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ABSTRACT The revolution of artificial intelligence (AI) is transforming major industries worldwide.
With accurate inferencing, AI has caught the attention of many engineers and scientists. Promisingly,
hardware-in-the-loop (HIL) emulation can adopt this type of modeling method as one of the alternatives after
comprehensive investigation. This paper proposes an approach for emulating power electronic motor drive
transients for advanced transportation applications (ATAs) using machine learning building blocks (MLBBs)
without any traditional circuit-oriented transient solver. The more electric aircraft (MEA) power system is
chosen as a case study to validate the real-time emulation performance of MLBBs. Inside MLBBs, neural net-
works (NNs) have been applied to build component-level, device-level, and system-level models for various
equipment. These models are well trained in a cluster and transplanted into the field-programmable gate array
(FPGA) based hardware platform. Finally, MLBB emulation results are compared with PSCAD/EMTDC for
system-level and SaberRD for device-level, which showed high consistency for model accuracy and high
speed-up for hardware execution.

INDEX TERMS Artificial intelligence (AI), field -programmable gate arrays (FPGAs), gated recurrent units
(GRU), hardware -in-the-loop (HIL), insulated -gate bipolar transistor (IGBT), long short-term memory
(LSTM), machine learning (ML), more electric aircraft (MEA), power electronics, real-time systems, re-
current neural network (RNN), silicon carbide (SiC).

LIST OF ABBREVIATIONS
AES All-Electric Ship
ATA Advanced Transportation Application
ATRU Auto-Transformer Rectifier Unit
CRNN Classical Recurrent Neural Network
ESS Energy Storage System
GRU Gated Recurrent Unit
IP Intellectual Property
LR Learning Rate
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MEA More Electric Aircraft
MLBB Machine Learning Building Block
MSE Mean Squared Error

RNN Recurrent Neural Network
SGD Stochastic Gradient Descent

I. INTRODUCTION
Increasing adoption of a renovated power electronic drive
system has been witnessed in the advanced transportation
application (ATA) of more electric aircraft (MEA) [1], [2],
all-electric ship (AES)[3], [4], traction [5], etc. The reason
behind these ATAs is highly related to their lower-cost owner-
ship and substantially increased system reliability. Innovative
power electronics is the key enabling technology in the reduc-
tion of physical weight and fuel usage in ATAs. Thus, there
is an urgent need to develop the hardware-in-the-loop (HIL)
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emulation of these compact power electronic systems under
harsh operating environments.

The biggest challenge of the current HIL emulation tech-
nique is the limitation of the computation power based on
the traditional electromagnetic transient (EMT) algorithms.
To be more specific, the increasingly integrated power elec-
tronic system introduces excessive system nodes into the
circuit network, which results in heavy execution delay for
getting the final solution. Recently, the development of arti-
ficial intelligence (AI) and its application-specific integrated
circuit (ASIC) [6] give a new possibility to represent the
next-generation circuit solver. These newly developed AI neu-
ral network (NN) models are forecasting methods based on
nonlinear mathematical equivalent, which has been applied in
the areas of face verification [8], image resolution process-
ing [7], human action recognition [9], and natural language
processing [10]–[12]. The ideally suited hardware for the NNs
inherent massive parallel network structure that can achieve
high-execution efficiency is the field-programmable gate array
(FPGA) which is a configurable logic block (CLB) matrix
with programmable interconnects.

This paper proposes a novel machine learning building
blocks (MLBBs) concept to emulate the power system tran-
sients of ATA on high bandwidth memory (HBM) integrated
high-performance Xilinx Virtex UltraScale+ FPGA hardware
platform. The MEA system is selected as the case study to val-
idate the model accuracy and execution efficiency of MLBBs.
The paper is organized as follows: Section II introduces the
background of machine learning (ML). Section III describes
the modeling method in the ATA system for component-level,
device-level, system-level, and hybrid models. Section IV
studies the parameter design, training skills, and hardware
implementation of MLBBs on the Xilinx VCU128 hardware
platform. Section V shows the results of MLBBs emulation
and comparisons between this method and commercial soft-
ware, and finally, Section VI gives the conclusion.

II. BACKGROUND ON MACHINE LEARNING
In this section, general ML methods for the modeling equip-
ment in power conversion systems are discussed, includ-
ing traditional artificial neural network (ANN) [13], [14]
and recurrent neural network (RNN). As for RNN, there
are three common types: classical recurrent neural network
(CRNN) [15], long short-term memory (LSTM) [16], and
gated recurrent units (GRU) [17]. Although all these methods
are fundamental NNs today, they have different performances
for modeling ATAs. Furthermore, the algorithms and struc-
tures of NNs are illustrated in this section.

A. TYPES OF NEURAL NETWORK CELLS
NNs are designed by imitating the human brain’s neuronal
construction, and the fundamental unit is called a neuron,
as shown in Fig. 1(a). Several independent neurons can be
combined into a traditional ANN layer. Each NN has at least
three layers: input layer, hidden layer, and output layer. Today,
a widespread network called convolutional neural network

FIGURE 1. Neural network structure: (a) ANN; (b) internal structure of
CRNN unit; (c) LSTM; (d) CRNN; (e) GRU; and (f) unrolled CRNN.

(CNN) has become a hot spot of research in many applica-
tions. Compared with CNN, RNNs can deal with information
related to the past and the present. They can learn from the
historical data in a time series and then output their prediction.

In Fig. 1(d), a typical CRNN application unit has a CRNN
cell and sometimes includes an ANN cell counter-intuitively.
This is because the hidden state h transmitted by CRNN cells
has a larger dimension (more information is contained), but it
is not expected in the output. In order to change the dimension
and obtain the desired predicted value y, an ANN cell is neces-
sary. Then, Fig. 1(b) clearly shows how the internal structure
of the CRNN application combines a CRNN cell and an ANN
cell. Obviously, CRNN can be seen as multiple copies of the
same NN cell, and each NN cell passes the message to the next
cell. Therefore, if this loop is unrolled, it can be displayed as
a list of NNs as shown in Fig. 1(f).

LSTM is a designed RNN to solve gradient disappearance
and gradient explosion during long sequence training [18]. In
Fig. 1(d), the calculated Z f ( f represents forget) is used as the
forget gate to control the value left or forgotten in Ct−1(also
known as cell state) of the previous state. Then, the selected
gating signal is controlled by Zi (i stands for information). It
mainly selects and memorizes the input Xt and Ht−1, which
records the important information and drops others. Finally,
the output gate, controlled by Zo, scales Ct (changes through
a tanh activation function) obtained in the previous stage.

As shown in Fig. 1(e), GRU, another popular kind of RNN,
was proposed in [17]. It is a substitute for LSTM with long-
term predictive capability, which can be applied to time-series
prediction (e.g., traffic flow prediction [19]). The forget gate
Z f and the input gate Zi in LSTM are combined into a sin-
gle update gate Z in GRU, which makes GRU simpler than
LSTM. The reset matrix R is obtained from input Xt and
previous state Ht−1, then it resets information in [Xt , Ht−1] as
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TABLE 1. Comparison of ML Models With Time-Series Signals

H′. Similar to the reset stage, the update matrix Z is calculated
by input Xt and previous state Ht−1. After that, the present
hidden state Ht is updated by Z, Ht−1 and H′. The comparison
of these NNs with time-series inputs is shown in Table 1.
Among these NNs, ANN is the simplest NN with minimum
execution time and accuracy but cost maximum resource con-
sumption. As for RNNs (CRNN, LSTM, and GRU), the more
accurate it is, the more complex the structure, the longer
the execution time, and the more resources consumption it
needs. Furthermore, LSTM and GRU have the capability of
long-term prediction.

B. COMPLEXITY OF NEURAL NETWORK CELLS
From Fig. 1, it is clear that the calculation burden of differ-
ent kinds of RNNs vary with their structure. Generally, the
complexity for NNs algorithms is studied and displayed as
O() (e.g., O(n3) is the complexity of the linear ANN with
one hidden layer and the matrix multiplication). However, the
complexity function O() can not demonstrate the precise exe-
cution times because O() only focuses on the function or the
orders of magnitude (e.g. O(n), O(n3), O(log(n)), etc.). The
general structure RNNs and their complexity are classified
in [20]. Their complexity measurement is divided into three
parts: recurrent depth, feedforward depth, and recurrent skip
coefficient [20]. In this paper, the recurrent skip coefficient is
trivial since the number of layers is 1, which will be further
discussed in Section IV, and the accurate execution time for
each kind of RNN cells mainly depends on the feedforward
depth. The execution time expressed as T is given as:

TANN = i · h · (2h − 1) + o · h · (2h − 1) + o · Ttanh

≈ 2i · h2 + 2o · h2 + o · Ttanh, (1)

TCRNN = i · h · (2h − 1) + h2 · (2h − 1) + h2 + h · Ttanh

≈ 2i · h2 + 2h3 + h · Ttanh, (2)

TLST M = 4(i + h) · h · (2h − 1) + 3h2 · (2h − 1)

+ h2 + 2h · Ttanh + 3h · Tsigm

≈ 8i · h2 + 14h3 + 2h · Ttanh + 3h · Tsigm, (3)

TGRU = 3(i + h) · h · (2h − 1) + 4h2 · (2h − 1) + 2h2

+ i · h · (2h − 1) + h · Ttanh + 2h · Tsigm

≈ 6i · h2 + 14h3 + h · Ttanh + 2h · Tsigm, (4)

where i, h and o mean the input size, the hidden size and the
output size of NN, respectively. Then, Ttanh and Tsigm are the
execution time of activation function tanh() and sigmoid ().

For n × m matrix N and m × p matrix P, their multiplica-
tion has n × m × p times multiplications and n × (m − 1) × p
times additions. Therefore, from Fig. 1(a), (d), (e) and (f),
the execution times of NN cells can be analyzed by matrix
multiplication.

III. MACHINE LEARNING MODELING FOR ATA
Among ATAs, the MEA is a promising system because of its
straightforward and energy-saving structure, which has been
widely studied [21]–[23]. Hence, the ATA topology similar
to that of the Boeing-787 MEA microgrid [24] is taken as
the case study in this paper. In Fig. 2(a), the whole system
consists of a synchronous generator, three auto-transformer
rectifier units (ATRU), two permanent magnet synchronous
motor (PMSM) drive systems, and an energy storage system
(ESS). All kinds of equipment can also be classified into
three categories of MLBBs: component-level, device-level,
and system-level. The classification is based on the complex-
ity and the function of these equipment. Then, to model these
equipment, a certain kind of NN technology can be applied, or
one equipment can be modeled as a hybrid model. The whole
system is built in PSCAD/EMTDC to obtain the dataset for
system-level ML models’ training. Then, the particular part,
the ESS, is built in SaberRD for device-level dataset.

A. COMPONENT-LEVEL MODELS
Component-level ML models for ATA are built for only two
components: inductor and capacitor. As the structure of these
components is simple, component-level models are the sim-
plest ML models. In Fig. 3(a), the traditional inductance
model can be described as (5); for the discrete-time solution,
the difference equation can be obtained as (6) [25], given as:

vm − vn = L
dimn

dt
, (5)

vm(t ) − vn(t ) + vm(t − �t ) − vn(t − �t )

2

= L
imn(t ) − imn(t − �t )

�t
. (6)

To calculate the present value, a history message, marked as
hist (t ) in (7), can be utilized from the solution at the previous
time-step. Finally, the iterative equations are established as (8)
and (9):

histmn(t − �t ) = imn(t − �t )

+ �t

2L
{vm(t − �t ) − vn(t − �t )} , (7)

imn(t ) = histmn(t − �t ) + �t

2L
{vm(t ) − vn(t )} ,

(8)

histmn(t ) = histmn(t − �t ) + �t

L
{vm(t ) − vn(t )} .

(9)
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FIGURE 2. MEA power system: (a) overall system topology; (b) SiC IGBT-based device-level hybrid model; (c) ATRU; (d) ESS; and (e) PMSM drive system.

FIGURE 3. Component-level models: (a) traditional modeling schematic.
(b) component-level ML modeling schematic.

Equations (8) and (9) are applied in the traditional transient
simulation, and they can also be transferred into a CRNN
model, as shown in Fig. 3(b). When the value L is known,
the weights and bias of CRNN can be determined from
(8) and (9) without any training process. Arrows of each
colour in Fig. 3(b) represent different parameters in traditional
equations (8) and (9), which vividly shows how the traditional
model is transformed into the ML model.

B. DEVICE-LEVEL MODELS
Device-level models have the same NN structure as the
system-level models, but two differences should be high-
lighted:

1) Nanosecond-level time-step. The interval is 50 ns to
describe the device-level transient processes. This means in-
creased massive datasets, challenging training, and complex
structures of the device-level models.

2) Enlarged dimension training dataset. The dataset pre-
pared for the detailed models is more demanding to obtain.
For nonlinear silicon carbide (SiC) insulated-gate bipolar tran-
sistor (IGBT) device-level models, the comprehensive current
and voltage waveform during turn-on and turn-off transients
must be included to retrain the models.

In this work, device-level models are applied in the ESS
(shown in Fig. 2(b) (d)), and here it is built as a hybrid

model instead of a single ANN or RNN model. Hence, it is
elaborated in the Section III D.

C. SYSTEM-LEVEL MODELS
The system-level ATA transients can be conducted at a larger
time-step, and this is significant to reduce hardware resource
while device-level requires much resource demand. Then, as
device-level models focus on details and update with small
time-step, system-level models can respond faster with larger
time-step and less execution. Therefore, system-level models
(e.g., converters, rectifiers, transformers, synchronous gener-
ators, and PMSMs) are trained by system-level data and built
with fewer hidden sizes and layers. These models can be
simplified to a certain extent through this strategy, diminishing
the consumption of hardware resources and reducing training
difficulty. They may not output the model’s detailed transient
with a small interval as device-level models do but have high
accuracy in their system-level application. The interval for
system-level models in this paper is 1 μs for ATA.

Almost all the equipment can be modeled as system-level
models by their electrical connections, displayed in Fig. 2(a),
(c), and (e). For example, the inputs of the rectifier model
is iabc

lc (connected to LC filter) and vabc
t (connected to trans-

former); its output signals are iabc
re (connected to transformer)

and vdc
re (connected to LC filter). There are two exceptions:

the converter and the synchronous generator. The converter
needs six control signals as inputs from the motor control
module, and the details of the converter ML model are shown
in Fig. 2(e) PMSM drive system. As for the synchronous
generator, the excitation current ie and rotor speed ω are also
necessary for its inputs, as shown in Fig. 2(a).

D. HYBRID MODELS
Hybrid models are a broader term which means a piece of
equipment does not consist solely of a single type of NN but
includes multiple NNs of the same or different kinds, or even
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FIGURE 4. PMSM single NN model: (a) schematic; (b) performance
comparison.

a mixture of NNs and traditional models. There are two main
reasons for hybrid models instead of a single NN model.

1) High-efficiency execution: A SiC IGBT device-level hy-
brid model is shown in Fig. 2(b). It consists of two parts: a
device-level ANN model (deals with the transient processes
with five input signals) and a system-level RNN model (deals
with the steady-state processes with three input signals in
time-series). Undeniably, SiC IGBT can be modeled as only
one NN (an ANN or an RNN with long time-series input
signals). However, it leads to a complex structure and causes
a heavy computational burden. What is worse, higher execu-
tion delay and increased hardware resources are expected in
training processes. In contrast, when the SiC IGBT model
is separated into two parts, each part can be modeled by a
suitable NN. Each part only focuses on specific applications
and takes advantage of their different structures. Compared
with the single ML model, the hybrid ML model can be di-
vided into smaller ML parts with empirical knowledge, which
is a powerful example of the interdisciplinary application of
power electronics and ML.

2) Accessibility of training and implementation: Although
one single NN for one piece of equipment is intuitive, how-
ever, this is not easy to achieve sometimes. A PMSM system-
level hybrid model is shown in Fig. 2(e), and PMSM can
be built as a single CRNN model, shown in Fig. 4(a). In
order to discuss the differences between these two models,
the analytical equations of PMSM are stated first:

vq = Riq + ωeλd + dλq

dt
, (10)

vd = Rid − ωeλq + dλd

dt
, (11)

λq = Lqiq, (12)

λd = Ld id + λpm, (13)

where vd , vq, id and iq represent the dq axis voltage and cur-
rent of PMSM; Ld , Lq and R mean its dq axis inductance and
resistance; λpm, λd and λq are the flux linkage of permanent
magnets and dq axis flux linkage in the stator; and ωe is the
electrical supply frequency. Then, to obtain iq and id , new
expression can be derived from (10)–(13) or simply expressed
as the following nonlinear model:

{
iq, id

} = f
(
vq, vd , ωe

)
. (14)

FIGURE 5. Causes of pitfalls: (a) internal interlock; (b) logical
topsy-turvydom.

Even no parameters (e.g., Ld , Lq, R, λpm, etc.) are known, (14)
can be learned and established by an RNN current unit, which
is a CRNN model and a part of the PMSM hybrid model.

As for the electric torque Te, it can be calculated as:

Te = 3

2

p

2

[
λpmiq + (

Ld − Lq
)

id iq
]
, (15)

and Te can be also obtained by an RNN torque unit, which is
a CRNN model and a part of the PMSM hybrid model.

When it comes to the mechanical section in PMSM, the
relationship between its speed and torque is given as:

J
dωr

dt
= Te − Tm − Bωr, (16)

dθm

dt
= ωr, (17)

where ωm, Te, Tm, J , B, θm are the mechanical rotor speed,
electrical torque, mechanical torque, moment of inertia, fric-
tion factor, and rotor position angle, respectively. From (16)
and (17), ωm and θm can be learned and calculated by an RNN
speed unit, which is a CRNN model and a part of the PMSM
hybrid model.

In Fig. 4(b), the left curve is the theoretical one that can
be observed from the real PMSM and the middle curve is
the PMSM single CRNN model prediction when it is trained
by the observed data. Although this well-trained PMSM sin-
gle NN model predicts accurate waveform when the inputs
are correct, it may not work well (as shown in Fig. 4(b)
the right curve) in a closed-loop system. As the interval of
model’s time-step is made small, the output y(t ) are so close
to y(t − 1) that the ML model just takes y(t − 1) as y(t ), and it
could not learn the �y (�y = y(t ) − y(t − 1)). �y is less than
0.1% y and the model will consider this difference as tolerant.
These outputs of a PMSM single NN model strongly depend
on its inputs. If correct inputs are given, expected outputs will
be obtained. However, when the inputs with small errors are
given, the PMSM single NN model will not be stable, and it is
hard to output the trend like the result of iteration in traditional
processing.

Even if the time interval is large enough, there are still
traps for the PMSM single NN model: 1) Internal interlock
in Fig. 5(a). Block A is the mathematical logic of id and iq
generators by Te in the CRNN, while Block B is the opposite.
id and iq are strongly connected with Te, which means they
work as a positive feedback system. This results in a model
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that is oscillating rather than stable in a closed-loop system.
2) Logical topsy-turvydom in Fig. 5(b). Block B is the mathe-
matical logic of a Te generator by id and iq in the CRNN, while
Block C is the anti-causal mathematical logic of a Te generator
by ωr and θm in the CRNN. Te should be decided by the
voltage and current; then Te influences ωr and θm. However,
since Te has relation with ωr and θm the single ML model may
calculate Te by the input ωr and θm as anti-causal Block C in
the single NN model. This is a causal problem that the effect
decides the cause, because NNs can only learn correlation but
not causation.

All these pitfalls of the PMSM single NN model can be
avoided when the model is divided into several parts, and each
part, which is built by the ML model, works like the traditional
equations in the process. Moreover, as each part only focuses
on fewer variables, it is easier to be trained than a PMSM
single NN model.

IV. MLBB IMPLEMENTATION FOR REAL-TIME ATA
SYSTEM HIL EMULATION
The MLBBs approach can exploit FPGA technology for par-
allel HIL emulation. In this section, dataset processing and
the parameter design for NNs modeling are introduced; then,
the training skills, hardware platform as well as the compar-
ison between RNNs are also discussed; lastly, the hardware
resource consumption is analyzed.

A. DATASETS
Datasets and normalization are among the most important
parts of ML training because they significantly affect the re-
sults. To guarantee models’ generality, various working con-
ditions of the equipment need to be included in the datasets.
The data collection for SiC IGBT model is taken as an exam-
ple: the topology of ESS in SaberRD is the same as that on
FPGA, but the working voltage and current provided by the
two-quadrant buck converter are broad to train the versatile
SiC IGBT ML model. Some of these working conditions are
similar to that on FPGA, but others are different. When the
SiC IGBT ML model is built, it can be applied to other kinds
of power converters. It is worth mentioning that the dataset
does not require sampling of dense and continuous data for
training. The training dataset can sample from the original
dataset with a relatively large interval. Then, all the data
should be normalized to (−1,1) by min-max normalization or
z-score normalization, which is a linear transformation used
for improving ML performance.

B. PARAMETERS FOR MODELS
Before the discussion about the parameters, a criterion that
measures the performance is introduced. The mean squared
error (MSE) is a recommended criterion for evaluation in ML,
and the mean absolute error (MAE) is another criterion to
measure errors. Their results in these models are similar, but
MAE has a more stable value over the whole dataset. Without

loss of generality, MAE is chosen in this work, given as:

MAE =
n∑

i=1

∣∣ypre
i − yi

∣∣
n

. (18)

The MAE is applied to describe error between expectation and
prediction in the AI domain, which is the metric to evaluate
model effectiveness. ypre is the predictive output of NNs, y is
the expected output, and n is the number of the outputs. Then,
the training process is iterative and based on stochastic gra-
dient descent (SGD) optimization algorithm [26] to obtain the
best weights and minimum error. Adam algorithm [27], which
is the most popular SGD optimization algorithm, is utilized
to minimize the model’s MAE in this work. An essential pa-
rameter for NNs is the layer size. The more layers NNs have,
the more accurate they will be. However, increasing layers
also lead to significantly higher hardware resource, latency,
and execution time. When the layer size is 1, the models can
meet application requirements by adjustable hidden size and
sequence length. Hence, the default layer size for all models is
1. A PMSM single CRNN model is studied so as to evaluate
the training results for different pairs of hidden-size coeffi-
cient and sequence length when the layer size is 1, as shown
in Fig. 6(a).

In Fig. 6(a), the hidden-size coefficient means the multiple
of the number of neurons in the hidden layer relative to that in
the input layer, and the sequence length is how many RNN
calls it has in one layer. From the result in Fig. 6(a), the
suitable parameters for modeling power system’s equipment
is in the red circle. In this paper, the parameters (hidden size is
approximately 4 times the input size, and the sequence length
is 3) are the general parameters for all RNNs. Nevertheless,
they change with the complexity of the models.

C. TRAINING AND COMPARISON BETWEEN RNNS
When the hidden-size coefficient is 4, and the sequence length
is 3 in a single PMSM model, the MAE of different kinds of
RNN is shown in Fig. 6(b). As can be seen, LSTM has the best
performance among these three RNNs; GRU’s MAE is close
to LSTM’s; CRNN has a similar result when the sequence
length is small. However, the sequence length is usually less
than 4, and CRNN causes much less computational burden,
making CRNN the best one for the present applications.

The training for NNs is time-consuming. There are various
methods to train better: 1) Data shuffling: to avoid overfitting,
the data should be shuffled before sending it to the training
program; 2) Varying learning rate (LR): during the training,
LR should decrease gradually to obtain better performance
with less epoch of training. Both data shuffling and varying
LR are used in this work. Fig. 7(a) shows results from the
model trained with shuffling data, while Fig. 7(b) is the one
without data-shuffling training. This model, trained without
data shuffling, may focus on a small part and quickly become
overfitted. Fig. 7(c) and (d) show how varying LR works: with
the varying LR, the models can get closer to the best-weight
point, while those that have constant LR may swing their
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FIGURE 6. MAE comparisons: (a) error at different sequence length and
hidden-size coefficient; (b) CRNN vs GRU vs LSTM.

FIGURE 7. Training results and processes. (a) results with data-shuffling
training; (b) results without data-shuffling training; (c) training with
constant learning rates; (d) training with varying learning rates.

FIGURE 8. Models’ MAE during training processes.

weights around the best-weight point. The LR in traditional
SGD is constant, but the Adam algorithm has varying LR, and
the initial LR can be adjusted to narrow the range of LR in the
Adam algorithm. Without these methods, the trained models
may be unavailable, or they may have low accuracy.

After the parameter design, determination of NN types,
and choice of training optimization strategy, models were
trained in a cluster with 196 nodes. Each node is comprised of
two Intel Silver 4216 Cascade Lake central processing units
(CPUs), four Nvidia V100 Volta graphics processing units
(GPUs), and 187 GB memory. A maximum of 8 cluster nodes
were used for training MLBB models. While a single model
may cost 12–24 h on personal computers (PCs) for training,
it only takes 6–12 h on a cluster node. Furthermore, since
each node can train one or two models, numerous training
processes can run simultaneously in the cluster, whereas less
than four training processes can run in parallel on the PC.
Eventually, the training results are obtained from the cluster,
including weights, biases, as well as errors during training.
In Fig. 8, MEAs of different CRNN models are displayed
during the training process. These MAEs are calculated by the

FIGURE 9. Hardware connection of the real-time ATA emulation system.

TABLE 2. Hardware Resource Consumption for ML-Models in MEA

test datasets that differ from the training datasets. Although
the NN parameters design, complexity of modeling objects,
epoch number, the training strategy, and other factors can
influence the MAEs during training, all the CRNN models in
this paper are built within 1% MAE after 100 epochs. In order
to test their generalization ability, these models are placed
in the traditional simulation system to run various evaluation
conditions. Only if the models pass all these tests, will they be
applied to build a system block by block on FPGA.

D. HARDWARE PLATFORM
The MLBB models are rebuilt by C language in Xilinx HLS,
which transfers the C functions into intellectual property (IP)
cores for parallel execution. Then, IP cores are applied in
Xilinx Vivado, and the bitstream file is generated and down-
loaded into the HBM FPGA based Xilinx VCU128 board.
The hardware connection is shown in Fig. 9. The XCVU37P
FPGA runs at 100 MHz, and has the following resources:
4,032 K block random-access memories (BRAMs), 9,024 dig-
ital signal processors (DSPs), 2,607,360 flip flops (FFs), and
1,303,680 lookup tables (LUTs). Furthermore, the utilization
of total ML models is 2,238 BRAMs (56%), 6,158 DSPs
(68%), 71,963 FFs (3%), and 483,013 LUTs (37%). The hard-
ware resource consumption is shown in Table 2. Particularly,
the reason for all the models utilizing 4.27% BRAM is that
their unrolled factors for tanh() look-up tables are designed
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FIGURE 10. System-level and device-level hybrid models’ results for the MEA system from real-time emulation (top oscilloscope sub-figure) and off-line
simulation by PSCAD/EMTDC or SaberRD software (bottom sub-figure) for: (a) PMSM rotor mechanical angle; (b) PMSM d-axis current; (c) PMSM q-axis
current; (d) system-level IGBT ML model output voltage; (e) system-level IGBT ML model output current; (f) PMSM torque; (g) device-level SiC IGBT ML
model output voltage; (h) device-level SiC IGBT ML model output current; and (i) PMSM rotor speed. Scale: (a) x-axis: 50 ms/div. (b) (c) (f) (i) x-axis: 500
ms/div. (d) (e) x-axis: 200 µs/div. (g) (h) x-axis: 200 ns/div.
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FIGURE 11. System-level models’ results for MEA system from real-time emulation (top oscilloscope sub-figure) and off-line simulation by
PSCAD/EMTDC software (bottom sub-figure) for: (a) generator output voltage; (b) converter output current; (c) converter output voltage; (d) transformer
output voltage; (e) rectifier output current; and (f) rectifier output voltage. Scale: (a) (c) (d) (e) x-axis: 10 ms/div. (b) (f) x-axis: 250 ms/div.

the same. All the models can be processed within 1 μs.
Among these models, the longest latency is 0.81 μs in PMSM
ML model, and it also consumes the most resource: 172 K
BRAMs (4%), 649 DSPs (7%), 9,498 FFs (0.4%), and 41,652
LUTs (3%). The whole emulation runs in real-time with 1 μs
time-step at system-level and 50 ns time-step at device-level
on the FPGA, while the same system in PSCAD/EMTDC
takes about five minutes execution time for each second of
MEA simulation on a PC equipment with 16 GB RAM and a
4-cores 3.4 GHz CPU.

V. RESULTS AND DISCUSSION
This section compares the results of the proposed MLBB
based emulation on FPGA with the traditional transient meth-
ods, which utilizes PSCAD/EMTDC for system-level simu-
lation and SaberRD for device-level simulation. All the ML
models are working in the same condition with the same

control. In this system, the PMSM changes its speed and
mechanical load at 1 s, 2 s, 3 s, 4 s, and 5 s, respectively; other
equipment is expected to keep stable outputs related to the
PMSM’s changes. The results of PMSM hybrid ML models
are shown in Fig. 10 where (a), (b), (c), (f), and (i) are the
rotor mechanical angle, d-axis current, q-axis current, torque,
and speed of PMSM, respectively. The PMSM mechanical
torque, as its load, changes to 0 p.u. at 1 s, 0.8 p.u. at 2 s, and
0.5 p.u. at 3 s while the PMSM’s referenced speed raises from
0.5 p.u. to 0.7 p.u. at 4 s and drops into 0.3 p.u. at 5 s. The
MLBB-based MEA system emulates the changing load and
stable speed of the PMSM during 1-3 s to verify the hybrid
ML model’s dynamic effect. Clear support for the accuracy of
the hybrid ML model is found from the results of the dq-axis
current, torque, and speed of the PMSM in Fig. 10(b), (c), (f),
and (i). Then, the stable load and changing speed test is given
from 4 s to 5.8 s, which also shows excellent performance of
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PMSM hybrid ML models. When the PMSM changes speed,
another important variable, the rotor mechanical angle, shows
the slow frequency shifting of rotation in Fig. 10(a). And
the hybrid ML model’s output matches that of the traditional
model, which reiterates the accuracy of the hybrid ML model.

Fig. 11 shows the single CRNN models’ results for each
equipment in the system. The generator’s output voltage is
300 V, and its frequency is 400 Hz, shown in Fig. 11(a). Then,
the output current and single-phase voltage of the converter
is shown in Fig. 11(b) and (c). The current value changes
because of the changing speed and load of the PMSM. A
similar pattern of results is obtained in Fig. 11(c), which
demonstrates that the CRNN converter works well in the same
system as the traditional model. The result of the transformer
output voltage is displayed in Fig. 11(d) and its line to line
output voltage amplitude is about 550 V. The output current
and voltage of the rectifier are given in Fig. 11(e) and (f),
respectively. In Fig. 11(f), the voltage floats around 520 V
during the running period because of the changeable load. All
the results show the system-level CRNN models have almost
the same performance as those from PSCAD/EMTDC.

When it comes to the difference between system-level and
device-level ML models, it is demonstrated in Fig. 10(g) and
(h), which are the SiC IGBT’s turn off transient in Fig. 10(d)
and (e). These results are obtained from the SiC IGBT device-
level hybrid model in Fig. 2(b). To make a comparison, the
inside steady-state unit and the whole SiC IGBT device-level
hybrid model are output as two channels. The intervals are
50 ns and 1 μs for the device-level ANN transient model
and system-level CRNN steady-state model, respectively. In
Fig. 10(g) and (h), the red curves represent the outputs from
the system-level model that also works as the steady-state
unit in the IGBT hybrid model, while the blue curves are the
outputs from the SiC IGBT device-level hybrid model. The
system-level output voltage and current jump from two values
linearly while the device-level outputs show the nonlinear
transient.

VI. CONCLUSION
This paper proposed MLBB-based modeling method to emu-
late the transients of ATA with high accuracy and execution ef-
ficiency from component-level (50 ns time-step), device-level
(50 ns time-step), and system-level (1 μs time-step) on the
FPGA platform in real-time. Finally, different level models’
accuracy are verified and compared with the offline results
obtained from PSCAD/EMTDC (system-level) and SaberRD
(device-level) tools. The proposed method has these advan-
tages: 1) High-execution efficiency: traditional methods have
matrix solver, whereas there is no matrix inversion in MLBBs,
which significantly reduces model latency and the computa-
tional complexity for each execution step; while compared
with traditional iteration algorithm for nonlinear models, ML
algorithm causes less execution delay for the nonlinear pro-
cesses; NNs are perfectly suitable for parallel execution by
FPGAs. 2) Flexible modeling: although the devices vary from
the system, they can be modeled in a similar ML structure;

TABLE 3. Parameters of PMSM Drive System and ESS on MEA

the emulation system can be split into hierarchical execution
units based on the user’s specifications; ML models can be
built by the external characteristics of running devices, while
traditional modeling methods need to stop the devices and test
internal characteristics. 3) High-accuracy: the errors between
the MLBB outputs and the original datasets for all the models
in the ATA are less than 1%. The above benefits make MLBBs
significantly versatile, remarkably flexible, and highly exe-
cutable. Based on the MLBB approach, future research will
focus on real-time multi-domain modeling and emulation of
ATAs.

APPENDIX
The parameters of the PMSM drive system and the ESS on
MEA are shown in Table 3.
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