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ABSTRACT Reinforcement learning (RL) based methods are an upcoming approach for the control of
power systems such as electric drives. These data-driven techniques do not need an explicit plant model
like most common state-of-the-art approaches. Instead, the control policy is continuously improved solely
based on measurement feedback pursuing optimal control performance through learning. While the general
feasibility of RL-based drive control algorithms has already been proven in simulation, this work focuses on
transferring the methodology to real-world experiments. In the case of electric motor control, a strict real-time
requirement, safety constraints, system delays and the limitations of embedded hardware frameworks are
hurdles to overcome. Hence, several modifications to the general RL training setup are introduced in order to
enable RL in real-world electric drive control problems. In particular, a rapid control prototyping toolchain
is introduced allowing fast and flexible testing of arbitrary RL algorithms. This simulation-to-experiment
pipeline is considered an important intermediate step towards introducing RL in embedded control for
power electronic systems. To highlight the potential of RL-based drive control, extensive experimental
investigations addressing the current control of a permanent magnet synchronous motor utilizing a deep
deterministic policy gradient algorithm have been conducted. Despite the early state of research in this
domain, promising control performance could be achieved.

INDEX TERMS Edge computing, electric drive, machine learning, optimal control, power electronics,
reinforcement learning.

I. INTRODUCTION
Optimal electric motor control is of prime interest for var-
ious applications (e.g., automation and automotive engi-
neering) that depend on high-performance drive systems.
State-of-the-art motor control methods like linear quadratic
regulators (LQR) [1], [2], model predictive control (MPC) [3],
[4] or closed-form tuning of proportional-integral control
(PI-control) [5], [6] require an accurate drive model for
their design. While the latter is relatively more robust than
MPC or LQR approaches due to its integral feedback, high-
performance PI control still requires an exact model rep-
resentation [7]. On the contrary, severe deviations between
the real drive system and the drive model can occur due to

plenty of reasons such as production tolerances or operation-
dependent system behavior changes (e.g., temperature, mag-
netic saturation or wear-and-tear influences). In some cases
a model might be even completely unknown, e.g., when a
new motor is connected to a power electronic converter (self-
commissioning).

In contrast, model-free reinforcement learning (RL) tech-
niques do not require a mathematical motor model at all.
RL motor controllers are completely data-driven and learn
an optimal control policy directly from the drive’s response.
Also, secondary and parasitic effects like iron saturation, iron
losses, the skin effect, or influences by nonlinear inverter be-
havior can be learned and directly compensated by RL control
without requiring domain expert knowledge in this field.
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Moreover, many RL algorithms allow background plan-
ning [8], i.e., the control inference (evaluating a control policy
function) is decoupled from the learning process (a policy up-
date step). Compared to MPC as a planning-at-decision-time
approach, this relaxes real-time requirements and allows more
implementation flexibility since learning the control policy
can be executed asynchronously to the control inference.

A. RELATED WORK
Recent publications on this topic have shown that RL ap-
proaches already reach standard control performance in sim-
ulation [9], [10]. In particular, [9] provides a basic proof
of concept of the methodology in the motor control context
while [10] contributes to the development of an open-source
drive system simulation toolbox using the OpenAI Gym stan-
dards [11] to test and train RL agents1. Such a simulation-
based training pipeline can be used to derive RL-based control
in an offline fashion, i.e., based on (simplified) motor models.
However, deploying an offline-learned RL agent on a real-
world drive application leads to the same drawback of limited
model accuracy as discussed with the state-of-the-art control
approaches. Previous contributions have not investigated the
online training of RL-based control using real-world motor
drive feedback on a fully experimental basis.

The transfer of RL algorithms from simulation to real-
ity causes several new challenges that have to be faced, as
summarized in [12]. In the case of electric motor control,
mostly real-time requirements, safety constraints, measure-
ment noise and system delays are of interest. Although an
offline, simulation-based pre-training can be utilized in or-
der to speed up the online training on the real physical sys-
tem [13], the initial control performance after the transfer is
non-optimal if the simulation model is not accurately match-
ing the real-world system behavior. As will be discussed in
Sec. II, this model mismatch is a prominent problem in drive
applications.

Popular RL examples as AlphaGo [14] or other game-
related approaches (e.g., [15]) do not face any real-time re-
quirement. In drive control, however, the typical turnaround
time ranges from 10200 μs. Due to this real-time constraint,
training carried out directly on the real-time hardware be-
comes infeasible. Hence, the control policy inference and the
learning have to be decoupled and implemented on different
time scales - a batched RL training [16] is necessary.

Safety constraints are another crucial point in motor con-
trol. For example, electric currents exceeding the limits of the
drive might destroy it due to rapid overheating. RL algorithms
do not consider constraints inherently. For instance, [17]
and [18] face this issue by adding a safety layer correcting
actions that violate constraints. Moreover, [19] forces the
agent to learn the constraints during training by shaping the

1While the term agent was coined from the field of computer science, the
term controller originates from the engineering sciences. We use both terms
synonymously in the following.

FIGURE 1. Simplified schematic of the overall control and drive system
structure; note that all gray shaded parts are control-related while from
the RL agent’s perspective, both the coordinate transforms and PWM are
part of the environment, i.e., they are pre/post-processing steps outside
the RL agent’s core software.

reward function, which penalizes policies exceeding the safety
bounds.

Furthermore, electric motor control systems contain mul-
tiple inherent forms of delays, e.g., calculation time of the
controller hardware or the modulation scheme of the power
electronic converter [20]. These can be modeled as a one-step
delay in the application of the agent’s actions, as described
in Sec. IV-C. Such delays slow down the learning process
of RL agents significantly. To tackle a τd -step delay before
actions take effect, [21] appends the last τd applied actions to
the observation of the RL agent. Alternatively, [22] uses re-
current neural network agents and a special reward allocation
to properly assign reward to past actions.

In summary, the overwhelming majority of investigations
in the field of RL are based on simulations without any in-
teraction to real-world physical systems [12]. Addressing and
solving issues when transferring RL-based control approaches
to real-world applications, specifically for the field of electric
drive systems, is therefore an important object of research in
order to be able to transfer data-driven control techniques into
industrial processes in the long run.

B. CONTRIBUTION
In this work, the transfer from simplified offline simulation-
based training to online training and inference on real motor
drive systems is presented. A Python-based rapid control pro-
totyping toolchain2 is developed that allows online training
on a remote platform (edge computing) using measurements
obtained from an embedded controller (cf. Fig. 1). Therefore,
the training process is executed asynchronously in the back-
ground. This toolchain allows to rapidly test and validate vari-
ous RL algorithms in the context of electric drive control with-
out the necessity to implement the training process within the

2The full rapid control prototyping toolchain with an extended technical
documentation is available as an attachment to this publication.
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embedded software. Hence, only the control inference (policy
evaluation) is required to be executed in real time on the
embedded controller while the learning step (policy improve-
ment) is decoupled. For demonstration purpose, a batched
version of a deep deterministic policy gradient (DDPG) algo-
rithm [23] is extended to learn the current control policy for a
permanent magnet synchronous motor (PMSM) that is fed by
a B6-bridge power electronic converter. Further innovations
of this contribution handle the safety constraints and system
delays in the case of RL motor control including extensions
to the baseline DDPG algorithm [23]. In addition, the impact
of offline-based pre-training using a drive model is compared
to randomly initialized DDPG agents. The functionality of
the presented architecture from Fig. 1 is successfully tested
on a laboratory electric drive test bench. The data-driven
DDPG-based controller is compared against state-of-the-art
linear field-oriented control and model predictive control ap-
proaches. The presented rapid control prototyping toolchain
is an important intermediate step in order to accelerate data-
driven control research in power systems. Although an actor-
critic-based RL approach is depicted in Fig. 1 the rapid control
prototyping toolchain can be directly applied to value-based
RL techniques such as (double) deep Q-networks [24], [25],
too. In particular, it allows to seamlessly plug-in and test
many potentially interesting RL algorithms on a Python basis
avoiding cumbersome embedded software implementations of
each and every algorithm. This is especially valuable because
many contemporary RL algorithms are publicly available as
open-source Python code (e.g. Stable-Baselines3 [26], TF-
Agents [27] or Keras-RL [28]) and, thus, can be tested com-
paratively easily on a real, physical system.

C. PAPER STRUCTURE
First, in Sec. II a basic PMSM-based drive model is presented
explaining the basic functioning of the system to be controlled
for non-motor-experts. Moreover, the same model is utilized
within an MPC and a linear feedback approach for comparison
reasons in the later part of the paper. In Sec. III the funda-
mental background of RL in terms of the DDPG algorithm
is summarized followed by extensions and modifications for
batched online learning in Sec. IV. The utilized laboratory test
platform is presented in Sec. V followed by the experimental
results in Sec. VI. Finally, a conclusion on the major findings
and an outlook to future work in the field are given in Sec. VII.

II. DRIVE SYSTEM MODEL
The drive system (cf. Fig. 1), which is used in this work, con-
sists of a B6-bridge voltage source power electronic converter
and a PMSM. In the following, these two main components of
the electric drive are briefly modeled.

A. PERMANENT MAGNET SYNCHRONOUS MOTOR
The mathematical model of the three-phase PMSM can be
simplified using the rotor-fixed dq-coordinates [29]. There-
fore, two transformations are necessary. First, the three phases
xa, xb and xc are transformed to stator-fixed xα , xβ and x0

components with⎡
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Second, a rotational transformation to rotor-fixed variables
xd and xq is performed with the electrical rotor angle ε

xdq =
[

xd

xq

]
=

[
cos(ε) sin(ε)

− sin(ε) cos(ε)

] [
xα
xβ

]
. (2)

(1) and (2) apply to current, magnetic flux linkage and
voltage [30]. The resulting flux linkage ordinary differential
equation (ODE) in dq-coordinates is

d

dt
ψdq = udq − Rsidq − ω�ψdq (3)

with

� =
[

0 −1

1 0

]
. (4)

Here, ψdq is the stator flux linkage, udq is the stator voltage,
Rs is the stator resistance, idq is the stator current and ω is
the electrical angular fundamental frequency.3 The resulting
electromagnetic torque T produced by the motor is

T = 3

2
piTdq�ψdq =

3

2
p
(
ψdiq − ψqid

)
(5)

with the pole pair number p. The ODE for the mechanical
angular velocity ωme is defined by

dωme

dt
= T − Tl

J
(6)

with the load torque Tl and the moment of inertia J . The
relationship of mechanical (εme, ωme) and electrical (ε, ω)
quantities is given by

ω = pωme and ε = pεme. (7)

To fully describe the motor behavior a relationship between
the magnetic flux linkage ψdq and the stator current idq is
required. For many drives a simple linear equation

ψdq = ψPM + Ldqidq (8)

with

ψPM =
[
ψPM

0

]
, Ldq =

[
Ld 0

0 Lq

]
(9)

utilizing absolute inductance values (Ld,Lq) and a constant
permanent magnet flux linkage ψPM can be often used. Con-
sequently, the electrical ODE simplifies to

d

dt
idq = L−1

dq

[
udq − Rsidq − ω�

(
ψPM + Ldqidq

)]
. (10)

In this case, a classical equivalent circuit diagram can be
drawn as depicted in Fig. 2. However, for highly utilized

3Bold symbols denote multidimensional quantities, e.g., vectors or
matrices.
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FIGURE 2. Equivalent circuit diagram of a PMSM in dq-coordinates with
simplified linear magnetic behavior.

PMSM drives, especially in the automotive or aerospace do-
main, significant (cross-)saturation within the magnetic circuit
is occurring [5]. As a consequence, the linear magnetic model
(8) is not valid and has to be replaced by a nonlinear relation

ψdq = f dq
(
idq

)
. (11)

Instead of absolute inductances as in (9), operating point-
dependent differential inductances have to be taken into ac-
count:

Ldq =
⎡
⎣ ∂ψd(idq)

∂id

∂ψd(idq)
∂iq

∂ψq(idq)
∂id

∂ψq(idq)
∂iq

⎤
⎦ =

[
Ldd(idq) Ldq(idq)

Lqd(idq) Lqq(idq)

]
. (12)

The resulting nonlinear current ODE is then

d

dt
idq = L−1

dq

(
udq − Rsidq − ω�ψdq(idq)

)
. (13)

Besides the magnetic (cross-)saturation, other parasitic ef-
fects like temperature influences [31], rotor angle-dependent
flux harmonics [32], tolerances in mass production [33], iron
losses [34], and the skin- and proximity effect [35] are directly
influencing the motor behavior making it a general nonlinear
and uncertain control plant. Since those effects are hard to
model in an analytical closed-form, we will not go into more
details here, but refer to the further technical literature [36].

B. POWER ELECTRONIC CONVERTER
The circuit diagram of the three-phase two-level converter is
given in Fig. 3. A pulse width modulation (PWM) scheme
is used for the generation of the switching commands of the
transistors [20]. Hence, the control actions are the reference

stator voltages a = u∗dq =
[
u∗d u∗q

]T
, which are continuous

variables. The action space is limited by the DC-link voltage
uDC and by six box constraints in stator-fixed coordinates (so-
called voltage hexagon) [20], which translates to a rotor angle-
dependent limitation in dq-coordinates:

g(uDC, ε) ≤
[
ud uq

]T ≤ g(uDC, ε). (14)

FIGURE 3. Three-phase two-level inverter.

Due to the discrete-time control implementation and the
inverter modulation scheme in combination with regular sam-
pling of the relevant states, there is a delay between the
applied control action and the applied voltage at the motor
terminals [5]. This digital control delay is discussed more
deeply and compensated from an RL point of view in the
upcoming Sec. IV. Besides that, the inverter itself is also a
nonlinear actuator since the reference voltage u∗dq from the
control is not perfectly transferred to the applied voltage udq
at the motor terminals due to resistive voltage drops, the anti-
short-circuit interlocking times as well as non-ideal switching
transitions [37], [38]. Hence, the drive system’s two main
components show nonlinear behavior, which is caused by a
variety of parasitic influences of different physical root causes
and, therefore, are hard to fully model during the control
design phase. This motivates the usage of data-driven control
techniques from the field of RL since they do not require a
system model but can directly learn from the interaction with
the physical system.

III. DEEP DETERMINISTIC POLICY GRADIENT
First, it may be noted that both the state and action space
are continuous within the given drive control problem. For
this kind of problem space, the DDPG algorithm is a well
known solution candidate from the RL domain and will be
utilized for demonstrating the online learning rapid control
prototyping toolchain under real-world experimental condi-
tions. Therefore, only a short introduction to the RL in general
and the DDPG in particular is given, while more details can be
found in [8], [23]. The standard pseudocode of the DDPG al-
gorithm is presented in Alg. 1. Additionally, modifications to
the standard DDPG approach that boost the learning process
for real-time motor control are presented in Sec. IV.

The classic RL setup consists of an agent and an environ-
ment. The environment can be modeled as a Markov decision
process (MDP) (cf. [8]). At each discrete time step k, the agent
receives an observation ok = f (sk ) from the environment, i.e.,
measurements, reference signals and further quantities in a
feature engineering sense derived from the environment state
sk . The agent calculates an action ak (i.e, the actuating vari-
able) with its internal policy function ak = π(ok ), and receives
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a reward rk+1 for applying it to the environment. The reward
indicates how well the agent is performing, and it is thus
comparable to the MPC framework’s cost function, albeit the
latter is minimized rather than maximized. From a control
engineering perspective, the reward signal rk is an important
degree of freedom which requires proper design to ensure that
the RL agent is learning a suitable control policy. The agent’s
goal is to find an optimal policy ak = π∗(ok ) which maps each
observation to the action that maximizes the return gk , which
is the expected discounted cumulative reward over time:

gk =
∞∑

i=k

γ i−kEπ [Ri|Oi = o,Ai = a], (15)

with the discount factor γ ∈ [0, 1[. Above, E[·] is the expecta-
tion of the reward Ri (capital symbols denote random variables
in Sec. III) given the random observations Oi and actions Ai

with realizations o and a. This relation can be rewritten in the
form of the Bellman equation [8]:

q(ok, ak ) = Eπ [Rk + γ q(ok+1, ak+1)︸ ︷︷ ︸
gk+1︸ ︷︷ ︸

gk

], (16)

wherein q is the action value function that performs a map-
ping from the momentary observation ok and action ak to the
expected return. This equation is of fundamental importance
for many RL methods, as it condenses the problem of finding
an optimal sequence of actions to the problem of finding the
single optimal action at each time step.

The DDPG algorithm is an efficient RL algorithm for con-
tinuous observation and action spaces that separates action
selection and policy evaluation [23]. Action selection is per-
formed by the actor πξ : ok → ak , which is a policy function
approximator with parameters ξ. Policy evaluation is carried
out with use of the critic qζ : (ok, ak )→ gk , which is an action
value function approximator with parameters ζ. Both function
approximators are usually artificial neural networks (ANN)
whose specific topologies (general type of ANN, number of
neurons per layer and number of layers, learning rate, etc.)
represent an important subset of the agent’s hyperparame-
ters. The critic learns to predict the return for observation-
action pairs (ok, ak ) [23]. It can be trained by minimizing
the cost function Jc for given transition experiences ek =
(ok, ak, rk, ok+1, dk+1):

min
ζ

Jc

s.t. Jc = 1

|B|
∑
ek∈B

(
qζ (ok, ak )

−
(

rk + γ (1− dk+1)qζtarget

(
ok+1,πξtarget

(ok+1)
)

ĝk

)2

︸ ︷︷ ︸ (17)

where in B is a batch of collected experiences and dk is a
done signal, which is equal to one (dk = 1) if the observation
ok belongs to a terminal state and zero (dk = 0) elsewise. The

structure of the critic’s cost function (17) indicates that the
critic qζ is trained by supervised learning, under the assump-
tion that the estimated return ĝk is an accurate approximation.
Training the critic is based on the concept of bootstrapping,
meaning that the critic qζ is improved towards ĝk by using an
estimation of the upcoming action value, as proposed by (16).
As this method can lead to unwanted parameter oscillations, it
has been proven to be good practice to dampen the parameter
updates within the critic that is used to calculate ĝk . This intro-
duces the concept of the target critic qζtarget, whose parameters
ζtarget track the actual critic parameters ζ with low-pass filter
characteristic

ζtarget ← (1− ρ)ζtarget + ρζ, (18)

with damping parameter ρ ∈]0, 1] [15] [23].
When satisfactory action value estimation can be assumed,

this knowledge can be used to optimize the actor πξ . The
task of the actor is to simply choose an action such that
qζ (ok,πξ (ok )) is maximized. This leads to a very straightfor-
ward actor cost function Ja:

min
ξ

Ja

s.t. Ja = − 1

|B|
∑
ok∈B

qζ (ok,πξ (ok )). (19)

Also for the actor it is often helpful to make use of target
parameters ξtarget. Since the actor optimization (19) is based
on the assumption that the critic outputs action value estima-
tions that fit the policy, harsh changes to the actor could lead
the critic to get out of touch with the updated policy. Inac-
curate action value estimation would then disrupt the training
process. Thus, it is usually advised to also dampen the actor
parameters when training the critic, as denoted in (17).

It should also be noted that the DDPG agent represents
a parametric control algorithm defined by the actor network
weights ξ. To enable online-suitable control, only the actor
inference πξ : ok → ak needs to be executed under real-time
requirements while the learning of the actor and critic can be
executed asynchronously.

REPLAY MEMORY
During training, the actor applies actions to the environments
and receives transition experiences (ok, ak, rk, ok+1, dk+1).
These are stored in a replay memory D, which buffers the last
experiences the agent has gathered. From this memory, multi-
ple experiences are sampled in a training batch B to train the
actor and critic networks. Those samples are independently
drawn from the memory and are not necessarily temporally
consecutive. Random sampling of multiple experiences from
a longer history decorrelates the experiences in one training
batch from each other, which results in gradient updates with
more general improvement.
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EXPLORATION NOISE
To avoid getting stuck in a local optimum, exploratory be-
havior is required. This is implemented by superimposing the
actor’s action choice ak with random noise. Here, the discrete-
time zero-mean Ornstein-Uhlenbeck-Process (OU) [39]

ãk = ak + nk−1 − θnk−1
t + σ
√

tN (0, 1)︸ ︷︷ ︸

nk

, (20)

is used as exploration noise with the sampling time 
t , the
stiffness θ , the diffusion σ and the standard Gaussian noise
process N (0, 1), respectively. The benefit of this process is
that it is time-correlated. Having non-correlated random noise,
which is the case for, e.g., standard Gaussian noise, will lead
to fewer exploration throughout the observation space because
consecutive actions are more likely to cancel each other out.

Algorithm 1: DDPG Pseudocode.
Randomly initialize weights of qζ (o, a) and πξ (o)
Initialize target weights accordingly: ζtarget ← ζ,
ξtarget ← ξ

repeat
observe ok

select ak = πξ (ok ), calculate ãk according to (20)
execute ãk and observe rk and ok+1
if ok+1 is terminalthen

set dk+1 = 1 and reset the environment
else

set dk+1 = 0
end if
save state transition experience to replay buffer
D← (ok, ãk, rk, ok+1, dk+1)

sample experience batch B ⊂ D
update ζ by minimizing Jc on B, (17)
update ξ by minimizing Ja on B, (19)
update weights of target networks:
ζtarget ← (1− ρ)ζtarget + ρζ
ξtarget ← (1− ρ)ξtarget + ρξ

k← k + 1
until convergence condition is met

IV. REINFORCEMENT LEARNING MODIFICATIONS
In this section, the modifications to the standard DDPG train-
ing are presented which boosted the real-world training pro-
cess. Although the modifications are discussed based on the
DDPG framework, they are equally useful and applicable for
other RL algorithms in the motor control context.

A. BATCHED AND REMOTE REINFORCEMENT LEARNING
RL agents are usually trained after each iteration [23]. How-
ever, this is not possible with the utilized real-time setup,
because waiting for a policy update every step would violate
the real-time constraints of the controller. In the subsequent
experimental tests, the controller is operating at 10 kHz (cf.
Table 1), i.e., all computations on the embedded hardware

TABLE 1. Test Bench Parameters and Nameplate Test Motor Data

TABLE 2. Test Bench Setups With the Noise Parameters σ and θ

TABLE 3. DDPG Learning Parameters

need to be executed in less than 100 μs. This includes the
measurement of observations, computation of actions and re-
wards, safety routines and the application of actions to the
converter.

Thus, the training and the control inference of the
DDPG agent shall be split up (cf. Fig. 1), since only the actor
network is required to be implemented within the embedded
controller. As shown in [9] the actor needs only a rather
shallow ANN for function approximation. Hence, evaluating
the actor ANN under hard real-time requirements is not a
problem. The training of the DDPG agent, i.e., improving the
actor and critic, is shifted to an asynchronous background
task which is not required to be executed in real-time. In
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TABLE 4. DDPG Artificial Neural Network Architectures

order to enable a rapid control prototyping pipeline that will
evaluate different RL algorithms in the future, this background
task is implemented on a flexible remote workstation with
a non-real-time operating system. However, without loss of
feasibility, the background task could easily be implemented
on the embedded hardware, for example on system-on-a-chip
(SoC) solutions with auxiliary machine learning hardware
accelerators.

1) CONTROLLER
All the functions that belong to the environment in the RL
setting are located on the controller. This includes the reward
calculation, the generation of current references as well as
observation of limits with a safety mechanism. Moreover, the
controller contains DDPG agent functionality. These are the
actor network to control the motor and the exploration noise
to ensure exploratory behavior.

Up to τb consecutive experiences are recorded in a batch as
one episode, while the RL controller is active. Next, the expe-
riences are sent to the remote DDPG agent. The RL controller
receives updated weights and uses them for a new recording.

Another important functionality of the controller is the
safety mechanism to interrupt the RL control by the actor
network, if motor constraints are violated (e.g., overcurrent or
overheating). This terminates an episode of the RL agent. In
this case, fewer than τb samples are sent to the remote agent.
When the motor is set into a safe state and the weights are
updated, the RL controller takes over the control again.

2) REMOTE DDPG AGENT
The remote DDPG agent contains most of the components of
the DDPG agent described in Sec. III. A copy of the actor
network, the critic network, the target networks and the replay
memory are located in the remote DDPG agent. It receives
the batches of experiences. Then, each experience is stored in
the memory buffer, and a training step is performed like it is
done in the regular DDPG algorithm until all experiences are
processed. The remote DDPG agent sends the updated actor
weights back to the embedded controller.

B. ACTOR AND CRITIC PRE-TRAINING
Training on real motors can be costly and also dangerous in
case of limit violations. To speed up the training, pre-trained
weights can be used. One option is to initialize weights with
imitation learning [40]. The RL agent is trained to imitate a

FIGURE 4. Concurrent execution of agent and environment.

FIGURE 5. Concurrent execution mapped to alternating execution.

target controller with supervised learning. Another possibility
is to make use of a simulative environment [10]. Due to the
fact that a simulative motor model is only an approximation,
a control error arises when a control algorithm is ported unal-
tered from simulation to reality. However, this can result in ex-
pedient initial weights for the beginning of the training, which
might speed up the training significantly. Furthermore, safety
critical constraints can be pre-learned in the simulation. This
leads to fewer violations of safety limits during real-world
training.

C. DIGITAL CONTROL DELAY COMPENSATION
Usually, RL agents interact with their environment in an al-
ternating execution order. The environment responds with an
observation and does not change its state while the agent cal-
culates the next action. This is valid for typical RL problems
like computer games or control problems with system dynam-
ics that are much slower than the speed of action calculation.

Here, however, an action is always applied one time step
delayed due to the digital control delay in the system. When
the agent applies the action a0 that was calculated based on
the last observation o0, the real environment state has changed
already and displays the next observation o1. Consequently,
the effects of action ak can be observed in ok+2 and not
instantly in ok+1 (cf. Fig. 4). Therefore, the reward rk and
terminal flag dk+1 are independent of the action ak . Hence, the
interaction between agent and environment can be sketched
with a concurrent scheme, see Fig. 4. Ignoring this fact can
lead to longer and more unstable training. For example, the
agent could see a high instant reward rk for an action ak that
would actually lead to a low reward rk+1.

The concurrent execution can be mapped to the alternating
execution if the environment is modeled with a one-step delay
as shown in Fig. 5. To overcome this additional hurdle, two
changes have been implemented in the DDPG agent.
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1) EXPERIENCE MODIFICATION
The experience ek definition from (17) is extended to ek =
(ok, ak, rk+1, ok+2, dk+2). Having added rk+1 and ok+2, an
experience contains the reward and the next observation after
the action ak has actually taken effect on the electric motor.

2) ACTION FEEDBACK
Furthermore, the action ak−1 which has been played in the
last cycle will be active in the next timestep. This action
is appended to the observation o′k = (ok, ak−1) as proposed
by [21]. With this information, the agent is able to estimate
how the system will behave in the next time step. For example,
after applying actions that lead to steep changes in the electri-
cal current the agent might better use smaller actions to reduce
overshooting the reference in the next time step. The actions
from time step k have not had any effect on the system due
to the digital control delay. A simple feed forward network
as actor or critic approximation model cannot remember the
previously played action. Therefore, it is fed back into the
networks inputs as part of the observation. This allows the
agent to comprehend causal relationships again [9].

D. REWARD FUNCTION AND SAFETY CONSTRAINTS
It must be ensured that the RL controller learns to comply
with the safety constraints of the motors [12]. In electric motor
control, especially the current constraint

i2d,k + i2q,k ≤ i2max (21)

is important to avoid overcurrent that could destroy the mo-
tor or the feeding inverter including the power supply (e.g.,
traction battery). To ensure that a trained RL agent complies
with these constraints, a reward shaping approach is used [10].
In case of a limit violation, an additional penalty term rlim is
added to the reward of

rk = w1

∑
j∈{d,q}

√
|i∗j,k − i j,k|

imax
+ w2rlim. (22)

Here, {w1,w2} ∈ R < 0 are weighting parameters to bal-
ance the regular and the penalty component of the reward
function.

The regular part of the reward function (22) is represent-
ing the motor current control problem following given refer-
ence trajectories i∗j (e.g., from superimposed control loops).
The root-function (22) delivers improved early and long-term
training performance compared to the standard mean-squared-
type rewards which are most common in tracking control
problems. In particular, the steady-state control error can be
reduced significantly compared to a mean-squared control
error reward [10].

V. EXPERIMENTAL TEST SETUP
In this section, the experimental setup is presented. First of
all, the workflow from simulation-based investigations via
real-time controlled software-in-the-loop (SIL) models to the
final test bench training session is described. Afterwards, the

FIGURE 6. Setup of the development process including the online RL
remote rapid control prototyping toolchain.

specific hardware architecture including the motor, controller
and workstation is presented. Finally, important implementa-
tion details for the tests are described.

A. WORKFLOW FROM SIMULATION TO THE TEST BENCH
The development of RL motor controllers can be split into
three steps as shown in Fig. 6. First, the gym-electric-motor
toolbox [10] can be used with the standardized interface
from OpenAI Gym [11]. Therewith, many different general-
purpose RL agents from several Python libraries can be
adapted and tested easily for this use case. Also, different
investigations (e.g., on training parameters and network ar-
chitectures) can be executed in a simple and quick manner.
Afterwards, selected RL algorithms and parameter specifica-
tions are tested with the presented remote training setup on a
real-time controlled SIL model utilizing an embedded rapid
control prototyping hardware system. The batched learning
under the real-time control and the proper transfer from a pure
simulation framework to an embedded hardware framework
is tested with this setup. Furthermore, the RL agent’s weights
are pre-trained in the SIL simulation. Finally, the chosen al-
gorithm is trained and tested on the test bench. The training
on the workstation as well as the controller can stay the same
when exchanging the SIL model with the real motor. Solely
the actions of the actor are applied to the laboratory inverter
and the observations are received from measurement sensors.

B. HARDWARE SETUP
The nominal parameters of the test bench equipment and
the motor used for experimental investigations are given in
Table 1, while an illustrating picture of the test bench setup
with the utilized (interior) PMSM motor in the background is
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FIGURE 7. Test bench with the used PMSM in the background.

FIGURE 8. Differential inductances of the highly utilized test motor
obtained from offline characterization.

shown in Fig. 7. To highlight that the motor under test shows
significant (cross-)saturation effects within the normal oper-
ation range, the offline-identified flux and differential induc-
tance maps are shown in Fig. 8 and Fig. 9. More information
regarding the motor under test including open-source charac-
terization measurement data highlighting its highly nonlinear
behavior can be obtained from [41]. However, it should be
noted that the offline-obtained data from Fig. 8 and Fig. 9 have
not been made available to the RL training.

The controller and the SIL simulation models for the pre-
training of the agents are built in Simulink and run as auto-
mated and exported C-code on a dSPACE MicroLabBox with
a real-time kernel in the pre-training sessions. During the test
bench investigations a similar dSPACE DS1006MC system
is used, since it is already fully integrated into the labora-
tory test bench. Both, the MicroLabBox and the DS1006MC,

FIGURE 9. Flux maps of the highly utilized test motor obtained from
offline characterization.

FIGURE 10. MAE of the pre-training in the SIL model.

FIGURE 11. MAE between normalized actual and reference currents
during training on the laboratory test bench.

are commercial off-the-shelf embedded hardware products
for rapid control prototyping. Hence, they speed up the de-
velopment process since the embedded C-code must not be
written manually. As shown in Fig. 1, only the DDPG actor
networks need to be implemented on the embedded hardware,
while the actual RL training pipeline is executed remotely.
Besides the DDPG actor, the embedded control framework
incorporates the usual general measurement processing and
safety protocols for motor control applications. A Python-
based script controls and automates both the measurement
recordings (gathering RL experience samples) and the actor
weight updating using the ControlDesk interface, which is
part of the dSPACE rapid control prototyping environment.

It should be noted that the specific implementation
is adapted to dSPACE hardware and software, however,
the general concept of edge computing-based RL with
an asynchronous training pipeline decoupled from the
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embedded actor is generalizable to any hardware setup. The
main advantage is that the learning process can be executed on
standard computer hardware with a full operating system (e.g.,
Linux) such that testing and tuning of different RL algorithms
is easily possible without the need to transform the actual
learning algorithms into the embedded world.

C. SOFTWARE SETUP
The remote DDPG agent on the workstation is a modified
version of the DDPG implementation in keras-rl [28]. The
DDPG agent offers several parameters which are summarized
in Table 3. The actor and critic are structured as multi-layer
perceptron ANNs with their specific designs summarized in
Table 4. Hence, the RL agent is learning a direct, state-free (no
internal integral action or similar) mapping between observa-
tions and actions to maximize its return. The configuration
from Table 4 is only an example and is not to be understood
as the best possible actor and critic configuration. Further
ANN types (e.g., recurrent or convolutional ANNs) as well as
the size of the networks (number of neurons and layers) can
be investigated in terms of a superimposed hyperparameter
optimization, as outlined in Sec. VII.

The applied action a =
[
u∗d u∗q

]T
is the reference voltage

generated for the inverter. The observations shown to the agent
consist of the following quantities:

o= (id, iq, ω, ad,k−1, aq,k−1, i∗d, i∗q ). (23)

While the currents and the motor speed are standard measure-
ments, the last applied voltage vector (action ak−1) is also
utilized as an observation. This enables the RL agent to learn
and compensate for the digital control delay (cf. Sec. IV-C).
Finally, the reference current values are also part of the obser-
vation space to allow proper current control.

All quantities in the observation space are normalized to
a range of [−1, 1] with their limits. In the training, step-like
reference changes i∗dq ∈ [−250A, 250A] are updated every
100ms from a uniform distribution (cf. [9], [10]). The reward
function (22) is chosen. As exploratory action noise an OU
process (20) is used with variable parameters θ and σ in the
different experimental sessions and without a mean μ = 0.

D. PRE-TRAINING OF THE MOTOR CONTROLLER
Three different RL agents are pre-trained with a SIL mo-
tor model, in order to evaluate whether the simulation-based
pre-trained RL controller is learning faster compared to ran-
domly initialized actor and critic networks during experimen-
tal investigations. During the training, the noise is reduced
to σ = 0.1 after 100000 and to σ = 0.0 after 200000 steps.
The pre-trained agents of training sessions A and B are trained
on the networks as shown in Table 2. The pre-trained agent
C has one additional hidden actor layer. For agent B the motor
model inductance values were reduced to a third compared to
case A to investigate parameter sensitivity. After the transfer
of the pre-trained agent to the real motor, a better performance
in the nonlinear regions is expected, because the effective

inductances are reduced at higher current due to magnetic
saturation. As shown in Fig. 10, all pre-trained models show
a similar mean absolute error (MAE) averaged over 5000
consecutive samples after 250000 training steps.

VI. EXPERIMENTAL INVESTIGATION
The goal of these experimental investigations is to give a
proof of concept for the presented simulation-to-experiment
toolchain and to show that RL motor controllers are feasible,
not only in simulation, but also in real experiments. Further-
more, the influence of different training parameters is inves-
tigated. The effects of pre-trained networks as well as dif-
ferent OU-noise parameters and two different actor network
topologies are examined in the experiments. All subsequent
experimental training and cross-validation results are obtained
at a fixed motor speed of n = 1000 1/min (maintained by a
directly coupled speed-controlled load machine).

A. DDPG TRAINING ON A REAL MOTOR
A number of different training scenarios have been evaluated
which are listed in Table 2. In case a, the controller is trained
only on the real motor for 250000 steps. In the other cases,
pre-trained networks from Sec. V-D are used for the initializa-
tion of the real motor training. The different noise parameters
are also given in the table and were kept constant during
the training. In case e, an actor network with one additional
hidden layer is used.

The learning process of the RL controller is analyzed with
the MAE during training. In Fig. 11, a large difference be-
tween the pre-trained cases and case a can be seen in the
beginning. This is expected and shows that a simulative pre-
training can be helpful in the beginning to speed up the train-
ing process on the real system. However, at the end of the
training, the MAE s are all in the same range. This shows
that complete training on a real motor is possible. The lowest
MAE is achieved in case d . It seems to be nearly constant dur-
ing the last 100000 training steps. The used exploration noise
has faster dynamics compared to the cases a, b and c which
seems to lead to better exploration. Also, the variations in
the MAE during the training are smaller. It can be inferred
from this that the exploration noise has a large impact on the
training. Also case e with similar noise to case d performed
well during the training with the larger actor network. Prior to
these experiments, several tests with the larger network failed,
which was not the case with the smaller network. Hence, the
smaller network seems to be more robust and sufficient for
this RL motor controller. Moreover, it should be noted that the
DDPG algorithm requires active exploration to learn some-
thing, i.e., if the OU-noise is deactivated while the DDPG
algorithm still actively performs policy updates there is a high
likelihood that the agent diverges. Hence, when the learning
is converging into steady state, both the exploration noise and
the policy updates should be discontinued. In this case, the
actor becomes a static policy (mapping observations to actions
by the feed-forward ANN from Table 4) until active learning
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and exploration are re-activated again (e.g., if the rewards are
getting worse due to control plant changes).

Based on the various experimental training runs, a DDPG
setup was selected for the subsequent transient and steady-
state tests that delivered the comparatively best performance.
The parameter setup used in the following is summarized in
Table 3 and Table 4. Since the conceptual presentation of
a rapid control prototyping pipeline for data-driven control
approaches is the main focus of this contribution, it should
be mentioned that no systematic hyperparameter optimization
or feature engineering was performed for the DDPG con-
troller, i.e., it can be assumed that the performance of this
model-free controller can be further increased within future
investigations.

B. COMPARISON TO STATE-OF-THE-ART CONTROLLERS
Finally, the DDPG-based controller is set against a lin-
ear field-oriented approach using PI controllers [42] and a
continuous-control set (CCS) MPC [4]. For these two model-
based controllers, the discrete-time representation of (13) is
utilized

idq,k+1 =
(

I − L−1
dq (idq,k )Rs
t

)
idq,k

+ L−1
dq (idq,k )T (−
tωk )
t udq,k

+ L−1
dq (idq,k ) (T (−
tωk )− I)ψdq,k (idq,k )

(24)

where xk is the discrete-time sample of a given quantity, 
t

is the time difference between two control cycles (assuming
regular sampling) and I is the identity matrix [43]. To allow
a fair comparison, the model (24) has been accurately param-
eterized using offline motor characterization (cf. Fig. 8 and
Fig. 9) to cover magnetic (cross-)saturation effects and the
inverter nonlinearity [31]. The results of the system identifi-
cation have been made available by look-up tables to the two
model-based controllers.

Using (24) for decoupling the dq-axes by a feed-forward
compensation of the induced voltage [5], two independent PI
controllers for the linear field-oriented approach have been
designed using the symmetrical optimum [42]

Kp,d/q = 2

3

Ldd/qq(idq)

κ
t
, Ki,d/q = 4

9

Ldd/qq(idq)

κ3
2
t

(25)

with Kp and Ki being the proportional and integral gains as
well as κ being the bandwidth design parameter, respectively.
It should be noted that the PI controller is adaptively designed
reacting to parameter changes as denoted in (25). The best
PI controller performance was achieved for κ = 3 by experi-
mental pre-testing at the test bench. Suitable anti reset-windup
measures have been included to prevent an integrator runaway
if the set voltage is clipped by the inverter limits (14).

For the MPC, the discussed control delay is compensated
by an additional prediction step of the system states using (24)
at the beginning of each control cycle. In order to retrieve a

TABLE 5. MRE, MAE and MSE values According to (27) Given a Transient
Test Benchmark (Cf. Fig. 12, Fig. 14 and Fig. 16)

convex optimization problem, the MPC problem definition is

min
a

N∑
k

c(ok, ak ) = min
a

N∑
k

∥∥∥i∗dq,k − idq,k

∥∥∥
2

s.t. idq,k+1 = f (idq,k, ak, . . .), h(ok, ak ) ≤ 0 (26)

where c is a quadratic cost function with respect to the current
reference tracking, f is the system model (24) and h is a linear
inequality action space constraint due to the inverter limitation
as in (14). To solve the linearly constrained quadratic program
(LCQP) (26), the embedded QP solver from the Matlab MPC
toolbox [44], [45] was utilized with N = 1 prediction steps.

C. TRANSIENT TESTS
The trained DDPG agent and the model-based controllers
are tested based on a sequence of random current reference
jumps within the entire left id-iq half-plane. To compare the
following results, different performance metrics are used. The
basic metric is

ρm = 1

100000

100000∑
k=1

∑
j∈{d,q}

∣∣∣∣∣ i∗j,k − i j,k

imax

∣∣∣∣∣
m

(27)

with different power values m applied to the test recordings.
Those are m = {0.5, 1, 2} for mean square root error (MRE),
mean absolute error (MAE) and mean squared error (MSE),
respectively. Note the difference between root mean square
error (RMSE) and mean square root error (MRE). The moti-
vation for the MRE metric arises from its beneficial scaling
effect in the reward function.

The transient benchmark results are summarized in Table 5
and the test time series profiles are shown in Fig. 12 to Fig. 17.
First of all, it should be noted that the DDPG controller can
be operated stably and safely over the entire operating range.
The transient performance is satisfactory and in comparison
the DDPG controller is on par with the MPC but clearly better
than the adaptive PI controller.

It may also be noted that all current measurements show a
rather high level of noise independently of the specific control
approach. This is due to the integrated current measurement
sensors within the utilized voltage source inverter (cf. Table 1)
whose maximum measurement range substantially exceeds
the exemplary test motor’s operation range. Nevertheless, un-
favorable measurement noise is a typical problem in many
industrial applications and a given motor control scheme must
be able to handle it. All three control methods compared
here are able to do so, whereby the RL controller performs
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FIGURE 12. Test episode of the DDPG RL controller with random current
reference changes (fixed speed n = 1000 1/min).

FIGURE 13. Zoom into previous Fig. 12 to highlight the transient
performance of the DDPG RL controller.

FIGURE 14. Test episode of the PI controller with random current
reference changes (fixed speed n = 1000 1/min).

FIGURE 15. Zoom into previous Fig. 14 to highlight the transient
performance of the PI controller.

FIGURE 16. Test episode of the CCS-MPC with random current reference
changes (fixed speed n = 1000 1/min).

FIGURE 17. Zoom into previous Fig. 16 to highlight the transient
performance of the CCS-MPC.
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TABLE 6. Turnaround Times on the Embedded dSPACE System (Using Only
One Core of the DS1006 CPU)

FIGURE 18. Grid of reference points for steady-state tests in the left id-iq
half-plane.

minimally better during the stationary phases than the state-
of-the-art approaches.

Additionally, the controller execution time on the embed-
ded hardware was measured during the transient tests. The re-
sults are summarized inTable 6. As expected, the PI controller
requires the least computational burden whereby the majority
of the execution time is not caused by the actual controller,
but by auxiliary functions (measurement acquisition and pro-
cessing, safety monitoring, etc.). Nevertheless, both the MPC
and DDPG only require marginally more computation time. It
should also be considered that when using parallel computing
devices (FPGA, neural cores, etc.), the calculation time of the
DDPG actor can be reduced compared to the implementation
shown here on a sequentially working CPU.

D. STEADY-STATE TESTS
To evaluate the steady-state performance of the different con-
trol approaches an evenly distributed grid of reference oper-
ating points has been designed as shown in Fig. 18. Each
controller has been operated in each reference point for 2s
given a constant speed of n = 1000 1/min enforced by a
load machine. For quantitative evaluation of the steady-state
controller behavior, the following benchmark quantities are
introduced:

SSE = 1

N

N∑
k=0

∥∥∥∥∥ i∗dq,k − idq,k

in

∥∥∥∥∥
2

,

TDD =
√∑

h �=1 Ih

In
.

(28)

FIGURE 19. Box plots of the SSE distribution of each control technique
given the steady-state references from Fig. 18.

FIGURE 20. Box plots of the TDD distribution of each control technique
given the steady-state references from Fig. 18.

Here, the SSE is the normalized steady-state error between
the reference and the momentary current and the TDD is
the averaged total demand distortion with Ih being the h-th
current harmonic and In being the nominal RMS motor cur-
rent. The TDD is chosen as a benchmark quantity instead of
the total harmonic distortion (THD), since the fundamental
current component may be different depending on the given
steady-state control error which would distort the THD.

The results of the steady-state control accuracy are shown
in Fig. 19. As expected, the PI controller is performing best
due to its integral control action being able to compensate for
any model deviation. The MPC and DDPG approach show
similar steady-state accuracy, whereby the observed stationary
deviations are still tolerable. It should be taken into account
that the MPC has a very precise, adaptive time-discrete mo-
tor model at its disposal, which was hand-picked and pre-
parametrized on the test bench during an offline characteri-
zation. In contrast, the RL-based controller is able to achieve
comparable steady-state control accuracy within a short pe-
riod of training time without any model knowledge, solely
on the basis of the data-driven learning process. Moreover,
it should be mentioned that the stationary accuracy of both
methods can be further increased: For the MPC the coupling
with a disturbance observer [46] is possible, while for the
DDPG controller a comprehensive hyperparameter optimiza-
tion and feature engineering as well as the consideration of
recurrent neural networks in the actor [47] (in analogy to
standard integral controllers) are possible.

In addition, the results regarding the current harmonics
by means of the TDD in steady-state operation are depicted
in Fig. 20. Here, the DDPG controller is outperforming the
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PI and MPC approach, which was already indicated by the
evaluation of the transient test profiles.

E. RESULT DISCUSSION
In summary, the presented exemplary RL agent’s control per-
formance is on par with the established model-based control
procedures. While the MPC approach used here is the state-of-
the-art solution after more than 20 years of active, extensive
research in the field of power electronics, the data-driven RL
controller is at a very early research stage which to the best
of the authors’ knowledge has now been demonstrated for
the first time in a real-world power electronics application.
The fact that a RL-based, model-free controller performs
at eye level compared to MPC without the use of expert
knowledge is therefore an important intermediate step in the
research of data-driven control methods from the machine
learning domain.

The exemplary investigated DDPG agent is only one pos-
sible control approach from the field of reinforcement learn-
ing, which itself has a lot of potential for improvement, be-
cause for this work no hyperparameter optimization or feature
engineering regarding the observation space or the reward
signal has been performed yet. It can therefore be assumed
that further improvements can be realized in the future by
systematic optimization. On the other hand, it should be em-
phasized once again that the central scientific contribution
of this work is the rapid control prototyping simulation-to-
experiment toolchain and the associated experimental proof-
of-concept as a methodical piece in the puzzle to introduce
data-driven approaches in real-world power system control.
It is not claimed that the presented RL performance is out-
performing the MPC approach as the state-of-the-art control
solution at the current point of time.

VII. CONCLUSION AND OUTLOOK
In this work, the transfer of RL electric drive control from of-
fline simulation to online real-world learning was successfully
presented. An RL-based PMSM current controller was experi-
mentally trained solely using a measurement data stream with-
out any expert or model knowledge. Several modifications
to the classical DDPG training algorithm are presented that
enabled the successful online training on a laboratory drive
test bench. The presented rapid control prototyping pipeline
allows fast and flexible testing of RL algorithms since the
learning is shifted to an asynchronous background task. Here,
the used remote workstation is only optional in order to speed-
up the learning process, but the presented training scheme can
be implemented on typical SoC embedded hardware, too. The
embedded part of the RL agent (actor) could be implemented
on a typical laboratory hardware system without any real-time
problems and due to the continuous development of control
electronics with specialized parallel processing units for the
matrix algebra of machine learning (FPGA, neural cores, etc.),
an implementation in typical industrial applications will also
be possible for low-cost applications in the future. Further-
more, it is conceivable to outsource the training process to

an edge or cloud computing framework, which allows com-
pletely new possibilities in the control and monitoring of
power electronic systems.

Moreover, there is much space for future research in this
field. The training process needs to be optimized for sample
efficiency and, therefore, to accelerate the learning process.
An adaptive parameter setting of learning rates and noise
parameters could be part of an upgraded training process. Hy-
perparameter optimization and extended feature engineering
for the RL agent is also very likely to improve the overall
learning and control performance. This includes particularly
the possibility to use recurrent ANNs (with corresponding
internal states / memory cells) as the actor, enabling the RL
agent to learn some kind of integral feedback to minimize
the steady-state control error. Also, investigations regarding
the safety constraints are important for real-world control
engineering applications. Additionally, transferring the RL-
based controller framework to other tasks such as torque or
speed control for PMSM and other motor types including
finite-control-set approaches is highly interesting. And finally,
using the rapid control prototyping toolchain for investigating
the performance of entirely different RL algorithms on an
experimental basis is of prime interest.
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