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ABSTRACT This work proposes a deep learning-based model for predicting the lifetime of power devices
subjected to power cycling. To this purpose, a neural network based on bidirectional long short-term memory
is adopted. The neural network is trained with experimental on-voltage degradation profiles. The application
of the proposed method is based on the monitoring of a precursor, that is the on-voltage degradation.
According to considered precursor, the model allows predicting the remaining useful lifetime (RUL) of
power components. In order to prove the accuracy of the model, TO-247 power devices are stressed under
power cycling and their wear-out is experimentally investigated. RUL predicted by the neural network is then
compared with the experimental lifetime of power devices. Thanks to the proposed deep learning model, the
accuracy in the lifetime estimation improves as long as more information about the state of health of the
device under test is acquired.

INDEX TERMS Power cycling, IGBT, semiconductor power device reliability, remaining useful lifetime,
artificial neural network.

I. INTRODUCTION
Many industrial, healthcare, automotive, energy, transporta-
tion, and aerospace applications rely on power electronic
circuits [1]. The requirement for reliability in this field has
increased considerably [2], [3]. For instance, in some applica-
tions such as avionics, the demand for failure tolerance is even
zero [1]. Moreover, the sustainability of a power electronic cir-
cuit/system is closely related to its durability. Consequently,
it has a significant impact from both economic and safety
perspectives [1], [4], [5], [6].

Among the failure mechanisms occurring with greater
probability in power electronic circuits, those affecting semi-
conductor power devices are of high relevance. The power
dissipated in electronic devices leads to self-heating effects,
which in turn bring to thermo-mechanical stress at the in-
terface of materials with different coefficients of thermal
expansion [7]. This phenomenon is particularly severe in the
case of varying power dissipation, and it is then referred to as
power cycling. Two main failure mechanisms can occur, both

in discrete devices and modules: solder joint fatigue and wire
bonds degradation [8].

In general, the lifetime of power components can be
estimated by considering model-driven and data-driven ap-
proaches. Model-driven approach can be either empirical [9],
[10], [11], [12], [13], [14], [15] (i.e., calibrated according to
accelerated lifetime tests), or physics-based [16], [17]. Mod-
els, in combinations with Miner’s rule [18], allow estimating
the lifetime consumption by considering a given mission
profile in terms of temperature swing, average temperature,
heating time and current density [19]. Data-driven approach
is based on the monitoring of the State of Health (SoH) of the
component. In the case of wire bonds degradation, on-voltage
is usually adopted as a precursor, while in the case of solder
joint fatigue the thermal impedance gives a better indication of
the SoH [20]. The knowledge of the SoH allows implementing
prognostic techniques and hence estimating the Remaining
Useful Lifetime (RUL). The implementation of prognostics
techniques is the key to achieve predictive maintenance and
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hence to avoid catastrophic failure events [1], [21], [22], [23],
[24], [25]. In fact, failure phenomena are intrinsically random
events, being modeled with the Weibull statistic distribution
in the case of power cycling effects [26]. As a result, the
assessment of lifetime by means of a model-driven approach,
allows estimating the number of cycles to failure for a given
Probability of Failure (PoF). The selection of a low value of
PoF (≤10%) is a conservative approach in the estimation of
component/circuit lifetime [27]. Prognostics, based on SoH
monitoring, allows overcoming this limitation, since RUL is
estimated online for each specific device under test.

Some data-driven methods use the on-voltage to predict
the fault event, by implementing particle filter algorithms
[28], [29], [30]. In [29] the Mahalanobis distance algorithm
is also used for anomaly detection, which, however can be af-
fected by signal noise [31]. According to [32], [33], imprecise
knowledge of parameters of the function describing the SoH,
as well as the inaccurate initialization of the filter, can lead to
inconsistent results in the prognosis.

Neural networks (NNs) represent a viable solution for data-
driven prognostic methods, allowing to avoid the definition
of models, to learn online and adopt itself to the degradation
profile [33]. In [33], a time delay neural network (TDNN)
was developed to monitor the SoH of insulated gate bipolar
transistors (IGBTs) through the on-voltage and it was com-
bined with a stochastic approach for the prediction of RUL. In
[34], a feedforward neural network (FFNN) was considered
in order to estimate the RUL based on the evaluation of the
on-resistance. However, the above-mentioned NN approaches
considered a limited dataset for training the model. In partic-
ular, in [33], four profiles were considered, with three utilized
for training and one for testing, along with their respective
combinations. On the other hand, in [34], the focus was on
only two profiles, one for training and the other for testing.
However, neither TDNN nor FFNN take into account memory
effects, which become especially relevant when the SoH at a
given moment is influenced by preceding events.

In [35], lifetime prediction was addressed using a memory-
effect-incorporating network called LSTM (Long Short-Term
Memory). In this study, a total of six samples were used to
train the network. Specifically, leave-one-out cross-validation
methodology was employed for the training phase. This form
of training entails partitioning individual profile data into
training and validation samples. Nonetheless, this strategy
results in the omission of some profile data points during
the training dataset. Potentially, this approach could curtail
the statistical significance and robustness of the outcomes.
A similar approach was proposed in [36], where, despite im-
proving the network performance through a physics-informed
approach, the training method further fragmented individual
profiles into data to be used for the training and for testing
phases.

In this work, a data-driven method, based on NNs, has been
implemented, allowing to estimate the RUL of semiconductor
power devices under power cycling stress. More specifically,
the prognostics technique is based on a bLSTM (bidirectional
LSTM) network and the on-voltage degradation is adopted

as a precursor parameter. Discrete IGBT devices are stressed
under constant power cycling conditions and experimental
on-voltage (Vce,on) degradation profiles are used to train the
NN. The trained bLSTM network allows estimating the End
of Life (EoL) of components also based on the real-time
acquisition of the on-voltage degradation. By exploiting the
memory capability of the bLSTM network, the accuracy of
the RUL prediction is improved, allowing to account for the
intrinsic statistical distribution of the failure phenomenon. In
contrast with the methodology proposed in [35], [36], in this
work a sliding window approach is employed to consider the
entire on-voltage profile independently of the chosen inputs
number. Furthermore, the approach pursued in this work is
broader and more comprehensive compared to previous stud-
ies. While prior studies considered a single stress condition
with a limited number of samples and combinations, this work
explores multiple datasets and stress conditions. Specifically,
it incorporates outcomes from a comprehensive set of 28 net-
works, corresponding to all possible combinations for each
stress condition.

The remainder of this work is organized as follows. In
Section II, the data-driven model is described, by focusing
on the methodology considered for the training process of the
bLSTM network and for its adoption in the RUL estimation.
Section III presents the experimental setup along with power
cycling experimental tests. In Section IV, several test cases are
considered for the evaluation of RUL based on the developed
model. Finally, in the conclusive section the main achieve-
ments are summarized.

II. METHODOLOGY FOR RUL ESTIMATION BASED ON
BLTSM NETWORK
The proposed approach aims at developing a deep learning-
based model for predicting the degradation profile of the
on-voltage of switching devices under fixed stress conditions.
Being the failure event a stochastic phenomenon, NN models
are the most suitable to account for the variability in the
degradation process. Fig. 1 illustrates the expected outcome
of the data-driven model, with the predicted on-voltage pro-
file over time as the model output. In power cycling stress
scenarios, the on-voltage is expected to increase due to wire
bonds degradation, and a 5% increment is considered as the
failure threshold [20]. The estimated on-voltage profile, and
consequently the lifetime prediction, relies on the real-time
on-voltage acquisition. Initially, the prediction is mainly based
on the off-line training of the model, resulting in an approx-
imation close to the average value of the voltage profiles
used in the training phase. However, as the monitoring time
increases and the on-voltage of the tested device is exper-
imentally measured, the accuracy of the lifetime prediction
improves. Consequently, the RUL estimation approaches the
ideal value.

A. ARTIFICIAL NEURAL NETWORK MODEL
To tackle time-sequence forecasting, recurrent neural net-
works (RNNs) are designed to effectively process sequential
data. Compared to traditional feedforward NNs, where inputs
are propagated and processed through the hidden layer stack,
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FIGURE 1. Graphic representation of the expected outcome of the
data-driven model.

FIGURE 2. Schematic description of a gated cell (LSTM network). σ and
tanh are the sigmoid and hyperbolic functions, respectively.

RNNs allow previous outputs to be used as inputs. The key
feature of RNNs is their ability to maintain an internal mem-
ory or hidden state that can capture temporal dependencies
in the input data. This memory enables RNNs to process
sequences of variable length and make predictions based on
previous elements in the sequence.

RNNs are affected by the vanishing gradient issue, making
it challenging for RNNs to learn and capture long-term depen-
dencies effectively. LSTM can be considered to overcome this
problem, thanks to its ability to ignore or retain information to
remember [37]. The atomic element of an LSTM network is
the gated cell shown in Fig. 2.

The cell is supplied with three gates, namely forget, input
and output, regulating the flow of information into and out
of the cell. Each gate processes the linear combination of
its inputs through a non-linear function (i.e., the activation
function) and returns a value between 0 and 1 used to weigh
the desired information. The forget gate combines the input xk

and the output of previous hk-1:

Fk = σ
(
WF,h

[
hk−1

]
, WF,x [xk] , bF

)
(1)

FIGURE 3. Bidirectional long-short term memory (bLSTM) network.

Where WF,h and WF,x are weight matrices, bF is a bias
constant and σ is the sigmoid activation function.

The input gate Ik regulates the amount of new information,
i.e., Gk , that has to be added to the LSTM cell’s memory. Ik

and Gk components are non-linear functions of xk and hk-1,
each one with its respective activation function: sigmoid (σ )
and tanh [36]:

Ik = σ
(
WI,h

[
hk−1

]
, WI,x [xk] , bI

)
(2)

Gk = tanh
(
WG,h

[
hk−1

]
, WG,x [xk] , bG

)
(3)

WI,h, WI,x, WG,h, WG,x refer to the weight matrix expres-
sions associated with these two layers, and bI ed bG are bias
constants. The outcomes of (2) and (3) are combined with the
contribution of the previous state ck−1 and with (1) to define
the state ck as follows:

ck = Fk · ck−1 + Ik · Gk (4)

The output gate Ok is related to xk and hk-1 as:

Ok = σ
(
WO,h

[
hk−1

]
, WO,x [xk] , bO

)
(5)

Where WO,h, WO,x and bO represent the weight matrix and
bias constant associated with the output gate. Ultimately, the
cell output hk is governed through the following equation:

hk = Ok · tanh (ck ) (6)

The input gate Ik regulates the amount of new information,
i.e., Gk , that has to be added to the LSTM cell’s memory. Ik

and Gk components are non-linear functions of xk and hk-1,
each one with its respective activation function: sigmoid (σ )
and tanh [36]: Remarkably, inputs and states are both pro-
cessed using the tanh function to mitigate the vanishing or
exploding gradient issues.

An extension and improvement of LSTM performance is
achieved with the bidirectional LSTM (bLSTM) [38]. As il-
lustrated in Fig. 3, bLSTM consists of two chains of LSTM
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cells that consider both time directions. According to the tem-
poral input order xk, gated cells connected in ascendent order
define the forward state. On the contrary, the ones associated
with the descending order give the backward state. The output
layer (i.e., the output sequence yk) is then given by a combi-
nation of both forward and backward states.

B. TRAINING OF BLSTM MODEL
The architecture of the artificial neural network (ANN) model
is based on a time-series forecasting structure. Multiple
bLSTM layers are connected in cascade to catch the trend
of the target on-voltage profile through the selected activation
functions in each layer [39].

The target output is the on-voltage profile of a power device
under the effect of power cycling stress. The device voltage is
measured after each temperature cycle, meaning the profile is
a function of the number of applied cycles. To hold down the
complexity of the ANN, the samples are filtered and down-
sampled (i.e., 100:1).

The following approach is based on a single-step time-
series forecasting model. A fixed window, containing m
samples, from the input sequence x is selected as the model’s
input (i.e., xk, …, xk-m+1). The neural network predicts the
subsequent value x̃k+1, where k is the index of the last input
value.

The learning process is aimed at tuning the parameters
of the non-linear function fNN associated with the ANN ar-
chitecture minimizing the loss function (e.g., RMSE) of the
predicted value:

x̃k+1 = fNN
(
xk, xk−1, . . . , xk−m+1

)
(7)

with respect to the real one xk+1. To this purpose, the input
dataset used for the training is composed of portions of the
on-voltage profiles arising from different samples. The cor-
responding next value of the sequence window is the target
output.

C. RUL ESTIMATION
The proposed approach is aimed at estimating the RUL of a
device under constant power cycling stress. The forecast is
based on recursive iterations of the bLSTM model to obtain
the on-voltage profile along the thermal cycles, as schemat-
ically reported in Fig. 4. At the first iteration (initial guess),
m samples of the experimental profile are provided to the
NN model to guess the subsequent value x̃k+1. At the next
iteration, the predicted value x̃k+1 is used as the model’s
input discarding the oldest sample xk−m+1 and sliding one
step forward the m-length window. At the i-th iteration, with
i ≥ 1, the on-voltage is predicted through both experimental
and predicted samples if i<m, or only predicted values if i ≥m

x̃k+i = fNN
(
x̃k+i−1, . . . , x̃k+1, xk, . . . , xk−m+i+1

)
, i<m

x̃k+i = fNN
(
x̃k+i−1, . . . , x̃k−m+i+1

)
, i ≥ m

(8)
This process is iterated until x̃k+i reaches the EoL condition

(i.e., an increase of 5% of the initial on-voltage value). From

FIGURE 4. On-voltage prediction according to the proposed methodology.
m samples are considered (xk, …, xk-m+1) as the input of the NN and allow
calculating x̃k+1. Subsequently, the vector (x̃k+1, …, xk-m+2) is considered
as a new input of the NN and another value (x̃k+2) is estimated. This
process is repeated until the EoL condition is reached.

FIGURE 5. Picture of the experimental setup for power cycling tests.

FIGURE 6. Schematic description of power cycling tests.

this definition, the RUL can be expressed as

RUL (k) = i | x̃k+i ≥ xEoL AND x̃k+i−1 < xEoL (9)

where k and i represent the number of monitored cycles and
the remaining number of cycles to failure, respectively. xEoL

is the failure threshold.

III. EXPERIMENTAL POWER CYCLING TESTS
A. EXPERIMENTAL SETUP
The experimental investigation of power cycling phenomenon
requires the application of controlled temperature cycles in
the device under tests (DUTs), along with the capability of
real-time monitoring the on-voltage. The experimental setup
adopted for this goal is reported in Fig. 5 [40]. It consists
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of a power supply (EA-PSB 9080-120), a custom board with
DUTs placed on liquid-cooled thermal plate, a temperature
controller (Julabo Presto A40) and a compactRIO system. As
reported in Fig. 6, two IGBT devices are stressed within the
same experiment. The power supply provides a high current
(Idc), flowing alternately in the two DUTs. The compactRio
generates control signals for switches S0 and S1, and allows
for Vce measurements on the DUTs. In order to measure Vce,
an amplifier with voltage gain of 3 is adopted. The conditioned
signal is acquired by the compactRIO’s analog-to-digital
converter (voltage range of +/- 10V, sampling frequency of
1 MS/s and resolution of 16 bits). The thermal cycling across
the DUT arises from a heating-up phase and a cooling-down
phase, lasting a time ton and toff, respectively. The desired
temperature swing (�Tj) is achieved by properly selecting
Idc, ton/toff times and the temperature of the thermal plate.
Although the current in both DUTs is the same, the temper-
ature swings can be slightly different, because of mismatches
in the thermal pads and intrinsic devices characteristics, or
because of mutual heating effects. In order to achieve the same
�Tj on both devices, slightly different ton times are selected.
According to the guidelines for the qualification of power
devices, such us [41], heating current and ton/toff times are kept
constant during the entire experiment. Since the component
degrades during the power cycling test, changes of �Tj are
possible.

The gate of DUTs is biased with a DC voltage of 15V, hence
devices are in conduction state for the entire experiment.
During the on-phase, the on-voltage across the IGBT (Vce,on)
is acquired and used to monitor the degradation state of the
component. Typically, increases in Vce,on ranging from 5% to
20% are regarded as EoL thresholds for determining device
failure due to wire bond degradation (the sole failure effect
considered in this work) [20]. In this study, an increase of 5%
in Vce,on is considered as EoL condition. During the off-phase,
a small current Iref = 50 mA is injected in the device. The
measured Vce,off voltage is used as a Temperature Sensitive
Electrical Parameter, allowing to estimate the junction tem-
perature of the component.

DUTs used in the experiments are commercial IGBTs in
TO-247 packages, with a rated pulsed current of 120A, rated
voltage of 600V, typical on-resistance of 10m�, and maxi-
mum junction temperature of 175 °C.

B. POWER CYCLING EXPERIMENTS
Power cycling tests are carried out in this work by considering
two different types of stress: �Tj = 120 °C (Idc = 70.5A) and
�Tj = 140 °C (Idc = 68.5A). In both cases, the minimum
junction temperature is 25 °C. For each stress condition, eight
different DUTs were considered. Experimental Vce,on profiles
as a function of the number of cycles are extrapolated from
[42] and reported in Fig. 7. Initially, Vce,on is almost constant,
while for a large number of cycles an increase of Vce,on is
observed, which can be ascribed to wire bonds degradation.
The increase of Vce,on by 5%, with respect to the initial value,
is commonly considered as a failure criterion for the device.

FIGURE 7. Experimental on-voltage profiles as a function of the number of
cycles. Vce,on profiles are obtained for (a) �Tj = 120 °C and (b) �Tj = 140 °C.

It is worth noting that the increase of Vce,on slightly changes
the temperature in the device. In fact, at the end of each ex-
periment, �Tj exceeds the nominal value of about 10 °C (not
shown here). This temperature increase is expected to modify
the number of cycles to failure. More specifically, according
to [7], [43], [44], [45], [46], a lower lifetime is foreseen with
respect to the case of a constant �Tj for the entire experiment.

The application of a given thermal cycling stress (either
120 °C or 140 °C), leads to a significant randomness in the
device lifetime (in terms of the number of cycles to failure),
which is well described by a Weibull distribution [40]. It is
therefore fundamental that the proposed neural network model
is trained by considering an adequate number of samples,
having different lifetimes. This allows the neural network to
be robust against the intrinsic variability of failure events.

IV. RESULTS AND DISCUSSION
A. TEST RESULTS OF THE NEURAL NETWORK
The proposed neural network has been trained according to
the procedure reported in Section II-B, by using the exper-
imental Vce,on profiles reported in Fig. 7. These profiles are
decimated by a factor 100 in order to reduce the complexity
of the neural network while maintaining good performances.
A window size (m) of 45 elements (which also corresponds
to the batch size of the bLSTM) is considered for both train-
ing and testing phases, corresponding to 4500 cycles for the
chosen decimation factor. The network structure consists of
a sequence of bLSTM layers, with the initial layer compris-
ing 16 units, followed by a subsequent layer with 36 units.
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FIGURE 8. Vce,on profiles estimated by the neural network in the case of
(a) �Tj = 120 °C and (b) �Tj = 140 °C. Each curve arises from the
experimental observation of a given number of power cycles (as reported
in the legend) and from the application of the proposed recursive
algorithm. As a result, the accuracy in the lifetime estimation improves as
long as the monitored number of cycles increases.

Additionally, two individual units of bLSTM are present, em-
ploying tanh and exponential activation functions to enhance
the understanding of the Vce,on profile behaviour from the
mentioned 16 and 36-units bLSTM layers. The outputs of
these supplementary units are ultimately combined in the last
layer of the network, which performs summation.

Regularization techniques have been implemented to
improve the network’s learning ability, and the Adam
algorithm with a learning rate of 0.1 has been used to train
the neural network [47]. The dataset is split into a training
subset (6 profiles) and a test subset (2 profiles). To verify
the robustness of the model concerning the partition of the
available dataset, the model is trained using every possible
unique combination of the 8 available samples, resulting
in a total of 28 distinct neural networks. This number (28)
is determined by the binomial coefficient (8, 6), being 8
the number of available experimental samples and 6 the
number of samples included in the training subset. It is worth
mentioning that all 28 NNs share the same architecture but
are individually trained with a different selection of 6 samples
and are tested with the remaining 2 samples, ensuring a
unique combination of training/test subset.

Two different conditions are considered for the training
phase: �Tj = 120 °C and �Tj = 140 °C. An example of
Vce,on profiles estimated by means of the neural network is
reported in Fig. 8. In particular, Fig. 8(a) (or 8b) considers a
neural network trained at �Tj = 120 °C (or �Tj = 140 °C)
with samples #1, #2, #4, #5, #6, and #7 (or samples #9,
#10, #12, #13, #14 and #15) and tested on sample #3 (or
#11). Experimental Vce,on profiles as a function of the number
of cycles are reported in black (solid lines), along with the

FIGURE 9. Predicted RULs in comparison with ideal RULs (dashed curves)
for all 8 samples stressed at �Tj = 120 °C. The 7 curves reported in each
subplot arise from different neural networks, each one trained with a
different selection of the 6 (out of 8) training samples.

thresholds assumed for the failure criterion (dashed lines).
The other curves are those predicted by the neural network
according to the selected observation windows, i.e., the mon-
itored number of cycles indicated as k in (8) and (9). After an
observation of 4500 cycles, predicted lifetimes are relatively
different from those experimentally evaluated. However, the
predicted values are within the range of values adopted for
the neural network training. It is worth noting that, the train-
ing phase is based on power cycling experiments carried out
with a constant current stress, where �Tj slightly increases
over the wear out phase. As a consequence, the proposed
model is affected by inaccuracy in the initial stage of the
monitoring phase, being the predicted lifetime mainly based
on the average profiles adopted for the training phase. More-
over, when a limited number of cycles is monitored, the
degradation of Vce,on can be negligible and the SoH cannot
be quantified by the model. As a result, the accuracy does not
necessarily improve in this case. As the monitored number
of cycles increases, and more knowledge is available about
the SoH of the component, the predicted Vce,on profiles get
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FIGURE 10. Predicted RULs in comparison with ideal RULs (dashed curves)
for all 8 samples stressed at �Tj = 140 °C. The 7 curves reported in each
subplot arise from different neural networks, each one trained with a
different selection of the 6 (out of 8) training samples.

closer to the expected ones, hence improving the accuracy in
the lifetime estimation.

B. REMAINING USEFUL LIFETIME
The remaining useful lifetime represents the difference be-
tween the predicted lifetime and the monitoring time, both
expressed as number of cycles. In Fig. 8, the predicted life-
time is calculated as the number of cycles required to reach
an increase of Vce,on by 5%. Hence, the RUL can be easily
calculated as a function of the monitored number of cycles.
For the given dataset, by considering the selection of 6 out of
8 samples for the training phase, the testing on each sample
foresees 7 differently trained neural networks.

The results of the RUL analysis are reported in Figs. 9 and
10 for �Tj = 120 °C and �Tj = 140 °C, respectively. Both
RUL and monitored number of cycles are expressed as a per-
centage value of the effective lifetime. The RUL is estimated
for all the 16 samples (8 for each stress condition) considered
in this work as summarized in Table I. As mentioned above,

TABLE 1 Average Value of RULs Predicted in Figs. 9 and 10 as a Function
of the Monitored Number of Cycles: 25%, 50%, and 75% of the Expected
Lifetime

FIGURE 11. Relative error between predicted and experimental lifetime as
a function of the monitored number of cycles. Errors are averaged over the
56 tests for both �Tj = 120 °C and �Tj = 140 °C. Error bars represent the
standard deviations around the average values.

the 7 different curves reported in each sub-plot refer to dif-
ferent neural networks, trained with a different combination
of samples. For each �Tj stress condition, 28 neural networks
are trained in total, which are used to test the 2 samples not
adopted in the training phase of the specific neural network.
As a result, 56 RUL curves are visible in each figure. Although
the estimated RULs can be initially different with respect to
the ideal ones (black dashed lines), in general the accuracy of
the RUL prediction improves with the monitored number of
cycles. For each sample, reported in Figs. 9 and 10, the RULs
predicted with 7 different NNs are averaged and the results are
summarized in Table I.

In order to assess the performance of the proposed neural
network model, the relative error, defined as the relative dif-
ference between the predicted and the experimental lifetime,
is averaged for all the 56 tests performed at a given �Tj. The
results are reported in Fig. 11. Regarding the relative error, in
the range of the monitored number of cycles, comprised be-
tween 20% and 100% of the device lifetime, its average value
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is always lower than 15%, although there are individual cases
in which a larger error can be found (according to the error
bar of Fig. 11). As long as the number of cycles increases, the
relative error, along with the standard deviation associated to
the averaging process, tends to decrease. For example, by ex-
ceeding 80% of the device lifetime, the average relative error
is below 7%, with a standard deviation lower than 5%. This is
a remarkable result for predictive maintenance, since the EoL
can be accurately predicted well before the failure event.

V. CONCLUSION
In this article, the development of a deep learning-based
model for the lifetime prediction of semiconductor power
devices is discussed. The proposed NN model is composed
of bidirectional LSTM blocks. The model is trained with ex-
perimental on-voltage degradation profiles arising from power
cycling stresses and featuring a temperature swing �Tj of
120 °C and 140 °C. Eight samples are considered for each
stress condition, representing the dataset adopted to train and
to test the proposed neural network.

A fundamental peculiarity of the model is that the training
phase is carried out by considering a significant number of ex-
perimental on-voltage profiles arising from different samples
stressed under the same conditions. More specifically, 6 out of
8 samples are adopted for the training phase.

The application of the model consists in the prediction of
the lifetime based on the monitoring of the on-voltage profile.
When a limited amount of data is available, the lifetime pre-
diction is within experimental range of samples adopted in the
training phase. As long as more data are acquired, concerning
the SoH of the device under test, the accuracy of the model
improves.

In order to understand the impact of dataset partitioning on
the NN performance, the model is trained with all the possible
combinations of subsets. Therefore, 28 neural networks are
trained for each �Tj stress condition. Those networks are
hence used in this work to evaluate the RUL of test samples
as a function of the monitored number of cycles. The rela-
tive error between the lifetime predicted by the NN and the
actual experimental lifetime tends to decrease by increasing
the monitored number of cycles. Its average value (among all
the trained neural networks) is always lower than 13% and it
becomes as low as 5% when the monitoring time is above 80%
of the device lifetime. The accuracy of the model is influenced
by the size of the training dataset. Therefore, a larger number
of experiments is expected to improve the capability of the
model to recognize any on-voltage degradation profile.
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