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ABSTRACT This paper analyzes the potential of Artificial Neural Networks (ANNs) for the modeling and
optimization of magnetic components and, specifically, inductors. After reviewing the basic properties of
ANNs, several potential modeling and design workflows are presented. A hybrid method, which combines
the accuracy of 3D Finite Element Method (FEM) and the low computational cost of ANNs, is selected and
implemented. All relevant effects are considered (3D magnetic and thermal field patterns, detailed core loss
data, winding proximity losses, coupled loss-thermal model, etc.) and the implemented model is extremely
versatile (30 input and 40 output variables). The proposed ANN-based model can compute 50′000 designs
per second with less than 3% deviation with respect to 3D FEM simulations. Finally, the inductor of a
2 kW DC-DC buck converter is optimized with the ANN-based workflow. From the Pareto fronts, a design is
selected, measured, and successfully compared with the results obtained with the ANNs. The implementation
(source code and data) of the proposed workflow is available under an open-source license.

INDEX TERMS Power converters, artificial neural networks, finite element analysis, inductors, machine
learning, magnetic devices, open source software, pareto optimization.

I. INTRODUCTION
The past few years have seen a rapid development of artificial
intelligence applications in research, engineering, and indus-
try [1]. For power electronic systems, the different machine
learning methods, i.e., algorithms that learn from data and
improve automatically through experience, are particularly
interesting for a large variety of applications: fault diagnosis,
preventive maintenance, reliability prediction, quality control,
control strategies, reverse engineering, advanced modeling,
and system or component optimization [2]–[7].

Machine learning has the ability to work with both struc-
tured data (organized dataset) or unstructured data (e.g., im-
age, video, text). Machine learning algorithms can be classi-
fied into three main groups [1], [8], [9]:
� Supervised learning - Learn how to predict values

(regression) or categories (classification) from labeled
training data (input-output pairs).

� Unsupervised learning - Learn how to find patterns
(clustering) from a dataset without pre-existing labels.
Such methods can also be used for reducing a dataset
(data reduction or dimensionality reduction) without

losing important information or for detecting anomalies
(outlier detection) in a dataset.

� Reinforcement learning - Learn how to perform a task
by interacting with its environment. The algorithm re-
ceives rewards by performing correctly and penalties for
performing incorrectly (feedback model).

The most popular implementation of such methods is based
on Artificial Neural Networks (ANNs), which share some
principles with biological brains. A collection of simple sig-
nal processing units (artificial neurons) receive, process, and
transmit information from and to the surrounding neurons [1],
[8], [9]. The strength (weighting) of the interconnections be-
tween the neurons are chosen during the training process,
where the ANN is learning from a provided dataset. ANNs
represent a broad class of algorithms. For supervised learning,
the main classes are [1], [8], [9]:
� Multilayer Perceptron (MLP) - Network where the artifi-

cial neurons are organized in layers, which are typically
fully-connected. The information is passed between the
layers with a feed-forward direction. The inputs of the
ANNs are vectors. Such ANNs are typically used for
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FIGURE 1. Data-driven approach for multi-objective optimization of
inductors with machine learning and, more specifically, with Artificial
Neural Networks (ANNs). The ANNs can be trained with simulations,
measurements, datasheets, papers, etc.

problems with structured data or with unstructured data
with limited complexity.

� Convolutional Neural Network (CNN) - Network where
the artificial neurons are organized in feed-forward lay-
ers, which are typically sparsely-connected. The usage of
convolution layers allows the usage of multi-dimensional
data (matrix of tensor) and the detection of complex pat-
terns. Therefore, such ANNs are particularly very well
suited to large problems with unstructured data.

� Recurrent Neural Network (RNN) - Network where the
neurons feature an internal memory. This implies that the
outputs do not only depend on the current inputs but also
on the previous inputs, making such ANNs interesting
for sequential data.

For power electronic systems, ANNs, so far, have been
mainly used for fault diagnosis [2], [3] and control strate-
gies [4], [5]. However, another important field of power elec-
tronics, requiring complex models and heavy computations, is
the modeling and multi-objective optimization of converters
and components (e.g., with respect to volume, mass, cost,
efficiency) [10]–[13]. Fig. 1 shows a vision of what ANNs
could provide for multi-objective optimization. From given
specifications and goals, the ANNs generate the Pareto fronts
and select the optimal designs [6], [7], [14]–[17]. The ANNs
learn from a dataset, which can be gained from simulations,
measurements, datasheets, papers, etc. With such a workflow,
the ANNs do not include a physics-based model, only the in-
put and output variables of the ANNs feature a clear physical
meaning.

Nevertheless, in order to be competitive against classi-
cal multi-objective optimization algorithms and models, ma-
chine learning approaches should avoid several pitfalls and
overcome some challenges, i.e. should feature the following
properties:
� Accurate and robust - The method should be robust and

accurate in the complete range, without producing any
outlier data.

� Versatile and flexible - The method should work for a
wide range of parameters and objectives.

� Extensible and adaptable - The workflow should be
easy to extend (e.g., additional models, parameters,
constraints) and to integrate in the design process. Fur-
thermore, it should be possible to accommodate special,
project-specific, requirements.

� Access to internal data - Not only the optimized vari-
ables (e.g., volume, mass, cost, efficiency) should be
accessible but also the internal variables and physical pa-
rameters (e.g., magnetic field, current density, switching
energy, temperatures).

� Dataset availability - The dataset, used to train the ANN,
should be available or easy to generate.

This paper analyzes the usage of MLP ANNs for modeling
and optimization of inductors and proposes a hybrid method,
combining the accuracy of 3D Finite Element Method (FEM)
and the flexibility of ANNs. Inductors are selected because
magnetic components typically represent the bottleneck of
multi-objective optimization (e.g., model complexity, compu-
tational cost, size and diversity of the design and performance
spaces) [11]–[13], [18]. However, all the presented methods
are also applicable to other power electronic components (e.g.,
transformers, semiconductors).

The paper is organized as follows. Section II reviews the
fundamentals of ANNs. Section III presents different ANN-
based workflows for inductor modeling and/or optimization.
In Section IV, the most promising solution is presented in
detail and the performances are evaluated in Section V. In
Section VI, the method is applied to the optimization, de-
sign, and measurement of the inductor of a DC-DC buck
converter. In the Appendix details are given about the open-
source software implementation of the proposed workflow,
“AI-mag” [19].

II. FUNDAMENTALS OF ANNS
This section introduces the fundamental working principle
of MLP ANNs for supervised learning [1], [8], [9]. More
specifically, the ANN structure, the training process, the over-
fitting risk, and data normalization are analyzed for regression
problems. The readers who are familiar with these concepts
can skip this section.

A. ANN STRUCTURE
Fig. 2(a) depicts the computational structure of a MLP ANN,
which features several inputs and outputs. The artificial neu-
rons are organized in layers and connected together, like
synapses in a brain. The internal layers are called hidden
layers (arbitrary number of neurons) and the last layer is the
output layer (number of neurons is the number of outputs).
ANNs with several hidden layers are usually qualified as deep
learning ANNs, while structures with a single hidden layer
are shallow ANNs. Adding more neurons and layers extends
the learning capabilities of ANNs, allowing the processing of
more complex data.

Fig. 2(b) shows how a single artificial neuron is working.
First, the different input values are scaled with the weights
(wi), the transfer function is summing the inputs with a bias
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FIGURE 2. (a) Structure of an ANN with two inputs, two outputs, three
hidden layers, and an output layer. (b) Single artificial neuron where the
weights (wi ) and the bias (b) represent the ANN parameters determined
during the training process.

FIGURE 3. Typical activation function for ANNs: (a) linear function,
(b) rectified linear unit, and (c) sigmoid function.

(b). The resulting value is processed by the activation function
and the result is propagated to the connected neurons. The
weights (wi) and the bias (b) represent the ANN parameters,
which are determined by the training process.

Different activation functions can be used for the different
layers and the common choices are shown in Fig. 3. The
hidden layers, typically, use sigmoids and/or rectified linear
units. However, if many hidden layers are used (deep ANNs),
rectified linear units should be preferred due to the numerical
instability of sigmoids (vanishing gradient) [1]. Regression
ANNs (predicting values) feature a linear output layer and
classification ANNs (predicting categories) have a sigmoid
output layer [9]. This implies that the output values of clas-
sification ANNs are real numbers and are, afterwards, trans-
formed (with a given threshold) to binary data [1].

B. ANN TRAINING PROCESS
Fig. 4 describes the training process of an ANN (i.e., the
choice of the weights and biases) with respect to a dataset.
The different steps are described in the following [1], [9]:

1) The provided samples (pairs of inputs and outputs) are
split into a test set and a training set. The split is done
randomly and, typically, 80% of the samples are used
for training and 20% for testing.

FIGURE 4. Workflow for ANN training (supervised learning). The training,
overfitting detection, and validation steps are depicted.

2) The training set is subdivided in a training subset and a
validation subset. Again, the split is done randomly and,
typically, 80% of the samples are used for the training
subset and 20% for the validation subset.

3) The parameters of the ANN (weights and biases) are
selected. For the first iteration, the values are typically
selected randomly. For the next iterations, the values are
selected with respect to the error metrics obtained in the
previous iteration with the training subset.

4) The ANN is evaluated for the training subset and the
validation subset and the error metrics are computed be-
tween the ANN outputs and the dataset outputs. Widely
used metrics are the mean square error (for regression
ANNs) and the binary cross-entropy (for classification
ANNs).

5) The error metrics of the training subset and the valida-
tion subset are compared to stop the training if over-
fitting is occurring. The error metrics of the training
subset are monitored in order to detect the completion
of the training when the metrics are converging and stop
improving. The overfitting is explained, in more details,
in Section II-C.

6) If the convergence is not reached, the error metrics are
used to improve the weights and biases for the next
iteration. The selection of the weights and biases is
explained, in more details, in Section II-D.

7) After the completion of the training, the training set
and test set are evaluated and the obtained outputs are
compared with the dataset outputs. The comparison is
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FIGURE 5. Overfitting example for a regression ANN with a single input
and output. (a) Evolution of the mean square error over the training
epochs for the training subset and the validation subset. (b) Noisy training
and validation samples, best fit, and overfit.

biased for the training set since the same data have been
used for the training. For this reason, the test set exists
and offers an unbiased validity check.

8) If the performances of the ANN are not sufficient, the
ANN structure (e.g., number of hidden layers, number
of neurons) or the training algorithms should be up-
dated.

It has to be noted that, due to the random splitting of
the dataset and the random initialization of the weights and
biases, the ANN training is not a deterministic procedure.
For the training iterations, the training subset is divided into
several batches (with several samples). For each iteration, a
single batch is used for improving the ANN parameters. A
training epoch is achieved when all the batches have been
processed, i.e., when all the samples of the training subset
have been used. The training process of an ANN consists of
many epochs. The batch size (number of samples per batch) is
a parameter that can affect the quality, stability, and computa-
tional cost of the training process.

C. ANN OVERFITTING
Overfitting means that an ANN is overspecialized with respect
to the samples of the training subset, to the detriment of other
samples [1], [9]. This is prone to happen with ANNs featuring
many artificial neurons compared to the size and/or complex-
ity of the dataset. Fig. 5 illustrates this effect for a regression
ANN used to fit noisy data. After a certain number of train-
ing epochs, the error of the training subset keeps improving
while the error of the validation subset starts to deteriorate. It
means that the ANN is trying to fit the noise of the training
subset, which can be seen from the predicted fits. Therefore, a
validation subset is required in order to detect overfitting and
terminate the training.

D. ANN TRAINING ALGORITHM
Selecting the optimal weights and biases of an ANN with re-
spect to a dataset is, fundamentally, an optimization problem.
However, an ANN contains hundreds or thousands of weights
and biases, resulting in a relatively high level of complexity.
For this reason, many different training methods exist. Nev-
ertheless, most of these algorithms share a similar concept:
propagation and backpropagation [1], [8], [9].

FIGURE 6. Basic ANN training algorithm based on the propagation of the
inputs and the backprogation of the errors (supervised learning).

Fig. 6 presents the fundamental principle of propagation
and backpropagation. A simple regression ANN is considered
(two inputs, two outputs, a hidden layer, and an output layer)
and the selection of the weights is investigated (the selection
of the biases is similar). The different steps are described as
follows [1], [9]:

1) The weights are initialized with random values.
2) With the selected weights, the ANN is evaluated for the

provided inputs. This is done layer by layer from the
inputs to the outputs, i.e., propagation.

3) The error between the computed values and the pro-
vided outputs is computed. In this example, the sum of
the squares is used.

4) The sensitivity of the error with respect to the weights is
computed. This is achieved by applying, systematically,
the chain rule for the derivative. This is done layer by
layer from the outputs to the inputs, i.e., backpropaga-
tion.

5) With the obtained sensitivity, the weights are updated in
order to diminish the error. This update is controlled by
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FIGURE 7. Pareto fronts obtained with the analytical scaling laws (cf. (1)
and (2)). (a) Operating frequency. (b) Operating temperature.

a specified learning rate, which specifies how aggressive
the learning algorithm acts.

E. ANN EXAMPLE: INDUCTOR SCALING LAWS
The aforementioned ANN structure and training procedure
are applied to a simple example. Scaling laws of non-isolated
DC/DC converter inductors, which predict the losses (P) and
the temperature (T ) from the boxed volume (Vbox), the switch-
ing frequency ( f ), the DC current (IDC) and the applied volt-
age (VPWM) are considered.

P = kPV
4(2−βc )
3(2+βc )− 1

3
box f

2αc−2βc
2+βc I

2βc
2+βc

DC V
2βc

2+βc
PWM , (1)

T = Tamb + kTPV
− 2

3
box , (2)

where kP and kT are empirical parameters. The coefficients αc

and βc represent the Steinmetz parameters of the core material
and Tamb the ambient temperature. More details about this
empirical model can be found in [20].

The following specifications are considered: IDC = 10 A,
VPWM = 200 V, Tamb = 55 ◦C, Vbox < 200 cm3, T < 130 ◦C,
and f < 750 kHz. With these specifications, the empirical
parameters (kP = 0.004, kT = 0.02, αc = 1.4, and βc = 2.4)
are fitted from the results presented in [21]. Fig. 7 shows the
resulting Pareto fronts obtained with (1) and (2).

In order to highlight the working principle of ANNs,
different ANN structures (number of layers and activation
functions) and variable processing methods (variable trans-
formation and normalization) are compared, using the afore-
mentioned dataset (2′000 samples). The inputs of the ANN
are f and Vbox and the outputs are P and T . The splitting
between the training set and the test set is 80/20%. The ratio
between the training subset and the validation subset is also
80/20%. The ANNs are trained with the mean square error
as a metric. In order to overcome the non-deterministic nature
of the ANN training process, each ANN is trained 100 times.
For each training, the performances (number of epochs until
convergence is achieved, RMS error, and maximum error) are
evaluated and the median values over the 100 training cycles
are computed. Table 1 shows the obtained results, which can
be interpreted as follows:
� Mode 1 - No variable transformation and no normal-

ization is done. An ANN with a single linear layer is

TABLE 1 Inductor Scaling Laws: ANN Performance

used (no hidden layer). Due to the simple nature of the
network, convergence is achieved quickly. However, the
performances of the ANN are low. This is expected since
(1) and (2) are clearly not linear equations.

� Mode 2 - In order to overcome this issue, a non-linear
(sigmoid) hidden layer with 5 neurons is added. The
performances of the ANN are improving but the number
of training epochs drastically increases.

� Mode 3 - The different variables feature very different
orders of magnitude, which is always problematic for
numerical methods. Therefore, the variables (inputs and
outputs) are normalized for the ANN. A min-max nor-
malization, which linearly maps a variable between zero
and one is used. It can be seen that the normalization
improves both the training speed and the fitting accuracy.

� Mode 4 - From (1) and (2), it can be seen that apply-
ing a logarithmic variable transformation (inputs and
outputs) could help the numerical conditioning of the
problem. Therefore, the logarithm of the different vari-
ables is taken and the transformed variables are, again,
normalized. It can be observed that the variable transfor-
mation further improves the convergence and the fitting
performances.

It can be concluded that not only the structure of the neural
network (number of layers, number of neurons, and activa-
tion functions) but also the training method (dataset splitting,
algorithm, and error metric) and the variable handling (nor-
malization and eventual variable transformation) are critical
to obtain robust, accurate, and fast ANNs.

III. COMPARISON OF ANN-BASED WORKFLOWS
This section first reviews the different models and optimiza-
tion methods used for multi-objective optimization. Then,
different possibilities to integrate ANNs in the workflow are
discussed.

A. MODELING AND MULTI-OBJECTIVE OPTIMIZATION
Inductor modeling includes many aspects: current and volt-
age waveforms, magnetic circuit, thermal behavior, winding
losses, and core losses. The different models can be classified
into three main categories [13], [14]:
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FIGURE 8. (a) ANN-based inductor model using a classification ANN and several regression ANNs. (b) ANN-based inductor sub-component model.
(c) Physics-based inductor model using an ANN to improve the results (correction factor). (d) ANN-based inductor optimization, generating optimal
designs with respect to a given objective.

� Full-analytical models - The models are based on ana-
lytical equations and feature closed-form analytical solu-
tions [20], [22]–[26]. Such models are extremely simple
but are too inaccurate for virtual prototyping.

� Semi-numerical models - The models are mostly based
on analytical equations but do not feature explicit so-
lutions [10], [11], [13], [27]. Such models represent an
interesting trade-off between the accuracy and the com-
putational cost.

� Numerical models - The parameters are extracted from
numerical field simulations (e.g., FEM simulations) [25],
[28], [29]. Despite their accuracy, such models are rarely
used for optimization due to their heavy computational
cost.

The role of the models is to map the design space into the
performance space. For magnetic components, it is known
that wide regions of the design space are mapped to a narrow
region in the performance space, i.e., designs with very dif-
ferent parameters feature similar performances (design space
diversity) [21], [29], [30]. This implies that, together with the
model non-linearity, implicit constraints, and discrete vari-
ables, the optimization of magnetic components is a challeng-
ing task. Several methods are used [13], [14]:
� Brute force grid search - The design space is systemat-

ically sampled and all the combinations are tested [11],
[13], [31]. This method is extremely simple and robust
but the number of combinations scales exponentially
with the number of variables (without additional filters
and/or heuristics).

� Deterministic optimization - Algorithms such as gradient
optimization, simplex method, or geometric program-
ming are used [10], [14]. These algorithms converge
quickly but are problematic with respect to the design
space diversity. Moreover, additional constraints exist
about the objective functions (e.g., smoothness, posyn-
omial function, no discrete variables).

� Stochastic optimization - Stochastic algorithms (e.g., ge-
netic optimization, particle swarm, simulated annealing)
represents a good trade-off between the robustness and
the computational cost [12], [18], [31]–[33].

In order to obtain a fast, robust, and accurate optimization
workflow, the following combinations of the aforementioned
models and optimization methods are typically considered.
Brute force grid search requires the evaluation of several
million designs, which takes several hours or days of com-
putations with a semi-numerical model [12], [29]. Therefore,
the number of degrees of freedom is limited and the usage
of a numerical model (e.g., FEM) is not a viable solution.
Stochastic optimization still requires the evaluation of tens
of thousands design possibilities, which still takes several
minutes with a semi-numerical model and some hours or days
with a numerical model [12], [31]. Therefore, a clear need can
be identified to obtain a workflow that is simultaneously fast,
accurate, and robust.

B. ANN-BASED MODELING AND OPTIMIZATION
The flexibility and reduced computational cost of ANNs offer
several opportunities for improving the aforementioned mod-
els and methods. Fig. 8 identifies several potential ANN-based
workflows:
� Workflow A - The complete inductor model is replaced

by ANNs (cf. Fig. 8(a)) [6], [15]. The model features
a classification ANN, for handling discrete variables
(e.g., core shape, core material, litz wire size) and sev-
eral regression ANNs for the continuous variables. The
advantages of this workflow are the reduced compu-
tational cost and the total independence from physics-
based models. A challenge is the large number of data
(simulations, measurements, and/or datasheets) required
to train the ANNs with tens of input and output parame-
ters. Moreover, it is difficult to guarantee that the ANNs
are accurate for all the possible combinations. The last
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FIGURE 9. (a) Workflow for generating the data and training the ANNs for the thermal and magnetic models. (b) Inductor design workflow using the two
ANNs. The step requiring a FEM solver is highlighted in green and the ANN-based steps in red.

problem is the prediction of designs where few training
samples exist (e.g., new geometry, new material).

� Workflow B - In order to overcome these difficulties, a
solution is to split the model into different sub-models
(cf. Fig. 8(b)) [34]–[37]. The usage of ANNs for sub-
component models (e.g., magnetic, losses, thermal) re-
duces the complexity and facilitates the training of the
ANNs.

� Workflow C - Another possibility is to use ANNs to
improve the accuracy of an existing model (cf. Fig. 8(c)).
For example, an analytical model can be improved with
an ANN trained with FEM simulation results or mea-
surements. This solution is robust and easy to integrate
into a pre-existing model.

� Workflow D - Apart from offering advanced models,
ANNs can also be used for the multi-objective opti-
mization (cf. Fig. 8(d)) [14], [32], [38], [39]. This can
be achieved by training the ANNs only with optimal
designs or with advanced techniques such as ANN in-
version, reinforcement learning ANN, or neuro-genetic
optimization. However, due to the complex nature of
inductor multi-objective optimization (design space di-
versity) and the wide variety of possible objectives (e.g.,
cost, volume, mass, efficiency, available components), a
robust implementation of an ANN-based inductor opti-
mization is a challenging task.

IV. SELECTED ANN-BASED MODEL
From the aforementioned methods and the goals defined in
the introduction, an ANN-based inductor model, which fea-
tures the same accuracy as 3D FEM simulations with a mas-
sively reduced computational cost, is presented in detail in the
following.

A. WORKING PRINCIPLE
The model uses regression MLP ANNs to replace the 3D
FEM simulations at the sub-component level (cf. Fig. 8(b)).
A first ANN is used to predict the magnetic parameters (e.g.,
inductance, magnetic flux, magnetic field) and a second ANN
is modeling the thermal behavior (e.g., average and hotspot
temperatures). Both ANNs are trained with a dataset gen-
erated using 3D FEM, whereas a simple analytical solution
is used as a base-value for increasing the robustness of the
regression (cf. Fig. 8(c)). Fig. 9 shows, schematically, the
workflow where two distinct parts are identified: the ANN
training and the inductor design evaluation.

The selected model represents a pragmatic approach with
regression ANNs, which is robust and easy to extend [15],
[36], [40], [41]. Since the model uses ANNs at the sub-
component level, internal variables are accessible for inspec-
tion. Finally, the dataset required for the training can be easily
generated and extended. Besides the low computational cost,
the ANN-based workflow also offers the following advantage:
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TABLE 2 FEM/ANN Input Variables

FIGURE 10. Considered inductor geometry with an E-shaped core with an
air gap and a litz wire winding.

the FEM solver is only required for generating the training
dataset (cf. Fig. 9(a)) and not for evaluating inductor designs
(cf. Fig. 9(b)). This implies that the users of the design tool do
not need any FEM solver and/or powerful computer.

B. ANN INPUT VARIABLES
Before analyzing the workflow in detail, the input variables
of the ANNs (magnetic and thermal) should be defined. The
following assumptions are made for the inductor: E-shaped
core with an air gap, litz wire winding with homogeneously
distributed strands, and forced convection cooling [42], [43].
However, the presented workflow can be easily extended to
other types of inductors.

All the input variables are summarized in Table 2. First, the
geometry of the inductor is described, cf. Fig. 10. For training
the ANN, it is numerically better to define scaled dimensions:

rw = hw/dw, (3)

rc = zc/tc, (4)

rcw = Ac/Aw, (5)

rgap = dgap/
√

Ac, (6)

where, these four scaled variables, together with the boxed
volume (Vbox), define uniquely the inductor geometry.

TABLE 3 FEM/ANN Output Variables

For the thermal simulations, the following input variables
are added: the ambient temperature (Ta), the convection co-
efficient (hc), and the generated losses. The losses are also
normalized:

ptot = (Pw + Pc) /Abox, (7)

rp = Pw/Pc, (8)

where Abox is the boxed area of the component, Pw the wind-
ing losses, and Pc the core losses.

For the magnetic simulations, the additional input parame-
ters are the core permeability (μc), the core Steinmetz param-
eter for the flux density (βc), and the current excitation. All
the magnetic simulations are done with a single turn and the
current is normalized with the saturation current:

rsat = Î/Isat =
(
μ0 Î

)
/
(
2dgapBsat

)
, (9)

where Î is the peak winding current, Isat the saturation cur-
rent, and Bsat the saturation flux density. For the scaling with
respect to the saturation current, the fringing field and the core
reluctance are neglected.

C. ANN OUTPUT VARIABLES
For the output variables, ANNs would have the ability to
learn directly from the field patterns generated by the 3D
FEM simulations (magnetic and temperature fields) [1], [44].
However such algorithms are complex and involve very large
datasets. Furthermore, for the evaluation of inductor designs,
the complete field patterns are not required, some key figures
of merit, which are summarized in Table 3, are sufficient.

For the thermal simulations, the different maximum and
average temperature elevations are extracted. The maximum
(hotspot) temperatures are used for ensuring the thermal lim-
its and the average temperatures for calculating the material
properties (core and winding) used for the loss computations.
It has to be noted that, for linear thermal models, the ambient
temperature (Ta) does not have any impact on the temperature
elevations.

For the magnetic simulations, the definition of the output
variables is not straightforward. The inductance (L), the core
losses (Pc), the low-frequency winding losses (Pw,LF) and the
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high-frequency winding losses (Pw,HF) can be defined as

L = 1

Î2

∫∫∫
all

B̂ĤdV , (10)

Pc =
∫∫∫

core
kc f αc B̂βc dV , (11)

Pw,LF =
∫∫∫

wdg.

1

2kwσw
Ĵ2dV , (12)

Pw,HF =
∫∫∫

wdg.

π2μ2
0d2

s kwσw f 2

8
Ĥ2dV , (13)

where Î is the peak winding current, B̂ the magnetic flux
density, Ĥ the magnetic field, Ĵ the current density, and f the
operating frequency. The parameters kc, αc, and βc are the
Steinmetz parameter of the core material [22]. The winding
is defined by: kw the filling factor, σw the conductivity, and
ds the litz wire strand diameter [22]. Please note that, for the
sake of simplicity, these equations are defined for pure AC
sinusoidal currents. However, more complex waveforms (e.g.,
DC biases, triangular currents) or loss models (e.g. iGSE for
core losses, Bessel functions for winding losses) can be used
without changing the definition of the output variables [22],
[29], [45], [46]. The current (Î) and the number of turns (N)
can be factorized, which leads to

L = N2Lint, (14)

Pc = Vckc f αc
(
NÎBint

)βc , (15)

Pw,LF = Vw
1

2kwσw

(
NÎJint

)2
, (16)

Pw,HF = Vw
π2μ2

0d2
s kwσw f 2

8

(
NÎHint

)2
. (17)

where Vc and Vw are the core and winding volumes, respec-
tively. With these equations, the normalized energy and fields
can be defined as

Lint = 1(
NÎ

)2

∫∫∫
all

B̂ĤdV , (18)

Bint = 1

NÎ

(
1

Vc

∫∫∫
core

B̂βc dV

) 1
βc

, (19)

Jint = 1

NÎ

(
1

Vw

∫∫∫
wdg.

Ĵ2dV

) 1
2

, (20)

Hint = 1

NÎ

(
1

Vw

∫∫∫
wdg.

Ĥ2dV

) 1
2

. (21)

With these definitions, the spatial effects (e.g., flux crowding
at the corner of the core, air gap fringing field) are taken into
account in the inductance and loss computations. Therefore,
the normalized variables are used as the output variables for
the magnetic simulations and the corresponding ANN. It has
to be noted that, for linear magnetic models, the current exci-
tation (rsat) does not impact the normalized output variables.

D. ANN TRAINING
Fig. 9(a) shows the process used to generate the dataset and
train the different ANNs. The operation comes with a high
computational cost but is executed only once (and not for
every inductor design). Moreover, the dataset can be generated
in parallel and/or with a distributed computing platform.

At first, many 3D magnetic and thermal simulations are
done with different random combinations of the input vari-
ables (cf. Table 2). The output variables are extracted (cf.
Table 3) [47]. In a second step, simple analytical approxima-
tions of the output variables are computed. For the thermal
model, a lumped equivalent circuit is used [13], [27]. The
analytical magnetic model is based on a reluctance circuit
(i.e., inductance and magnetic flux density) and analytical
approximations with Ampère’s circuital law (i.e., magnetic
field and current density) [22], [48]. Afterwards, the invalid
samples (e.g., non-manufacturable geometries, design with
very poor figures of merit) are filtered out and the dataset is
obtained.

The resulting data set is split into a test set and a training
set. The different variables are then prepared for the ANNs.
This process is described in the following:

1) Variable scaling - The output variables are scaled with
respect to the analytical approximations such that the
ANNs are just predicting correction factors between the
3D FEM simulations and the analytical approximations.
The scaling is optional and can be described as

v← vFEM

vAna. Approx
. (22)

2) Variable transformation - In a second step, variable
transformations can be applied to the different input and
output variables to improve the numerical conditioning.
More concretely, a logarithmic transformation is applied
to the variables spanning over several orders of magni-
tude:

v← log(v). (23)

3) Variable normalization - Finally, all the input and output
variables are normalized. Typically, a min-max normal-
ization is used which is linearly mapping the variable
between zero and one:

v← v −min(v)

max(v)−min(v)
. (24)

Afterwards, the scaled, transformed, and normalized
dataset is used for the training of the thermal and magnetic
ANNs [49]–[51]. Finally, the performances of the ANNs are
evaluated using the training set and the test set. Additionally,
the ANN parameters (e.g., structure, weights) are saved.

E. INDUCTOR DESIGN
Fig. 9(b) shows the process used to compute inductor designs.
All the steps feature a reduced computational cost. Moreover,
the complete workflow is parallelized and vectorized. This
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TABLE 4 FEM/ANN Input Variable Ranges

model offers 30 input and 40 output variables and is, therefore,
flexible and versatile.

First, the basic inductor properties (e.g., geometry, mass,
cost) of the designs are computed. Afterwards, the magnetic
ANN is evaluated and the magnetic properties are extracted
(e.g., inductance, saturation current, magnetic and thermal
field patterns). The designs with properties which are incom-
patible with the given specifications are filtered out.

In a second step, the different operating points (e.g. full
load, partial load) are computed. The waveforms are generated
and analyzed (e.g, DC bias, sinusoidal, triangular, Fourier
harmonics). The core losses (different materials) are com-
puted with the iGSE and detailed loss data that take into
consideration the impact of the frequency, AC flux density,
DC flux density, and temperature [13], [42], [46]. The winding
losses (different litz wire strandings) are computed, including
the proximity losses and the impact of the harmonics [22],
[45]. For both the core and winding losses, the field patterns
are coming from the magnetic ANN. The temperatures are
evaluated with the thermal ANN. Iterations are made between
the loss and thermal models in order to reach the steady-state
(coupled loss-thermal model) [13]. Again, the invalid designs
(e.g., saturation, thermal limit) and the designs with poor
performances (e.g., losses) are filtered out.

Finally, the results are displayed in an interactive tool that
allows the exploration of the Pareto fronts and the different
trade-offs (e.g., cost, efficiency, volume). Interesting designs
can be selected and inspected (geometry, properties, and op-
erating points).

V. PERFORMANCES OF THE ANN-BASED MODEL
In this section, the performances of the presented workflow
are analyzed. More precisely, the accuracy of the ANNs, the
training parameters, and the computational cost are investi-
gated.

A. CONSIDERED DATASETS
Table 4 depicts the considered ranges for the input variables,
which cover most of inductor designs. For generating the
dataset, random combinations of the inputs (in the specified
ranges) are generated. For the variables spanning over several
orders of magnitude, the random samples are generated on
a logarithmic scale. For the generation of the samples, the
following procedure is used:
� First, all the points at the edges (upper and lower limit

of the ranges) of the dataset, which are unlikely to ap-
pear with random sampling, are considered. This cor-
responds to 29 = 512 and 28 = 256 samples for the

FIGURE 11. Error distribution (18′522 samples) for the thermal model.
(a) Deviation between the analytical approximations and the 3D FEM
simulations. (b) Deviation between the ANN outputs and the 3D FEM
simulations. The RMS error and the maximum error (over all the samples)
are indicated.

thermal and magnetic ANNs, respectively. These sam-
ples at the edges are, strictly speaking, not required but
improve the validation of the ANNs by ensuring that the
extreme cases are included.

� All the remaining samples are chosen randomly. This is
one of the great strengths of ANNs: they do not require a
regular sampling, which is advantageous with problems
with many input variables.

At the end, each dataset (thermal and magnetic) consists of
20′000 samples. The number of valid samples (used for the
ANN training) are 18′522 and 18′444 for the thermal dataset
and magnetic dataset, respectively.

B. ANN PARAMETERS
For the ANN training, the 3D FEM outputs are scaled with
the analytical approximations, the variables spanning over
several orders of magnitude are transformed into a logarithmic
scale, and all the variables are normalized (min-max normal-
ization). The splitting between the training set and the test
set is 80/20%. The ratio between the training subset and the
validation subset is also 80/20%. The training algorithm uses
Levenberg-Marquardt backpropagation with the mean square
error as a metric [49]. The ANNs feature two hidden layers
(with 10 neurons each, sigmoid activation function) and an
output layer (linear activation function).

C. ACHIEVED ACCURACY
Fig. 11 and Fig. 12 show resulting performances for the ther-
mal model and magnetic model, respectively. It shows that
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FIGURE 12. Error distribution (18′444 samples) for the magnetic model.
(a) Deviation between the analytical approximations and the 3D FEM
simulations. (b) Deviation between the ANN outputs and the 3D FEM
simulations. The RMS error and the maximum error (over all the samples)
are indicated.

even if the deviation between the analytical approximations
and the 3D FEM simulations is, for some samples, above
100%, the error between the ANNs and the 3D FEM simu-
lations is always below 3%. As expected, the analytical ap-
proximations are particularly inaccurate for the magnetic field
in the winding window. This is due to the air gap fringing
field, which is difficult to compute analytically. It should be
noted, that since overfitting is explicitly prevented during the
training, the error of the training set is very similar to the error
of the test set. For this reason, the error metrics are computed
for all the samples together (test set and training set). It can be
concluded that the ANNs are accurate in the complete range
and do not produce any outlier data.

D. TRAINING REPRODUCIBILITY
The ANN training process is not deterministic (dataset split-
ting and initial values). For this reason, the complete training
process of the ANNs is repeated 200 times. Afterwards, the
distribution and the median value of the error metrics (RMS
error and maximum error, over all the samples) are computed,
cf. Fig. 13. It can be observed that the maximum error is, for
all the trainings, below 7%. Nevertheless, it is advised to train
the ANNs several times to check the reproducibility and to
pick the ANNs with the best performances.

E. SIZE OF THE DATASET
Another important parameter is the size of the dataset used
for the training. Fig. 14 shows the ANN performances (me-
dian over 200 trainings) for different training ratios (splitting
ratio between the training and the test). The splitting ratio
between the training subset and the validation subset remains

FIGURE 13. Performances of the ANNs over 200 trainings. (a) Thermal
model ANN. (b) Magnetic model ANN. The selected metrics are the RMS
error and the maximum error (over all the samples and all the variables).

FIGURE 14. Performances of the ANNs for different splitting ratio between
the training set and the test set. (a) Thermal model ANN. (b) Magnetic
model ANN. The selected metrics are the RMS error and the maximum
error (over all the samples and all the variables). The shaded areas
represent the variations obtained over 200 trainings and the solid lines the
median values.

80/20%. It can be observed that good performances can be
achieved with a training ratio of 10/90% (compared to the
nominal value of 80/20%). This implies that the ANNs can
be correctly trained with smaller datasets: 5′000 3D FEM
simulations (instead of 20′000) would be sufficient.

In comparison, if a multivariate interpolation with a regular
grid would be used in place of ANNs, the required dataset
would be much larger. A regular grid with 6 values per vari-
able would lead to 10.1 millions samples for the thermal
model (9 input variables) and 1.7 millions samples for the
magnetic model (8 input variables). This further highlights
the advantages and potentials of ANNs for improving inductor
models against classical methods such as interpolation.

F. NUMBER OF NEURONS
A last critical degree of freedom is the structure of the ANNs
(number of hidden layers, number of neurons, and activation
functions). Two hidden layers with sigmoid activation func-
tions have been selected since such ANNs are well adapted
for non-linear fitting [8], [9]. It has to be noted that the
choice of the ANN structure is not unique: many different
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FIGURE 15. Performances of the ANNs for different numbers of neurons
(per hidden layer). (a) Thermal model ANN. (b) Magnetic model ANN. The
selected metrics are the RMS error and the maximum error (over all the
samples and all the variables). The shaded areas represent the variations
obtained over 200 trainings and the solid lines the median values.

TABLE 5 ANN Performances: Scaling with Ana. Approx

structures may give good performances. Fig. 15 highlights the
ANN performances (median over 200 trainings) for different
numbers of neurons (per hidden layer). It can be seen that
the selected structure (10 neurons per hidden layer) represents
a good trade-off between the achieved performances and the
computational cost.

G. SCALING WITH ANALYTICAL APPROXIMATIONS
For the ANN trainings, the output variables are scaled with
the analytical approximations such that the ANNs are only
predicting relative correction factors. Table 5 compares the
achieved performances with and without the scaling (median
over 200 trainings). It appears that good performances are
also achievable without scaling the 3D FEM results with the
analytical approximations. Nevertheless, the performances are
still improved by the scaling. Moreover, having analytical
approximations is very useful for inspecting and debugging
the model. For these reasons, in this work, the scaling of the
output variables has been considered.

H. COMPUTATIONAL COST
For the benchmarking, a mid-range laptop (Intel Core i7-
8650 U with 16 GB RAM) is used. However, all the workflow
(cf. Fig. 9) is parallelized and, therefore, can be massively
accelerated with more powerful hardware and/or with a dis-
tributed computing platform.

It has been shown (cf. Fig. 14) that 5′000 samples are suffi-
cient for training the ANNs. The 3D FEM models have been
optimized in order to obtain a good trade-off between the com-
putation time and the achieved accuracy. More specifically,
the models are exploiting the symmetry planes, use a cus-
tomized mesh size, and a carefully parametrized solver [47].

With this number of samples, the generation of the dataset
and the training of the ANNs (cf. Fig. 9(b)) takes 160 hours.
Between the 3D FEM simulations and the ANN trainings, the
3D FEM simulations represent, clearly, the bottleneck of the
workflow. It should be noted that the generation of the dataset
is completely automated and does not require any human
supervision. Moreover, this operation is only required once.

Nevertheless, if required, the computational cost could be
greatly reduced by using 2D FEM simulations, which are
less accurate but much faster (typically 100 times faster).
However, depending on the geometrical aspect ratio of the
components, the error between 2D and 3D simulation can be
significant (up to 30%). The error is mainly due to the field
distribution and heat flow close to the winding head of the
inductor, which cannot be easily modeled in 2D. Therefore, if
2D models are used for the optimization, the selected design
should be checked with a 3D model to ensure the validity of
the optimization.

For the computation of inductor designs (cf. Fig. 9(a)),
all the steps feature a reduced computational cost. The com-
putation of the inductor properties takes 3.3μs (or 300′000
designs per second) and the computation of an operating point
takes 20 μs (or 50′000 designs per second). The computing
speed and the parallel operation make this model particularly
useful for brute force grid search of genetic optimization al-
gorithms, which require the evaluation of many designs (cf.
Section III-A).

I. DRAWBACKS
The first drawback of the proposed model is the increased
complexity caused by the addition of the ANNs (cf. Fig. 9(a)).
However, this increased complexity is, partially, compensated
by the simplification of the inductor design evaluation process
(cf. Fig. 9(b)).

The second shortcoming of the method is the requirement
to generate a dataset for training the ANNs. It also implies that
an extension of the model (e.g., additional parameters, mate-
rials, geometries) will require an adaptation of the underlying
dataset and retraining of the ANNs.

VI. CASE STUDY: DC-DC BUCK INDUCTOR
With the presented workflow and ANNs, different types of
inductors can be optimized (e.g. PFC inductors, DC-DC in-
ductors, resonant inductors). In this paper, the inductor of a
2kW DC-DC buck converter is optimized and measured.

A. SPECIFICATIONS
Fig. 16 shows the considered 2 kW DC-DC converter stepping
down from 400 V to 200 V. The following specifications are
chosen: 55 ◦C ambient temperature, 100 μm litz wire strand-
ing, and TDK N87 core material [42]. This corresponds to the
specifications used in [21].

The following variables are optimized the boxed vol-
ume (Vbox ∈ [10, 200] cm3), the operating frequency ( f ∈
[50, 750] kHz), the geometrical aspect ratios, the air gap
length, and the number of turns. For the core and litz wire
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FIGURE 16. (a) Considered DC-DC converter. (b) Current and voltage
applied to the inductor (shown for 375 kHz and 150 µH).

FIGURE 17. Obtained Pareto plots and fronts (boxed volume vs. losses)
with the ANN-based workflow. (a) Operating frequency. (b) Inductance
value.

FIGURE 18. Deviation between the analytical approximations and the
ANN-based workflow. (a) Loss deviation. (b) Inductance deviation. The red
area represents the regions where no valid design exists with the
analytical approximations.

geometries, custom designs are also considered, in addition to
the standard shapes. Due to the extreme computational speed
of the ANN-based model, a brute force grid search approach
is used.

B. PARETO FRONTS
Fig. 17 depicts the Pareto plots and fronts obtained with the
ANN-based workflow. For the optimization 5 million designs
are considered and 0.7 million designs are valid (e.g., satu-
ration, thermal limit). All the designs are computed in 40s.
In the Pareto fronts, the design space diversity (very different
designs located at the same region of the Pareto fronts) can be
observed for both the operating frequency and the inductance
value [21], [29], [30].

Fig. 18 shows the deviation between the values ob-
tained with the analytical approximations with respect to the

TABLE 6 Measured Inductor Prototype

FIGURE 19. Measured values compared with the ANN-based workflow, 3D
FEM simulations, and analytical approximations. (a) Inductance values.
(b) Inductor losses.

ANN-based workflow. It can be seen that significant devi-
ations exist (up to 50%), highlighting the superiority and
usefulness of the ANN-based model compared to analytical
approximations. The fact that the analytical approximations
are more accurate close to the Pareto fronts (with some ex-
ceptions) can be explained by the fact that these designs
have reduced fringing field, proximity losses, and temperature
elevations [21]. Therefore, such designs are, typically, less
sensitive to the inaccuracies of the analytical approximations.

C. MEASURED PROTOTYPE
Table 6 shows the properties of the selected design, which is
the same as in [21]. It has to be noted that, due to practical
restrictions (available core shapes and litz wire geometries),
the selected design is not on the Pareto front but close to
the front. The prototype is measured, at different frequencies,
with DC currents and sinusoidal voltages (with the same volt-
second product as applied by the DC-DC buck converter).

The inductance is measured with an Agilent 4924 A
precision impedance analyzer (measurement uncertainty
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below ±0.25 μH) [52]. The losses are measured with a
custom calorimetric setup (measurement uncertainty below
±0.1W) [21]. Fig. 19 compares the measured values with the
ANN-based workflow, 3D FEM simulations, and analytical
approximations. It can be seen, that the ANN-based workflow,
as expected, matches perfectly with the 3D FEM simulations
(less than 0.6% deviation for the inductance and the losses).
The deviations between the analytical approximations and the
measurements are 8.6% for the inductance and 21.2% for the
losses. With the ANN-based workflow, the errors are reduced
to 1.4% and 11.5%, respectively.

VII. CONCLUSION
This paper examines the potential of ANNs for modeling
and optimization of power electronic components, and more
specifically, inductors. A promising workflow, which consists
of using MLP ANNs for obtaining a fast and accurate in-
ductor model, is selected. More specifically, regression ANNs
(trained with 3D FEM simulations) are used for the magnetic
and thermal models. This workflow represents a pragmatic
solution. The generation of the training dataset is straightfor-
ward and the model is accurate, robust, and easy to extend or
combine with other models and/or optimization algorithms.
The complete implementation is available as an open-source
software.

The ANN-based workflow is able to simulate inductors
with different geometries, winding strandings, core materials,
waveforms, etc. The model offers 30 input and 40 output vari-
ables and considers advanced effects such as the 3D magnetic
and thermal field patterns, detailed core loss data, proximity
winding losses, coupled loss-thermal model, etc. Furthermore,
the proposed model features the same accuracy as 3D FEM
simulations (less than 3% deviation) with a computational
cost reduced by several orders of magnitude (computation of
50′000 per second). Finally, the described computation tech-
niques are successfully applied for designing the inductor of a
2 kW DC-DC converter.

Overall, the paper demonstrates how machine learning can
be combined with classical power electronic models in order
to improve their accuracy and reduce the computational cost,
which is particularly interesting for magnetic components.
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APPENDIX
This appendix describes “AI–mag,” the software implementa-
tion of the proposed workflow (cf. Fig. 9), which is available
under an open source license [19]. All the source code is
available together with the required data (e.g., FEM models,
core loss data). The dataset used in this paper (3D FEM sim-
ulations) and the trained ANNs are also provided.

FIGURE 20. (a) Graphical user interface enabling an interactive exploration
of the Pareto fronts. (b) Geometry and properties of a specific design.

A. TYPICAL DESIGN STEPS
The tool enables many different workflows for modeling and
optimizing inductors. The most straightforward method (brute
force grid search) can be summarized as follow:
� The different variables to be optimized and the corre-

sponding ranges are chosen (e.g., geometry, material,
frequency). The fixed parameters and the applied stress
(e.g, waveforms) are defined.

� Filters are defined in order to prevent the computation
and/or storage of undesirable designs.

� With the provided data, the tool is automatically gener-
ating and computing the different designs.

� The different Pareto plots and/or objective functions are
defined (e.g., volume, mass, cost, efficiency) and the
results (trade-offs) can be displayed in a graphical user
interface, cf. Fig. 20.

B. USED TECHNOLOGIES
The tool is mainly written in MATLAB with some restricted
dependencies to COMSOL and Python (13′000 lines of
code) [47], [49]–[51]. MATLAB is communicating with both
COMSOL and Python over TCP/IP (client/server model). All
the code can take advantage of multi-core machines. Further-
more, the dataset generation (3D FEM simulations) can be
done with a distributed computing platform (cloud computing
or high-performance computing cluster).

COMSOL is used for generating the dataset (3D FEM sim-
ulations). It should be noted that COMSOL is only required
to generate the dataset, not for running the inductor model
(cf. Fig. 9). Moreover, the code is written such that COMSOL
can be easily replaced with another FEM solver.

For the regression ANNs, a versatile interface is proposed
and is taking care of the dataset handling (e.g., splitting,
scaling, normalization), ANN training, ANN validation, per-
formance visualization, and ANN evaluation. For the ANN
engine, two different libraries are available:
� MATLAB - Using the built-in MATLAB Deep Learning

Toolbox as an ANN engine.
� Python - Using the Keras ANN API with TensorFlow as

an ANN engine backend.

C. EXTENSION OF THE TOOL
Finally, the tool is made such that it is easy to extend its
capability (object-oriented programming). The addition of
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other inductor types (e.g., core shapes, winding type), mag-
netic components (e.g., transformers, chokes), or optimization
methods (e.g., genetic algorithm) should not represent a prob-
lem. ANNs could also be used for other parts of the workflow
(e.g., core losses, winding losses).
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