
to three-phase ac-dc converters. It does not hold when the
operation is unbalanced or in single-phase converters – in
each case a small-signal perturbation at fp at either the ac or
dc port may produce current responses at infinite number of
frequencies fp ± n f1, n = 0, 1, 2, . . . , ∞. The development
of low-frequency input impedance models for single-phase
PFC converters in [11] considered this more complex behav-
ior.

The coupled current responses modeled by Ypn and Ynp have
generated considerable discussions in the last few years. A
number of papers promulgated this as a proof for the need
to couple positive and negative sequence models in a matrix
form, see e.g., [21] and [46]. Several papers also claimed
“generalized” or “unified” impedance modeling and system
stability analysis methods based on such characterization.
However, this is a misinterpretation of the relationship and re-
sponses modeled by Ypn and Ynp. Subsection V.B will address
this topic in more detail.

It is also worth noting that complete characterization of a
three-phase ac-dc converter in the dq reference frame would
require independent perturbation at the dc terminal as well as
in both d and q axis at the ac terminal, which also leads to nine
transfer functions. However, unlike the sequence immittances
defined in Table I, dynamics of a converter in the d- and q-axis
are coupled in general and have to be used together [8]. This
is an important advantage of the sequence immittance models.
A mathematic relationship between positive- and negative-
sequence responses will also be presented in the next section
that will allow models of {Ynn, Ynd , Ynp} to be mathematically
related to {Ypp, Ypd , Ypn}, bringing down the total number of
“independent” transfer functions from nine to six.

C. MODELING BY MULTI-HARMONIC LINEARIZATION
Development of the self and transfer admittance models de-
fined in Table I will be presented in the next section. The
modeling method, based on harmonic linearization, involves
introducing a small sinusoidal voltage perturbation to each
port and calculating the resulting current responses at different
frequencies. Since the objective is frequency-domain mod-
els, the mathematical development is also performed in the
frequency domain by representing each variable as a Fourier

series. Each nonlinear term in the model is expanded alge-
braically. The terms at the same frequency in each model are
then collected together, and the principle of harmonic balance
is invoked to formulate an algebraic equation involving the
Fourier coefficients of different variables at the same fre-
quency. The equations are then solved to define each of the
required current responses.

The positive- and negative-sequence impedance models
presented in [23] were developed by directly applying the
method outlined above. The algebraic manipulation involved
in the derivation was tedious but manageable. With the addi-
tion of dc bus dynamics and the inclusion of new frequency
components at fp ± f1 and fp ± 2 f1, the number of small-
signal terms that have to be considered increases drastically
and becomes very difficult to track individually. The matrix-
based formulation presented in [38] overcomes this difficulty
and will be used in this work. To prepare for the development
in the next section, we review the method here and introduce
the notations that will be used.

To explain the method, consider the phase-a current model,
which is part of (1) and is reproduced below:

L
dia
dt

= davdc − va − vcm (15)

The common-mode voltage vcm is dependent of other vari-
ables and will be removed in the final model. Here we treat
it as an independent variable. To linearize (15), assume each
variable in it consists of a steady-state and a small-signal
component. Denoting the (periodic) steady-state component
by “∼” over the variable and the small-signal component by a
hat “^”, as introduced before, we can change (15) into

L
d
(
ĩa + îa

)
dt

= (
d̃a + d̂a

)
(Vdc + v̂dc) − (ṽa + v̂a)

− (ṽcm + v̂cm)

From this equation, the following model is obtained for the
small-signal components:

L
dîa
dt

= d̃av̂dc + Vdcd̂a − v̂a − v̂cm (16)

This is a time-periodic model and cannot be converted to
the frequency domain by Laplace transformation because the
coefficient of v̂dc on the right-hand side varies at the funda-
mental frequency. The root cause for this time-periodic term
is the bilinear term between da and vdc in (15), which is a
common form of nonlinearity in ac-dc converter models. Har-
monic linearization overcomes this difficulty by carrying out
the linearization in the frequency-domain directly. To make
the formulation and notations more general, consider first a
generic bilinear function z(t ) = x(t )y(t ) where x(t ) and y(t )
each consists of a steady state and a small-signal component:

x (t ) = x̃ (t ) + x̂ (t ) , y (t ) = ỹ (t ) + ŷ (t ) (17)

For an ac-dc converter, the steady-state component of each
variable in general may include a dc, a fundamental, as well
as a number of harmonics. According to the discussion in
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Section II, a perturbation at frequency fp in general may
also produce small-signal responses at fp ± n f1, with n =
0, 1, 2, . . .. Based on this, each component included in
(17) may be expressed by a complex Fourier series as fol-
lows, where the underline notation is used to denote the com-
plex Fourier coefficients of each steady-state and small-signal
variables:

x̃ (t ) = �e

[ ∞∑
k=−∞

X ke jkω1t

]

x̂ (t ) = �e

[ ∞∑
k=−∞

X̂ ke j(ωp+kω1)t

]

ỹ (t ) = �e

[ ∞∑
k=−∞

Y ke jkω1t

]

ŷ (t ) = �e

[ ∞∑
k=−∞

Ŷ ke j(ωp+kω1)t

]

Note that the small-signal component is expressed using a
single-sided Fourier series while the steady-state component
uses a double-sided one. The reason for these different nota-
tions will become clear in the following development. Based
on (17), the small-signal component of the bilinear function
z(t ) can be calculated and expressed in the frequency domain
as follows:

ẑ (t ) = ỹ (t ) x̂ (t ) + x̃ (t ) ŷ (t )

= �e

[ ∞∑
k=−∞

∞∑
l=−∞

{(
X kŶ l + Y l X̂ k

)
e j[ωp+(k+l )ω1]t

}]
(18)

For each steady state and small signal component of x(t )
and y(t ), we define now a vector based on its complex Fourier
coefficients:

x̂ (t ) :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
X̂−2
X̂−1
X̂ 0
X̂ 1
X̂ 2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= x̂, ŷ (t ) :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
Ŷ −2
Ŷ −1

Ŷ 0
Ŷ 1
Ŷ 2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= ŷ (19)

x̂ (t ) :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
X̂−2
X̂−1
X̂ 0
X̂ 1
X̂ 2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= x̂, ŷ (t ) :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
Ŷ −2
Ŷ −1
Ŷ 0
Ŷ 1
Ŷ 2
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�= ŷ (20)

The dimension of each vector defined in (19) and (20) is
2n + 1, n being the number of steady-state harmonics in-
cluded in the analysis. The component occupying the center
position of each vector is a dc component or at frequency fp.
Based on (18)-(20), the vector representing the Fourier coef-
ficients of the small-signal component of the bilinear function
z = xy can be written as follows, where ⊗ indicates discrete
convolution between two vectors:

ẑ = y ⊗ x̂ + x ⊗ ŷ (21)

The convolution in (21) is arranged such that the component
occupying a certain position in the resulting vector will be at
the same frequency as that of the component occupying the
same position in each of the small-signal vectors that are being
convoluted.

Convolution and the vector equation (21) provide a compact
form to define the bilinear function in the frequency domain.
However, an equation involving convolution is difficult to
work with algebraically. To facilitate algebraic manipulation,
we define a Toeplitz matrix [47] for each of the steady-state
harmonic vectors x and y as follows:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
... ···

X 0 X −1 X −2 X −3 X −4
X 1 X 0 X −1 X −2 X −3

. . . X 2 X 1 X 0 X −1 X −2 . . .

X 3 X 2 X 1 X 0 X −1
X 4 X 3 X 2 X 1 X 0

··· ...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
... ···

Y 0 Y −1 Y −2 Y −3 Y −4
Y 1 Y 0 Y −1 Y −2 Y −3

. . . Y 2 Y 1 Y 0 Y −1 Y −2 . . .

Y 3 Y 2 Y 1 Y 0 Y −1
Y 4 Y 3 Y 2 Y 1 Y 0

··· ...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(23)

This allows (21) to be rewritten as follows

ẑ = Yx̂ + Xŷ (24)

To convert the phase-a current model (15) into the fre-
quency domain using this method, denote the steady-state
variables involved in the model as follows:

ṽa = V1 cos (ω1t + ϕv1) (25)

ĩa = I1 cos (ω1t + ϕi1) (26)

d̃a = D1 cos (ω1t + ϕd1) (27)

Note that {V1, I1, D1} are the magnitude of the phase
voltage, current and duty ratio, respectively. For convenience,
each of these steady-state variables can be expressed as a
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complex number (phasor) defined as follows:

V 1 = V1e jϕv1, I1 = I1e jϕi1, D1 = D1e jϕd1 (28)

Similar to (20), a small-signal vector can be defined for
each of the small-signal variables {îa, d̂a, v̂dc, v̂a} involved
in (15). These vectors will be denoted as {îa, d̂a, v̂dc, v̂a}.
Based on (25)-(27), a Toeplitz matrix can be formulated for
each of the steady-state variables ṽa, ĩa and d̃a. Denote them
as Va, Ia and Da, respectively. Based on these definitions,
the right-hand side of (16) can be expressed in the frequency
domain as

Dav̂dc + Vdcd̂a − v̂a − v̂cm. (29)

Similarly, the left-hand of (16) becomes Zl îa in the fre-
quency domain, Zl being a diagonal impedance matrix:

Zl = j2πL · diag
[{· · · , fp − f1, fp, fp + f1, · · ·}] (30)

Based on the harmonic balance principle [48], the coeffi-
cients of components at the same frequency on the two sides
of the resulting algebraic equation should be equal. This leads
to the following algebraic equation:

Zl îa = Dav̂dc + Vdcd̂a − v̂a − v̂cm (31)

Each of the differential equations in the converter circuit
and control model can be converted to the frequency domain
by this method. The resulting algebraic models together form
a complete frequency-domain model of the converter. The
model can then be used to determine different components
of the converter current response to a voltage perturbation at
ac or dc port. The required immittance models can then be
determined based on the corresponding current responses.

The general formulation introduced in (17)-(24) assumed
an arbitrary number of frequency components. In a two-level
VSC, steady state operation can be assumed free of harmonics
on the ac side and ripple-free on the dc side, as indicated
by (25)-(27). This also limits the small-signal components to
frequencies { fp − 2 f1, fp − f1, fp, fp + f1, fp + 2 f1} only,
as explained early in this section. Based on this, the dimension
of each frequency-domain model can be limited to five by con-
sidering only the five small-signal response frequencies listed
above and the dc, the fundamental and the second harmonic in
the steady-state response. (The second steady-state harmonics
actually do not exist, but are included to match the dimension
of the small-signal vectors.)

The method has been explained so far by assuming a bi-
linear function, but is applicable to any nonlinear function.
For example, consider a general nonlinear function g(x, y).
Denote the partial derivative of this function relative to x and
y as gx(x, y) and gy(x, y), respectively. Using the steady-state
and small-signal notations introduced before, we can write
the small-signal response of g(x, y) in the time and frequency
domain as follows where gx and gy are defined by the steady-
state spectra of the partial derivative functions g̃x and g̃y, and
Gx and Gy are Toeplitz matrices corresponding to gx and gy,

respectively:

ĝ (t ) = g̃x
[
x̃ (t ) , ỹ (t )

]
x̂ (t ) + g̃y

[
x̃ (t ) , ỹ (t )

]
ŷ (t ) (32)

ĝ = gx ⊗ x̂ + gy ⊗ ŷ = Gx x̂ + Gyŷ (33)

IV. IMMITTANCE MODEL DEVELOPMENT
This section presents analytical models for the immittances
defined in Table I. The first two subsections model the con-
verter power stage and control in response to an ac-port
voltage perturbation. The models are combined in Section
IV.C to give analytical models for {Ypp, Ypd , Ypn}. A general
relationship between positive- and negative-sequence vari-
ables and immittances is then established and used to define
{Ynn, Ynd , Ynp} based on {Ypp, Ypd , Ypn}. The power stage
and control models are then modified to develop Ydd , Yd p and
Ydn in the last subsection.

A. POWER STAGE RESPONSE TO AC-PORT PERTURBATION
To start, assume the voltage perturbation applied at the ac
port (phase a) is v̂a( fp) = V̂p cos(ωpt + ϕp). The magnitude
V̂p is small compared to the fundamental. The initial phase
angle ϕp does not affect the final model and can be set to zero.
Using the notations introduced in the last section, v̂a( fp) can
be expressed in the frequency domain as

v̂a =

⎡⎢⎢⎢⎢⎣
0
0

V̂ a
0
0

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0
0

V̂pe jϕp

0
0

⎤⎥⎥⎥⎥⎦ . (34)

The sequence of the voltage perturbation is not reflected
in this vector but it affects the converter circuit and control
models, as will be seen later. Recall that small-signal variables
are represented by single-sided Fourier series.

The dc bus voltage is treated as constant when modeling
the two-port network with a voltage perturbation at the ac
port, which means v̂dc = 0. This assumption also renders the
power stage model (1) linear and (2) unnecessary. However, to
be consistent with the control model, which is nonlinear and
requires linearization, we will still use small-signal variables
in the power stage model. Since the ac port corresponds to
phase a, we only need a frequency-domain model for phase-a
current, which can be obtained from the general model (31)
by removing the v̂dc term and reducing the dimension of
each vector to five based on the actual number of small-signal
components considered. The resulting model is

Zl îa = Vdcd̂a − v̂a − v̂cm. (35)

Accordingly, Zl is also reduced to a 5 × 5 matrix and is
redefined as follows:

Zl = j2πL · diag
[{

fp−2, fp−1, fp, fp+1, fp+2
}]

(36)
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All variables in (35) are related to phase a except for the
common-mode voltage vcm, which depends on other phases:

vcm = da + db + dc

3
· vdc (37)

Therefore, (35) cannot be used alone to model the converter
power stage unless vcm is removed or made independent of
other two phases, namely, db and dc. Simply dropping this
term from (35) is not permitted because it will cause the model
to predict small-signal current responses in the zero sequence
that in actuality cannot flow. To make vcm mathematically
independent of other two phases, we can express db and dc

in terms of da based on the sequence relationship among their
steady-state and small-signal components. This is possible but
increases the complexity of the model.

The approach taken here is to remove v̂cm from (35) and
at the same time modify the remaining of the equation such
that any zero-sequence component of îa is forced to be zero.
As can be seen from (35) and (36), a component of îa may
be forced to be zero by making the corresponding diagonal
element of Zl infinite. For example, the current at frequency
fp − f1 will remain zero regardless the voltage on the right-
hand side if Zl is changed to

j2πL · diag
[{

fp − 2 f1,∞, fp, fp + f1, fp + 2 f1
}]

.

Because infinite is difficult to work with in equations, we
rewrite (35) as follows to use admittance of the inductor:

îa = Yl

(
Vdcd̂a − v̂a − v̂cm

)
(38)

Yl = 1

j2πL
diag

[{
1

fp−2
,

1

fp−1
,

1

fp
,

1

fp+1
,

1

fp+2

}]
(39)

In this form, a component of îa is forced to be zero if the
corresponding diagonal element of Yl is set to zero.

To determine which of the five frequency components of îa
may be in the zero sequence (common mode), first recall from
Section II that ac-port current responses at the perturbation
frequency are always in the same sequence as the voltage
perturbation. Therefore, the component at fp is not in the zero
sequence. Recall also that a small-signal response at fp ± f1

or fp ± 2 f1 is generated when a variable at fp is multiplied
(twice for fp ± 2 f1) with another variable at the fundamental
frequency. Denote the phase angle of the small signal and the
fundamental of phase a variables as ϕp and ϕ1, respectively.
Based on trigonometric relations, the response at fp + n f1

carries phase angle ϕa = ϕp + nϕ1, n = ±1, ±2. Since both
the fundamental and the perturbation are balanced among the
three phases, the initial phase of the variable in phase b and c
at the same frequency can be written as follows:
� With a positive-sequence perturbation:

ϕb =
(

ϕp − 2π

3

)
+ n

(
ϕ1 − 2π

3

)
ϕc =

(
ϕp + 2π

3

)
+ n

(
ϕ1 + 2π

3

)

TABLE II: Sequences of Small-Signal Responses to an AC-Port Voltage
Perturbation

� With a negative-sequence perturbation:

ϕb =
(

ϕp + 2π

3

)
+ n

(
ϕ1 − 2π

3

)
ϕc =

(
ϕp − 2π

3

)
+ n

(
ϕ1 + 2π

3

)
From these phase relations, the sequence of the response at

fp + n f1 can be determined as summarized in Table II where
the first column indicates the sequence of the applied voltage
perturbation, and PS, NS and ZS stands for positive, negative,
and zero sequence, respectively.

Based on Table II and the method discussed before, we can
now rewrite the frequency-domain model (38) as follows to
remove the common-mode voltage v̂cm:

îa = Yl

(
Vdcd̂a − v̂a

)
(40)

The admittance matrix Yl in (40) is to be replaced by

Yl p = 1

j2πL
diag

[{
1

fp−2
, 0,

1

fp
,

1

fp+1
, 0

}]
(41)

if the applied ac-port voltage perturbation is in the positive
sequence, and by

Yln = 1

j2πL
diag

[{
0,

1

fp−1
,

1

fp
, 0,

1

fp+2

}]
(42)

if the voltage perturbation is in the negative sequence.
To complete the power stage model, we also need to define

the Toeplitz matrix for each of the state and control variables.
Since vdc is held constant when ac-port voltage perturbation
is applied, we only need to do this for the phase-a current ia
and duty ratio da. According to the harmonic-free assump-
tion stated before, the phase-a duty ratio (da) and current
(ia) each contains only the fundamental component (in the
positive sequence). Each of these fundamental components
has been specified in (28) by a complex number. Following
the general definition introduced before, the Toeplitz matrices
corresponding to {da, ia} can be written as follows, where the
asterisk superscript ∗ indicates complex conjugation:

Da = 1

2

⎡⎢⎢⎢⎢⎣
0 D∗

1 0 0 0
D1 0 D∗

1 0 0
0 D1 0 D∗

1 0
0 0 D1 0 D∗

1
0 0 0 D1 0

⎤⎥⎥⎥⎥⎦ (43)
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Ia = 1

2

⎡⎢⎢⎢⎢⎣
0 I∗

1 0 0 0
I1 0 I∗

1 0 0
0 I1 0 I∗

1 0
0 0 I1 0 I∗

1
0 0 0 I1 0

⎤⎥⎥⎥⎥⎦ (44)

Recall that steady-state variables are expressed by double-
sided Fourier series, which leads to the 1/2 factor in front of
each matrix.

The last equation needed to complete the power stage
model is the small-signal response of idc, the current flowing
into the dc port of the converter, as defined in Fig. 1. Based on
the operation principle of the converter, this current is related
to the ac phase currents and duty ratios by

idc = daia + dbib + dcic.

Using the same procedure, the corresponding frequency-
domain model is given in (45) where {Db, Dc, Ib, Ic} and
{d̂b, d̂c, îb, îc} are the Toeplitz matrices and small-signal
vectors of phase-b and phase-c duty ratios and currents:

îdc =
(

Da îa + Iad̂a

)
+
(

Dbîb + Ibd̂b

)
+
(

Dc îc + Icd̂c

)
(45)

Based on the sequence relationship identified before for
steady state and small-signal components among the three
phases and at different frequencies, {Db, Dc, Ib, Ic} and
{d̂b, d̂c, îb, îc} can be eliminated from (45) by expressing
each in terms of {Da, Ia} and {d̂a, îa}. The result is a model
of îdc that depends only on phase-a variables, as given below:

îdc = 3

2

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
D1 0 D∗

1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 D1 0

⎤⎥⎥⎥⎥⎦ îa

+ 3

2

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
I1 0 I∗

1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I1 0

⎤⎥⎥⎥⎥⎦ d̂a (46)

B. CONTROL RESPONSE TO AC-PORT PERTURBATION
The purpose of control modeling is to relate the duty ratio
d̂a to other variables involved in the power stage model. In
general, the linearized control model can be expressed as

d̂a = Qîa + Pv̂a + Ev̂dc. (47)

Matrix Q models the dependency of the duty ratio on the
ac-port current and is determined by current control of the
converter. The duty ratio is also affected by the ac-port voltage
when a PLL (or ac voltage control) is used, and the effects are
captured by matrix P. Matrix E models the effects of dc bus
voltage control. Because the dc bus voltage is held constant
when ac-port voltage is perturbed, this term can be ignored,

such that the control model assumes a simpler form:

d̂a = Qîa + Pv̂a (48)

The control architecture assumed in Fig. 1 is similar to that
of the MMC modeled in [38]. Therefore, the control models
developed in [38] for MMC can be adopted for use here. For
easy reference, we will give the resulting matrix Q and P here
with a brief explanation. Readers are referred to [38] for more
detailed development of each matrix.

The dq-frame current control defined in Fig. 1(b) use a PI
regulator in each axis and includes a decoupling term between
the two axes. The decoupling gain is denoted as Kd and the PI
regulator transfer function is defined as Hi(s). Since this is a
linear control, the response of the control output (duty ratio)
at a given frequency depends on ac-port current at the same
frequency. Therefore, Q is a diagonal matrix and is defined
as follows, where Km is the gain of the modulator, that is, the
gain from the control output ma to duty ratio da:

Q = Km · diag
[ {qk}|k∈[−2, 2]

]
(49)

The dq transformation creates a frequency rotation that de-
pends on the sequence of the currents. This causes the matrix
to be different between positive- and negative-sequence per-
turbations. For a positive-sequence perturbation, the diagonal
elements are defined as follows:

qk = |mod (k + 1, 3)| · {mod (k + 1, 3) jKd

− Hi
[

j2π
(

fp + k f1
)− mod (k + 1, 3) j2π f1

]}
(50)

Function mod(k, 3) is a modified modulo-3 function de-
fined as follows where m is an integer:

mod (k, 3) =
⎧⎨⎩

+1 k = 3m + 1
−1 k = 3m − 1

0 k = 3m

For a negative-sequence impedance, the diagonal elements
of Q are slightly different, as given below:

qk = |mod (k − 1, 3)| · {mod (k − 1, 3) jKd

− Hi
[

j2π
(

fp + k f1
)− mod (k − 1, 3) j2π f1

]}
(51)

The dq transformation used by the PLL in Fig. 1(d) creates
a similar frequency rotation, as can be concluded from (10).
Namely, with a voltage perturbation at frequency fp, the fre-
quency of angle perturbation at the PLL output is fp − f1 if
the perturbation is in the positive sequence, and fp + f1 if it is
in the negative sequence. The angle perturbation contributes to
the response of the duty ratio at the perturbation frequency as
well as at fp − 2 f1 or fp + 2 f1, depending on the sequence of
the voltage perturbation. The duty ratio response at fp ± 2 f1

is an additional source for the second current response dis-
cussed in Section II and causes matrix P to have a non-zero
off-diagonal element [38]. In a general form, P can be written
as

P =
[

p(i, j)i, j∈[−2, 2]

]
. (52)
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All elements of P are zero except for two, which are defined
in the following:
� With a positive-sequence voltage perturbation:

p(0, 0) = D1 + KmI1

[
Hi
(

jωp−1
)− jKid

]
2

· Gθ

[
jωp−1

]
V 1

(53)

p(−2, 0) = − D∗
1 + KmI∗

1

[
Hi
(

jωp−1
)+ jKid

]
2

· Gθ

[
jωp−1

]
V 1

(54)

� With a negative-sequence voltage perturbation:

p(0, 0) = D∗
1 + KmI∗

1

[
Hi
(

jωp+1
)+ jKid

]
2

· Gθ

[
jωp+1

]
V ∗

1
(55)

p(2, 0) = − D1 + KmI1

[
Hi
(

jωp+1
)− jKid

]
2

· Gθ

[
jωp+1

]
V ∗

1
(56)

Function Gθ used in (53)-(56) is the PLL closed-loop gain
and is defined as follows, where Hθ (s) is the transfer function
of the PI compensator, as shown in Fig. 1(d), and Tθ (s) defines
the loop gain of the PLL:

Gθ (s) = Tθ (s)
1+Tθ (s) , Tθ (s) =

√
3
2V1

Hθ (s)
s

(57)

Recall from (28) that V 1, I1 and D1 are phasors at the
fundamental frequency that define the steady-state operation
“point” of the converter. Since D1Vdc is the fundamental of
the converter PWM output voltage (measured at the point
between the upper and lower switch of each phase leg), the
three phasors are also related to each other as follows where
V 1L is the fundamental voltage across the filter inductor:

D1Vdc = jω1LI1 + V 1
�= V 1L + V 1

C. ANALYTICAL MODELS OF {Y pp,Y pd,Y pn}
Equations (40) and (48) form a complete frequency-domain
model of the converter for the case when a voltage perturba-
tion is applied to the ac port. Substituting d̂a in (40) by (48),
we have

îa = VdcYl d̂a − Yl v̂a = VdcYl

(
Qîa + Pv̂a

)
− Yl v̂a.

This gives the following solution for îa, where U is a 5 × 5
unity matrix:

îa = (U − VdcYl Q)−1Yl (VdcP − U) v̂a

This solution can be put back in (48) to determine d̂a. The
dc-port current response îdc can then be determined from (46).

The first six self admittances and transfer admittances defined
in Table I can then be determined as transfer functions from
the corresponding component of îa and îdc to the applied ac-
port voltage perturbation.

Since matrices Yl , P and Q are sequence-dependent, we
need to form and solve a separate set of algebraic equations
to find îa and îdc for each case. Recall from Section IV.B that
îa is composed of small-signal responses of phase-a current at
different frequencies:

îa =

⎡⎢⎢⎢⎢⎣
Îa−2
Îa−1
Îa
Îa+1
Îa+2

⎤⎥⎥⎥⎥⎦
fp − 2 f1

fp − f1

fp

fp + f1

fp + 2 f1

(58)

With a positive-sequence perturbation, the solved îa vec-
tor has two non-zero elements, occupying the first and third
position from the top. This indicates that a positive-sequence
perturbation to the ac-port voltage only produces current re-
sponse at fp and fp − 2 f1, as concluded from the qualitative
analysis presented in Section II. The sequence of each of
these two current responses is indicated in Table II and is also
consistent with the conclusion developed in Section II. The
ratio of Îa and Îa−2 defined in (58) to the voltage perturbation
V̂ a (34) gives the self admittance Ypp and transfer admittance
Ypn, respectively. For the dc-port current, it can be seen from
(46) that only the component at fp − f1 is non-zero because îa
and d̂a have no response at frequency fp + 2 f1. This non-zero
current defines the transfer admittance Ypd .

With some algebraic manipulation, the analytical models
(59)-(61) given below are obtained for admittances Ypp, Ypd

and Ypn where s = j2π fp.

Ypp (s) =
1 − Gθ (s−1)

2V 1

{
I1

[
Hi0 (s−1) − jKd0

]+ D1Vdc
}

sL + [
Hi0 (s − jω1) − jKd0

]
(59)

Ypn (s) =
Gθ (s−1)

2V 1

{
I∗

1

[
Hi0 (s − jω1) + jKd0

]+ D∗
1Vdc

}
(s − j2ω1) L + [

Hi0 (s − jω1) + jKd0
]

(60)

Ypd (s) = 3

2Vdc

V ∗
1 − I∗

1Hi0 (s − jω1)

Hi0 (s − jω1) + (s − jω1) L

+ jQGθ (s − jω1)

V 1Vdc

Hi0 (s − jω1) − (s − jω1) L

Hi0 (s − jω1) + (s − jω1) L
(61)

Most symbols used in (59)-(61) have been defined and used
before except Q, which is the reactive power output of the
converter. To shorten the expressions, the following variables
are defined for the current compensator and are used:

Hi0 (s) = KmVdcHi (s) , Kd0 = KmVdcKd (62)

Additionally, Kd0 = ω1L is assumed in (61). The model is
more complex without this assumption. However, the other
two models do not involve this assumption.
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D. MODELING OF {Y nn, Y nd, Y np}
The procedure outlined above can be repeated for a negative-
sequence perturbation to find Ynn, Ynd and Ynp. As an al-
ternative approach, we will develop these transfer functions
from Ypp, Ypd and Ypn by taking advantage of a relationship
between positive and negative sequence. This also helps to
reduce the number of independent models from nine to six.

The relationship is based on the observation that a cosine
function remains unchanged if both its frequency and initial
phase angle change sign at the same time:

x cos (ωt + ϕ) = x cos ((−ω) t − ϕ) (63)

For mathematical convenience, define X = xe jϕ and ex-
press the cosine function in a more abstract form as ω, X .
Based on this notation, the relationship (63) can be expressed
as

〈ω, X 〉 = 〈−ω, X ∗〉. (64)

For three-phase signals, (64) applies to each phase. The
phase angle reversal also causes the sequence to change, such
that a balanced three-phase in the positive sequence at fre-
quency ω becomes negative sequence at frequency −ω, and
vice versa, as can be seen from the following equation:⎡⎣ x cos (ωt + ϕ)

x cos
(
ωt + ϕ − 4π

3

)
x cos

(
ωt + ϕ − 2π

3

)
⎤⎦ =

⎡⎣ x cos ((−ω) t − ϕ)
x cos

(
(−ω) t − ϕ + 4π

3

)
x cos

(
(−ω) t − ϕ + 2π

3

)
⎤⎦

To express this relationship in a mathematical form, we
expand the definition ω, X by adding a third argument σ

to indicate the sequence. Additionally, we use σ̄ to denote a
sequence that is opposite to σ (e.g., if σ = positive sequence,
then σ̄ = negative sequence). The relationship among three-
phase signals can then be expressed mathematically as

〈ω, X , σ 〉 = 〈−ω, X ∗, σ 〉. (65)

Based on the notations introduced before, a negative-
sequence perturbation to the ac port voltage can be written as
ωp, V̂pe jϕp, NS, where NS indicate negative sequence. Ac-
cording to (65), this can also be treated as a positive-sequence
perturbation at −ωp and be written as follows:

〈−ωp, V̂pe− jϕp, PS〉 (66)

As a positive-sequence perturbation, (66) will generate two
current responses: one at −ωp in the positive sequence, and
one at −ωp − 2ω1 in the negative sequence. Each of these
currents can be determined by multiplying the voltage pertur-
bation (66) with the corresponding admittance:

Î a

(−ωp
) = −Ypp

(− jωp
)

V̂pe− jϕp

Îa−2

(−ωp − 2ω1
) = −Ypn

(− jωp
)

V̂pe− jϕp

Applying (65) to each of these currents, we have

〈−ωp, − Ypp
(− jωp

)
V̂pe− jϕp, PS〉

= 〈ωp, −Y ∗
pp

(− jωp
)

V̂pe jϕp, NS〉 (67)

〈−ωp − 2ω1, − Ypn
(− jωp

)
V̂pe− jϕp, NS〉

= 〈ωp + 2ω1, −Y ∗
pn

(− jωp
)

V̂pe jϕp, PS〉 (68)

The right-hand side of (67) in effect defines a negative-
sequence current at frequency ωp, which is the expected
current response to the original negative-sequence voltage
perturbation. The ratio of this current to the original negative-
sequence voltage perturbation V̂pe jϕp is what we have defined
as admittance Ynn. Therefore, this current can also be written
as ωp, −Ynn( jωp)V̂pe jϕp, NS. By comparing this with the
right-hand side of (67), we conclude that

Ynn (s) = Y ∗
pp (−s) . (69)

Similarly, the right-hand side of (68) corresponds to a
positive-sequence response at frequency ωp + 2ω1, which is
the expected second current response to a negative-sequence
voltage perturbation. The ratio of this current to the orig-
inal negative-sequence voltage perturbation V̂pe jϕp is what
we have defined as transfer admittance Ynp. Therefore, this
current can also be written as

〈 ωp + 2ω1, − Ynp
(

jωp
)

V̂pe jϕp, PS〉.
By comparing this with the right-hand side of (68), we

conclude that

Ynp (s) = Y ∗
pn (−s) . (70)

By similar analyses, we can also conclude that

Ynd (s) = Y ∗
pd (−s) . (71)

Equations (69)-(71) are general and allow the self and
transfer admittances associated with a negative-sequence per-
turbation to be obtained from the models developed for a
positive-sequence perturbation. They reduce the total number
of independent immittance models required for characterizing
a three-phase ac-dc converter from nine to six.

E. MODELING OF Y dd, Y d p, AND Y dn

Modeling of the converter’s response to a dc-port voltage
perturbation follows the same steps used in the last subsection.
However, there are several noticeable differences that affect
some parts of the model:
� The sequence of ac-port current responses is different

from that identified in Table II, requiring the admittance
matrix Yl to be defined differently.

� The power stage model becomes nonlinear when the dc
bus voltage is variable, hence has to be linearized first.

� With the ac-port voltage unperturbed, the PLL output is
constant and can be ignored in the control model. On the
other hand, dc bus voltage control has to be included.

Given the similar overall procedure, we will present the
power stage and control models briefly for this case. To start,
recall that a response at fp ± f1 or fp ± 2 f1 is generated when
a small-signal response at fp or fp ± f1 is multiplied with a
fundamental component. Such a multiplication also shifts the
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TABLE III: Sequences of Small-Signal Responses to a DC-Port Voltage
Perturbation

phase angle, thereby changing the sequence among the three
phases. However, with a perturbation at the dc port, the phase
shift among the resulting three-phase responses does not have
the additional phase shift of the perturbation as in the case of
an ac-port perturbation. Therefore, the phase shift from phase
a to b and from b to c among small-signal current responses at
frequency fp + n f1 is simply n × (2π/3). Based on this, the
sequence of the five small-signal currents included in îa can
be determined as given in Table III.

Similar to (34), a dc-port voltage perturbation v̂dc( fp) =
V̂p cos(ωpt + ϕp) can be written as a vector:

v̂dc =

⎡⎢⎢⎢⎢⎣
0
0

V̂pe jϕp

0
0

⎤⎥⎥⎥⎥⎦ . (72)

Based on this and the fact that v̂a = 0, the linearized phase-
a current model in the frequency domain is

îa = Yld

(
Vdcd̂a + Dav̂dc

)
(73)

where Da has been defined before in (43) and the admittance
matrix Yld is modified from (39) according to Table III to
force the zero-sequence current at frequency fp to zero when
the common-mode voltage vcm is removed:

Yld = 1

j2πL
diag

[{
1

fp−2
,

1

fp−1
, 0,

1

fp+1
,

1

fp+2

}]
(74)

Small-signal response of the dc-port current is required to
define Ydd and can be modeled in the same form as (45).
However, the different sequence among the three-phase cur-
rent and duty ratio responses identified in Table III causes
the coefficient matrices to be different. The results are given
below in (75). Recall that the dc bus capacitor is excluded
from the two-port network. Therefore, this algebraic equation
is all we need to represent the dc bus in the power stage model.

îdc = 3

2

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 D1 0 D∗

1 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ îa + 3

2

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 I1 0 I∗

1 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ d̂a (75)

With the ac-port voltage unperturbed, the general control
model (47) can be reduced to the following, where matrix
Q and E models ac-port current and dc bus voltage control,
respectively:

d̂a = Qîa + Ev̂dc (76)

The basic form of Q remains the same as in (49), but the
diagonal elements have to be refined to reflect the different
sequence of each small-signal current:

qk = |mod (k, 3)| · {mod (k, 3) jKd

− Hi
[

j2π
(

fp + k f1
)− mod (k, 3) j2π f1

]}
(77)

To define matrix E, refer to Fig. 1 and note first that a
dc-port voltage perturbation v̂dc( fp) produces a perturbation
in the d-axis reference current idr , which in turn causes a
perturbation in the d-axis PWM reference md , both at the
same frequency fp:⎧⎨⎩

îdr
(

fp
) = Hv

(
jωp
)
v̂dc

(
fp
)

m̂d
(

fp
) = Hi

(
jωp
)

îdr
(

fp
) (78)

Since v̂dc( fp) does not cause a q-axis response, its contri-
bution to PWM references is calculated to be:⎡⎣ m̂a

m̂b

m̂c

⎤⎦ = 1√
6

⎡⎣ cos
(
ωp−1t − ϕv1

)
cos

(
ωp−1t − ϕv1 + 2π

3

)
cos

(
ωp−1t − ϕv1 − 2π

3

)
⎤⎦ m̂d

(
fp
)

+ 1√
6

⎡⎣ cos
(
ωp+1t + ϕv1

)
cos

(
ωp+1t + ϕv1 − 2π

3

)
cos

(
ωp+1t + ϕv1 + 2π

3

)
⎤⎦ m̂d

(
fp
)

(79)

The first term on the right-hand side of (79) is at frequency
fp − f1 and is in the negative sequence; the second term is at
frequency fp + f1 and is in the positive sequence. Note that
the sequence of responses at each frequency is consistent with
that identified in Table III.

Based on (78) and (79), the contribution of dc bus voltage
control to phase-a small-signal duty ratio response can be
written in the frequency domain as

Km√
6

⎡⎢⎢⎢⎢⎣
0

e− jϕv1Hv

(
jωp
)

Hi
(

jωp
)
0

e jϕv1Hv

(
jωp
)

Hi
(

jωp
)
0

⎤⎥⎥⎥⎥⎦ .

This leads to the following matrix E and completes the
definition of the frequency-domain control model (76):

E = Km√
6

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 e− jϕv1Hv

(
jωp
)

Hi
(

jωp
)

0 0
0 0 0 0 0
0 0 e jϕv1Hv

(
jωp
)

Hi
(

jωp
)

0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ (80)

With the coefficient matrices defined, (73) and (76) can be
combined and solved for the ac-port current response îa:

îa = (U − VdcYld Q)−1Yld (VdcE + Da)v̂dc (81)

As can be seen from the definition (58), the second and
fourth element of îa corresponds to small-signal current
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îa( fp − f1) and îa( fp + f1), respectively. Their ratio to the dc-
port voltage perturbation v̂dc( fp) defines the transfer admit-
tances Ydn and Ydn. Other elements of îa are zero, as expected
from the discussion in Subsection II.C.

To find the dc-port current response, (81) is first substituted
into (76) to find d̂a and then together substituted into (75).
The resulting îdc has only one non-zero component, which
is the element in the middle of the vector and corresponds
to îdc( fp). The ratio of this current to the dc-port voltage
perturbation v̂dc( fp) defines the dc-port admittance Ydd .

Each of the three transfer functions are developed as out-
lined above and then simplified. The final results are given
below in (82)-(84), where P and Q is the active and reactive
power output of the converter, respectively, V1 is the ampli-
tude of the phase voltage, and I1d is the d-axis component of
the phase current, i.e., I1d = I1 cos(ϕi1 − ϕv1); other variables
have been defined and used before.

Ydd (s) = 1

sL + Hi0 (s)

[
3V 2

1

2V 2
dc

+ ω1LQ − Hi0 (s) P

V 2
dc

+
√

6Hi0 (s) Hv (s)

2

V1 + sLI1d

Vdc

]
(82)

Yd p (s) =
V 1+ jω1LI1

2Vdc
+ 1√

6
Hi0 (s) Hv (s) e jϕv1

(s + jω1) L + Hi0 (s) − jKd0
(83)

Ydn (s) =
V ∗

1− jω1LI∗
1

2Vdc
+ 1√

6
Hi0 (s) Hv (s) e− jϕv1

(s − jω1) L + Hi0 (s) + jKd0
(84)

Note that there is a relationship similar to (69)-(71) between
transfer admittances Yd p and Ydn:

Ydn (s) = Y ∗
d p (−s) (85)

This can be verified by comparing (83) and (84) and noting
that Hi(s) = H∗

i (−s) and Hv (s) = H∗
v (−s). The relationship

further reduces the number of mathematically independent
models from six to five.

V. VALIDATION AND CHARACTERISTICS
This section presents quantitative results to validate the an-
alytical models developed in the last section. The transfer
immittance models are examined to clarify a misconception
about sequence coupling. Two simplified versions of the mod-
els are presented based on approximations that can be made in
different frequency ranges. Adaptation of the models for use
with different or additional control functions is also discussed.

A. VALIDATION
The transfer functions developed in the last two sections as-
sumed that the converter is connected to an ideal voltage
source at the unperturbed port. This makes it difficult to vali-
date the models by measurement because no practical power
sources can meet this requirement. On the other hand, de-
velopment of the small-signal models essentially consists of

TABLE IV: Parameters and Operation Condition of Example Converter
Con#1

two steps: a) mathematical abstraction and approximation of
a physical converter by a mathematic model (1)-(2), and b)
linearization of the mathematic model. The first step involves
various idealization and approximation of actual physical be-
haviors, but is well established in power electronics and the
resulting model (1)-(2) are commonly accepted. The second
step is new, hence should be the focus of validation. Because
this step builds upon the already-proven large-signal model
(1)-(2), it can be performed by comparing the responses of the
developed frequency-domain models against that of (1)-(2).
Numerical simulation can serve this purpose very well.

Based on these considerations, we have used numerical
simulation instead of physical measurement to validate the
developed models. The simulation is based on a detailed cir-
cuit model using ideal components. To validate each set of
transfer functions, the simulation model is set up according to
the conditions modeled by each transfer function. A voltage
perturbation at a particular frequency is injected after a steady
state has been reached, and the simulation continues until it
reaches a new periodic steady state. Fourier analysis is then
applied to extract the frequency responses modeled by each
of the immittance models being validated. The simulation is
repeated by varying the perturbation frequency to produce a
full scan over the frequency range of interest.

Table IV summarizes key component values and operation
conditions of the simulated converter, referred to as converter
Con#1 hereafter. The converter is basically a 3 MVA inverter
switching at fs = 2.5 kHz and operating with a 690 V/60 Hz
grid. All control loops are designed to have 45◦ phase margin
and with the following crossover frequencies: 300 Hz for ac
current control, 15 Hz for PLL, and 10 Hz for dc bus voltage
control. The simulated frequency responses are compared to
predictions by analytical models.

Fig. 5 compares the responses of the converter to an ac-port
voltage perturbation, while responses to a dc-port perturbation
are compared in Fig. 6. In both figures, simulation results are
marked by points of various shapes and continuous curves are
plotted using the analytical models (59)-(61) and (82)-(84).

As can be seen, the responses predicted by each analytical
model match the simulation scan results in all cases. The small
difference in the phase response of Ypn above 300 Hz is caused
by the very small current at the coupling frequency that is
difficult to reproduce accurately in simulation. Each of the re-
lationships (69)-(71) between positive- and negative-sequence
perturbations is also verified by the same method.
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FIGURE 5. Comparison of responses of transfer functions Ypp, Ypd , and Ypn

between analytical models and detailed circuit simulation.

FIGURE 6. Comparison of responses of transfer functions Ydd , Yd p, and
Ydn between analytical models and detailed circuit simulation.

B. TRANSFER IMMITTANCES AND SEQUENCE COUPLING
Fig. 5 shows that Ypn(s) is comparable to Ypp(s) in their
magnitude responses within 10-20 Hz of the fundamental
frequency. Outside that frequency range, especially about 100
Hz, Ypn(s) decays rapidly and becomes negligible. This be-
havior is typical and is related to practical PLL design. As can

be seen from (60), Ypn(s) is proportional to the PLL close-
loop gain Gθ (s − jω1). The limited bandwidth of practical
PLL designs means that this term is only significant within
a narrow frequency range centered at the fundamental. Dc
bus voltage control has similar effects and the behavior will
be explained in Part II of the paper [37] in conjunction with
system stability analysis.

Fig. 6 shows that transfer admittances of the dc port are
comparable to the self admittance at all frequencies. The mag-
nitude peaks between 200 Hz and 300 Hz, which corresponds
to the current control bandwidth, and then decays as frequency
further increases. From the analytical models (83)-(84), it can
be seen that both transfer admittances are dominated by the
filter inductor L above the current loop crossover frequency,
which gives the characteristic 20 dB/decade roll-off in the
magnitude response above 300 Hz.

The analytical models also reveal an important feature of
the transfer admittances, namely, their phase responses come
with an offset that depends on the time of measurement. To
explain that, recall the definition of initial phase angles by (28)
and note that each angle is measured relative to the time when
voltage perturbation is applied. Note also that ϕi1 − ϕv1 and
ϕd1 − ϕv1 are defined by the converter design and operation,
but ϕv1 can be arbitrary. Additionally, recall from (34) and
(72) that the voltage perturbation was assigned an initial phase
angle ϕp but it does not appear in any of the admittance models
(59)-(61) and (82)-(84), as expected of small-signal models.

The dc-port self admittance Ydd (s) does not depend on the
phase of any ac-port steady state variables. The ac-port self
admittance Ypp(s) involves all three phasors defined in (28)
but is invariant with respect to the measurement time because
it depends on ϕi1 − ϕv1 and ϕd1 − ϕv1, but not ϕv1 alone.
However, that is not the case for the transfer admittances. For
example, when the starting point of measurement is shifted
over time to cause the voltage phase angle to change from ϕv1

to ϕv1 + �ϕ, phase responses of the transfer admittances will
be affected as follows:
� Ypd (s) and Ydn(s) phase is offset by −�ϕ
� Ypn(s) phase is offset by −2�ϕ
� Yd p(s) phase is offset by �ϕ

This dependency can be traced back to the origin of the cur-
rent response described by each of the transfer admittances.
As explained in Sections II and III, a response at each coupling
frequency is created when the small-signal component of one
variable is multiplied with the steady-state component of an-
other variable through a bilinear term between the two. The
initial phase angle of the steady-state variable, which can be
the ac port voltage, current or duty ratio, becomes part of the
phase of the resulting small-signal variable and carries into the
final immittance model, leading to the observed characteristic.

The characteristic discussed above is fundamental to ac-dc
converters and has to be considered when using any of the
transfer immittance models. To avoid ambiguity and possible
misuse, a final system stability model should avoid using the
transfer immittance models in a standalone form that may
introduce an arbitrariness in the phase response. This will be
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an important consideration for the applications presented in
Part II of the paper.

The existence of the coupled currents modeled by transfer
admittances Ypn(s) and Ynp(s) has generated considerable
interests as well as confusions in the last few years. Ref.
[46] and several other papers treated it as coupling between
positive- and negative-sequence dynamics of the converter
and proposed to model them together by an admittance matrix,
which, using the symbols defined in this paper, is

Y (s) =
[

Ypp (s) Ynp (s − j2ω1)
Ypn (s) Ynn (s − j2ω1)

]
(86)

To account for this coupling in system stability analysis,
[46] proposed to model the grid also in a matrix form as
follows, where the diagonal elements are the grid impedance
in the positive and negative sequence, and to apply the gener-
alized Nyquist criterion (GNC) to matrix Zg(s)Y(s) to assess
system stability:

Zg (s) =
[

Zgp (s) 0
0 Zgn (s − j2ω1)

]
(87)

There are several issues with this formulation and stability
analysis method. First, direct use of the admittance matrix (86)
in a stability model is problematic because of the arbitrariness
associated with phase responses of the diagonal elements.
While the phase dependency of Ynp and Ypn on ϕv1 cancels
out in the eigenvalues of Zg(s)Y(s) when Zg(s) is diagonal, as
assumed in (87), such that this may appear to be just an issue
of notation, the cancellation will not happen and the phase
response of each eigenvalue of Zg(s)Y(s) will have a degree
of arbitrariness if the grid impedance is also coupled between
the positive and negative sequence. The matrix formulation
also necessitates the GNC to determine stability, taking away
the simplicity, intuitiveness as well as the ability to develop
general conclusions using analytical models offered by the
original impedance-based method [27].

Treating the coupled currents as the results of sequence
coupling is also a mischaracterization of the phenomenon
which in actuality is a coupling over frequency. It may ap-
pear as sequence coupling because of the difference in the
sequence of the perturbation and the resulting coupled current
response. However, as discussed in Section IV.D, the asso-
ciation of a set of small-signal variables with a sequence is
not unique. For example, the negative-sequence currents at
frequency fp − 2 f1 modeled by transfer admittance Ypn(s)
can also be treated as positive-sequence currents at 2 f1 − fp.
In fact, for fp < 2 f1, it is conceptually more convenient to
treat the currents as positive sequence at a positive frequency
2 f1 − fp. Practically, 2 f1 is also the upper boundary of the
frequency range in which coupling impacts system stability.
Therefore, the term sequence coupling on which (86) is based
is ambiguous and does not reflect the actual nature of the
coupling.

The matrix form (86) has also led to the notion that se-
quence impedances must be somehow related to dq-frame
impedances such that one can be developed from the other.

Several papers have tried to establish such a relationship. For
example, [49] defined a so-called modified sequence-domain
impedance matrix, which is essentially (86) in impedance
form, and suggested that it could be related to the dq-frame
impedance matrix by a constant matrix. Similar relationship
was presented in [50] using αβ-frame instead of sequence
variables. Common to these works and [46] are:
� The assumption that the dc bus is an ideal voltage source,

such that PLL is the only nonlinearity that contributes to
the coupled current; and

� The formulation of a system impedance model in the
form of a 2 × 2 matrix to which the GNC is applied
to determine system stability.

Given the fundamental difference in the principles based
on which sequence-domain and dq-frame immittance models
are developed, as discussed in Section II, it is questionable
that there is a general mathematical relationship between the
two types of models. This question arises naturally if one
considers the cases identified in Section II (unbalanced, dis-
torted, etc.) where the dq-frame method fails but harmonic
linearization can still work. If there were a general relation-
ship between the two such that dq-frame immittances could
be derived indirectly from sequence immittance models, why
cannot they be developed directly in principle? Nevertheless,
looking for such a relationship may still be a worthwhile
effort, as the process itself may offer more insights about
each of the methods. On the other hand, such effort should be
based on general principles instead of a case study, and avoid
overgeneralizing from some special cases, such as ignoring dc
bus dynamics.

C. MODEL REDUCTION
The models presented in the last section are general and in-
clude all relevant factors. The analytical form makes them
easy to use and gain insight from. The models also share some
common structure that shows how different control functions
affect the impedance. Since each control function is active
only in a particular frequency range, it may be ignored in other
frequency ranges to simplify the models. This subsection
presents such simplified models according to the frequency
range of interest.

One common term that appears in the models (59)-(61) and
(82)-(84) is sL + [Hi0(s − jω1) − jKd0] (and some variation
of it). This is in fact the positive-sequence impedance of the
converter when no PLL is used and when the dc bus can be
treated as an ideal voltage source [23]. Recall the definition
of Kd0 from (62). When the current control decoupling gain
Kd is selected to cancel the coupling term between d- and q-
axis, we have Kd0 = ω1L. This will be assumed for all the
approximate models presented in this subsection, under which
the term mentioned above can be written as follows:

sL + [
Hi0 (s − jω1) − jKd0

] = (s − jω1) L + Hi0 (s − jω1)

The PLL is usually designed to have a bandwidth no more
than 20-30 Hz. Therefore, the PLL close-loop gain Gθ (s) can
be set to zero at high frequency. There is a similar limit on
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the bandwidth of dc bus voltage control, such that Hv (s) can
also be set to zero at high frequency. Applying these to (59)-
(61) and (82)-(84), we obtain the following high-frequency
(indicated by adding “−h” to the subscript) simplified models:

Ypp−h (s) = 1

(s − jω1) L + Hi0 (s − jω1)
(88)

Ypn−h (s) = − I∗
1Gθ (s − jω1)

2V 1
≈ 0 (89)

Ypd−h (s) = 3

2Vdc

V ∗
1 − I∗

1Hi0 (s − jω1)

Hi0 (s − jω1) + (s − jω1) L
(90)

Yd p−h (s) = D1

2
· 1

sL + Hi0 (s)
(91)

Ydn−h (s) = D∗
1

2
· 1

sL + Hi0 (s)
(92)

Ydd−h (s) = V −2
dc

sL + Hi0 (s)

[
ω1LQ − Hi0 (s) P + 3V 2

1

2

]
(93)

Note that models (88)-(90) also represent the exact form
of Ypp, Ypn and Ypd for converters that do not use a PLL. Sim-
ilarly, (91)-(93) represent the exact Yd p, Ydn and Ydd models
for converters not equipped with dc bus voltage control, e.g.,
the generator-side converter in a type-IV turbine.

To simplify (59)-(61) and (82)-(84) at low frequency, we
can ignore terms like sL and (s − jω1)L that are added to
Hi0(s) or Hi0(s − jω1) because Hi0(s) � sL holds within
the current control bandwidth. Accordingly, the following
low-frequency approximate models are developed, where S =
P + jQ is the apparent power output of the converter, and the
added subscript “−l” indicates low frequency:

Ypp−l (s) = 1

Hi0 (s − jω1)
− I1Gθ (s − jω1)

2V 1
(94)

Ypn−l (s) = − I∗
1Gθ (s − jω1)

2V 1
(95)

Ypd−l (s) = 3V ∗
1/ (2Vdc)

Hi0 (s − jω1)
− S − jQGθ (s − jω1)

V 1Vdc
(96)

Yd p−l (s) = D1

2
· 1

Hi0 (s)
+
√

1

6
Hv (s) e jϕv1 (97)

Ydn−l (s) = D∗
1

2
· 1

Hi0 (s)
+
√

1

6
Hv (s) e− jϕv1 (98)

Ydd−l (s) =
√

6Hv (s)

2

V1

Vdc
+ 3V 2

1

2V 2
dc

1

Hi0 (s)
− P

V 2
dc

(99)

In general, the low-frequency models are accurate up to
100-150 Hz, above which the high-frequency models can be
used. For easy reference, we consider the second harmonic
frequency (2 f1) to be the boundary between the two frequency
ranges. The bandwidth limits discussed before for PLL and dc
bus voltage control are for 50/60 Hz power grid applications

and can be proportionally higher if the fundamental frequency
is higher, e.g., in aircraft power systems that use 400 Hz or
variable-frequency ac. Therefore, the boundary between the
low and high frequency ranges depends on the fundamental
and specifying it by the second harmonic frequency instead of
a fix value makes the definition more general.

D. OTHER CONSIDERATIONS
The analytical models have been developed by assuming the
specific control architecture of the converter defined in Fig. 1.
Since the models depend strongly on control design that may
be different in different applications, it is important to con-
sider how the models may be adapted for converters that use
different control design.

Of the three control functions considered in Fig. 1, ac phase
current control is essential for voltage-source converters and
dq-frame control is preferred because of its ability to eliminate
steady-state error. The dq-frame current compensator Hi(s)
is usually a PI regulator but may include additional transfer
function blocks in series or parallel to provide damping at
certain frequency or to improve other aspects of control per-
formance. Such additional blocks may be modeled together
with the basic PI compensator and their collective transfer
function be used in place of Hi(s) in each of the developed
models. It does not affect other aspects of the models.

In the positive-sequence models (59)-(61), the frequency
appearing in the current compensator transfer function is
shifted from the frequency of perturbation down by the funda-
mental. This is necessary when dq transformation is involved
because it changes the frequency of three-phase signals at
frequency f to f − f1 if the signals are in positive sequence
and to f + f1 if the signals are in negative sequence. Such
frequency shift does not appear when stationary-frame current
control is used. Therefore, to use the developed models in
that case, one can simply replace Hi0(s − jω1) in (59)-(61)
by Hi0(s). Similar changes can be made to the negative-
sequence models.

DC bus voltage control is an integral part of standalone
VSCs. It affects the dc-port transfer functions (82)-(84) but the
models do not depend on the specific form of the compensator.
Therefore, the models can be used as long as the control can
be represented by a transfer function Hv (s). This also includes
the possible use of nonlinear control, which can be linearized
to define an equivalent small-signal transfer function. For con-
verters that are not equipped with dc bus voltage control, for
example the generator-side converter in a type-IV turbine or
the sending end of an HVDC transmission line, the developed
models can be used with Hv (s) set to zero, which essentially
become the high-frequency approximate models (91)-(93).

The PLL, or grid synchronization in general, is a func-
tion that has seen the most variation in practice and is still
evolving. The models were developed by assuming a basic
design that locks to the positive-sequence component of the
grid voltage. To see how the models can be adapted when a
different PLL design is used, note first that, although the in-
termediate steps involve PLL internal design, the final model
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only depends on its close-loop transfer function Gθ (s). Note
also that the only term related to the PLL that appears in the
models is

Gθ (s − jω1)

V 1
. (100)

Further analysis of the PLL model indicates that (100) is
actually the transfer function from the grid voltage to the
cosine of the PLL output when the grid voltage contains a
positive-sequence perturbation. Therefore, to use the devel-
oped models for converters employing a different PLL design,
one only needs to remodel the PLL to determine its transfer
function as defined below where v̂a is the voltage perturbation
and θ̂ is the resulting angle response:

cos θ̂ (s − jω1)

v̂a (s)
�= 
 (s) (101)

For a PLL that responds to positive- and negative-sequence
perturbation differently, 
(s) depends on the sequence and
can be denoted as 
p(s) and 
n(s), respectively. Once
these transfer functions are developed, 
p(s) can be used
in place of (100) in (59)-(61), and the results are Ypp, Ypn

and Ypd of the converter. Similarly, 
n(s) can be used in
place of Gθ (s + jω1)/V ∗

1 in the negative-sequence model to
define Ynn, Ynp and Ynd of the converter.

In addition to the three control functions modeled in this
work, a converter connected to the power grid may also be
equipped with ac voltage control that regulates the voltage at
the point of interconnect (POI). The control models provided
in Section IV can be modified to include this and any addi-
tional converter-level control function.

The models developed so far have assumed a first-order
inductive filter at the ac terminal of the converter. Additional
filter elements, such as shunt filter capacitors, can be included
when performing system stability analysis. On the other hand,
the filter capacitor impedance is usually more than an order of
magnitude higher than the grid impedance below the second
harmonic frequency even in a very weak grid. Therefore, they
can be neglected in system stability analysis below the second
harmonic frequency in which the coupling effects have to be
considered. Above the second harmonic frequency, the cou-
pling effects can be ignored and it is rather straightforward to
include additional filter components in the self-admittances of
the ac port.

VI. SUMMARY
An ac-dc converter can be described as a two-port network
and modeled by a set of self and transfer immittances for use
in system stability analysis. The additional degree of freedom
at the ac terminal due to three-phase operation is represented
by the sequence of ac-port variables. A self immittance is used
to model the relationship between small-signal voltage and
current of the same port at the same frequency (and the same
sequence in the case of ac port). Two types of transfer im-
mittances are used to model the coupling across the two ports
as well as that over frequency. The coupling over frequency

is unique to ac-dc converters and involves a frequency shift
by two times the fundamental. The coupling between the two
ports resembles that of traditional two-port networks but is
sequence-dependent and also involves a frequency shift. Alto-
gether, three self immittances and six transfer immittances are
defined to fully characterize the converter in the frequency do-
main. Of them, three are made mathematically redundant by
a general relationship between positive and negative sequence
models such that only six need to be actually modeled.

The method to model the self and transfer immittances is
based on multi-harmonic linearization. Each immittance is
modeled in an analytical form and the models are validated
against frequency scan based on detailed circuit simulation.
Characteristics of the transfer immittances, especially the ones
describing coupling over frequency are examined to clarify a
misinterpretation promulgated by several recent publications
and to shed light on proper use of the models. The four
transfer immittances describing the coupling between the ac
and dc ports provide new insights about ac-dc converters and
their effects on the system they connect to at the ac and ac
terminals.

The developed immittance models provide a general frame-
work to study small-signal stability of renewable energy, high-
voltage dc transmission, as well general ac, dc and hybrid
ac-dc power systems that involve ac-dc converters. Part II of
the paper [37] will present these applications.
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