
Received 10 May 2023; revised 21 June 2023; accepted 17 July 2023. Date of publication 20 July 2023;
date of current version 2 August 2023. The review of this article was arranged by Associate Editor Fei Liu.

Digital Object Identifier 10.1109/OJPEL.2023.3297449

Real-Time HIL Emulation of DRM With
Machine Learning Accelerated

WBG Device Models
SONGYANG ZHANG 1 (Graduate Student Member, IEEE), TIAN LIANG 1,2 (Member, IEEE),

AND VENKATA DINAVAHI 1 (Fellow, IEEE)
1Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada

2RTDS Technologies Inc., Winnipeg, MB R3T 2E1, Canada

CORRESPONDING AUTHOR: TIAN LIANG (e-mail: tliang5@ualberta.ca).

This work was supported in part by the Natural Science and Engineering Research Council of Canada (NSERC) through Mitacs Accelerate Program and in part by
RTDS Technologies Inc.

ABSTRACT The proliferation of artificial intelligence (AI) has opened up new avenues for the modeling
of power electronics with ultra-fast transient responses, such as wide-bandgap (WBG) devices. This arti-
cle highlights the significance of ultra-fast transient device-level hardware emulation for the DC railway
microgrid (DRM) in real-time. To this end, the proposed approach partitions the DRM power system by
transmission line method (TLM) and employs gated recurrent unit (GRU) and electromagnetic transient
(EMT) modeling techniques for system-level subsystems. Meanwhile, for WBG devices, gallium nitride
(GaN) high electron mobility transistors (HEMT) and silicon carbide (SiC) insulated gate bipolar transistors
(IGBT) are modeled using a novel physical feature neuron network (PFNN), which offers high flexibility
with a variable time-step (as low as 1 ns), thereby improving the accuracy, efficiency and accelerating the
emulation on the field-programmable gate array (FPGA). The effectiveness of the proposed approach is
confirmed by comparing the emulation results with offline simulation results obtained from PSCAD/EMTDC
for system-level and SaberRD for device-level transients. The proposed PFNN approach provides strong
versatility, ultra-fast transient emulation capability, and significantly improved accuracy, which bodes well
for the future of power electronics device-level emulation.

INDEX TERMS Artificial intelligence (AI), DC railway microgrid (DRM), field-programmable gate arrays
(FPGAs), gallium nitride (GaN), gated recurrent units (GRU), hardware-in-the-loop (HIL), machine learning
(ML), power electronics, real-time systems, silicon carbide (SiC), wide-bandgap (WBG).

I. INTRODUCTION
In the era of heightened emphasis on energy conservation and
emission reduction, DC railway microgrid (DRM) [1], [2],
[3], [4] is poised to become a cornerstone solution for sustain-
able railway transportation. Among the crucial components of
DRM, wide-bandgap (WBG) devices [5], [6], including gal-
lium nitride (GaN) high electron mobility transistors (HEMT)
and silicon carbide (SiC) insulated gate bipolar transistors
(IGBT), hold a pivotal position in ensuring its efficient op-
eration. GaN HEMT [7] and SiC IGBT [8] have witnessed
an upsurge in popularity in recent years, thanks to their su-
perlative characteristics of high power density, fast switching

speed, and low on-state resistance, which make them ideally
suited for the DRM environment [9], [10]. Therefore, precise
modeling of these devices and their intricate interactions with
the DRM is indispensable for realizing optimal performance
and control.

Accurate modeling of power electronic devices is a crucial
prerequisite for designing and optimizing power circuits. Tra-
ditional modeling methods for WBG devices can be divided
into two categories: physics-based models and empirical mod-
els [11], [12], [13], [14]. Physics-based nonlinear models
aim to capture the physical mechanisms and phenomena
of the devices, such as the channel formation, the current
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conduction, the charge distribution, and the temperature ef-
fects. These models provide a detailed understanding of the
device operation and performance, but are usually complex
and computationally intensive. Empirical models, on the other
hand, rely on fitting mathematical equations to the experi-
mental data, such as the output characteristics, the transfer
characteristics, and the switching behavior. These models are
often simpler and faster, but may lack accuracy and generality.
A trade-off between complexity and accuracy is often required
when choosing a suitable modeling method for SiC IGBT
and GaN HEMT devices for power circuit simulation. As the
demand for high-performance and energy-efficient power cir-
cuits continues to grow, more advanced modeling techniques
are required to capture the complex behavior and interactions
of these WBG devices in power circuits.

While there exist numerous offline simulation and solution
methods for modeling WBG devices, most of these nonlinear
models cannot fulfill the real-time execution requirements
of hardware-in-the-loop (HIL) emulation. However, the es-
tablishment of a real-time emulation is an emerging and
crucial demand for the control and performance verification
of transportation systems. To overcome the challenges of
real-time emulation with traditional computation methods,
utilizing FPGA-based parallel accelerated computation is a
highly effective approach [15]. This approach has been widely
adopted in real-time system-level microgrids emulation, in-
cluding aircraft power systems [16], and traction systems [17].
For real-time device-level modeling, several methods such
as nonlinear behavioral model (NBM) [18] and curve-fitting
models [19] employ FPGA to achieve device-level emu-
lation, thereby reflecting the transient of power electronic
devices.

With the growing demand for accurate and efficient model-
ing of power electronics devices in HIL applications, machine
learning (ML) methods have emerged as a promising solution.
Traditional modeling methods for SiC IGBT and GaN HEMT
devices often suffer from high computational complexity, pa-
rameter sensitivity, and a lack of accuracy under dynamic
conditions. In contrast, ML methods offer several advantages
by leveraging large datasets to learn the underlying relation-
ships between input and output data, leading to more accurate
and efficient models. For SiC IGBT and GaN HEMT, ML
methods can overcome the limitations of traditional modeling
methods by capturing their nonlinear and time-varying behav-
ior and predicting their performance under different operating
conditions. Moreover, ML methods can significantly reduce
the latency and hardware resource consumption required for
model development and validation, enabling rapid prototyp-
ing and optimization of power electronic systems. Therefore,
ML methods have become a promising alternative to tradi-
tional modeling methods for SiC IGBT and GaN HEMT in
HIL applications. Although numerous research papers have
utilized neural networks (NNs) for modeling the transient
behavior of IGBT [20], [21], [22], [23], the application of
ML methods to GaN HEMTs modeling is still underexplored.
The ultra-short transient process of GaN HEMT, which lasts

FIGURE 1. Traditional point-to-point calculation algorithm.

for approximately 10 ns, requires a extremely small time-
step, making it challenging to implement fixed time-step ML
methods. To address this issue, this article proposes the phys-
ical feature neural network (PFNN), which integrates ML
algorithms with interdisciplinary physical-based modeling to
accurately model the transient process of GaN HEMT. The
PFNN offers ultra-fast transient emulation capability, and
significantly improved accuracy, which is a variable-time-
step non-linear model distinguished from other traditional
approaches. Additionally, the PFNN method is not limited
to GaN HEMTs, as it can be applied to model device-level
devices such as SiC IGBT (excellent versatility).

This article presents a novel approach for real-time HIL
emulation of DRM using PFNN accelerated WBG SiC/GaN-
based models on the Xilinx Ultrascale+ architecture FPGA
hardware platform. The main contributions of this work are
described in the following sections. Section II introduces
the ML method adopted for modeling the SiC and GaN
devices. Section III presents the DRM system and the im-
plementation of its real-time emulation using the proposed
ML-based models. Section IV demonstrates the effective-
ness of the proposed approach through real-time emulation
results and verification using experimentally verified soft-
ware, PSCAD/EMTDC for system-level and SaberRD for
device-level transients. Finally, Section V concludes the
article.

II. MACHINE LEARNING MODELING METHODS
This section introduces the operational models of traditional
device-level computational models, followed by an overview
of commonly used ML topology types for modeling and com-
parative analysis among different NNs. Subsequently, a fixed
time-step-points neural network (FTPNN) based on fully con-
nected artificial NNs (FNNs) is proposed for GaN HEMT and
SiC IGBT modeling. In view of the limitations of FTPNN,
the PFNN modeling process is further proposed. Finally, a
comparative discussion is presented on the advantages and
limitations of these modeling methods.
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FIGURE 2. NN topologies: (a) FNN; (b) RNN.

A. TRADITIONAL EMT CALCULATION MODEL
Fig. 1 illustrates the conventional device-level IGBT wave-
form calculation process, which is point-to-point in nature:
based on the circuit topology and parameters, historical volt-
ages and currents are used to calculate the output voltage
and current for the next time-step from the last computation
result. Undoubtedly, this calculation analysis method is highly
accurate, but for SiC/GaN-based transient waveform changes
occurring within 1 μs or even 50 ns, this calculation strategy is
difficult to accomplish from one time-step to the next (usually
about 10 μs). Due to the nonlinearity of the elements (the
internal equivalent capacitance value changes with the change
of current and voltage), the circuit parameters in these calcu-
lation processes are dynamically changing, and the iterative
matrix calculation typically consumes a large amount of com-
puting resources and causes significant latency. Moreover, this
point-to-point fixed time-step calculation method is sequential
and difficult to accelerate through FPGA hardware parallel ar-
chitecture. Therefore, for device-level waveforms, traditional
electromagnetic transient (EMT) calculation methods are in-
efficient to implement real-time parallel execution.

B. ML MODELING TOPOLOGY
To develop an ML model for power electronics devices, it is
necessary to employ reliable and precise NN topologies, such
as traditional FNNs, classical recurrent NNs (RNNs) [24],
long short-term memory (LSTM) [25] NNs, gated recurrent
units (GRU) [26] NNs, and others. For most power electron-
ics ML applications, near-future prediction is more crucial
than long sequence prediction or coarse prediction. There-
fore, complex NNs, which require significant computational
resources and sub-microsecond real-time execution, are un-
acceptable for these applications. In [27], a comparison of
several NN algorithms reveals that FNN and conventional
RNN are the most cost-effective, although LSTM may en-
hance accuracy at the expense of larger hardware resources.
GRU is a compromise between conventional RNN and LSTM,
and is often used as a substitute for RNN in many-step
applications or when hardware resources are sufficient. As
illustrated in Fig. 2(a), the simplest ML model, the FNN, cal-
culates data at the current time-step based on the signal at the

FIGURE 3. FTPNN-EMT hybrid model: (a) output waveform; (b) parallel
algorithm.

previous time-step. When building models with time-series
signal inputs, there may be differences in the data processing
structure between FNN and classical RNN, which is shown in
Fig. 2(b).

C. SIC/GAN FTPNN MODEL
Compared with the EMT point-to-point fixed time-step model
that is difficult and inefficient to implement on parallel hard-
ware, using NN to calculate transient waveforms can achieve
highly efficient parallel execution for real-time emulation.
In previous studies [27], [28], the effectiveness of FTPNN
method was demonstrated using FNN or system-level EMT
and device-level ML algorithms for IGBT models. The NN
results of this type of model generally use FNN and minimize
the number of layers and neurons as much as possible due
to real-time requirements and the need for outputting dozens
of data points, such as using 50 data points to emulate a 1 μs
waveform with a fixed time-step size of 20 ns or 20 data points
to emulate a 1 μs waveform with a fixed time-step size of
50 ns. Fig. 3(a) shows the output waveform of this FTPNN
model: the purple dots are generated by the EMT calculation
algorithm, while the orange dots generate a series of data
points with a fixed time-step to emulate the transient wave-
form using FTPNN. Fig. 3(b) shows the parallel computing
process and output of data points for EMT and FTPNN of
this model. This model is easy to train and can achieve an
optimal point in terms of hardware resources, accuracy, and
latency, making it an exemplary application of the intersection
of power electronics and ML technologies.

D. SIC/GAN PFNN MODEL
The FTPNN method effectively solves the problem of real-
time emulation of IGBT device-level transient waveforms.
However, for the ultra-short transient processes of GaN de-
vices, it is still difficult for the FTPNN method to achieve
small time-steps (less than 20 ns). Moreover, when using
small time-steps, the FTPNN method increases latency and
consumes significant hardware resources due to the large size
of the output matrix caused by the large number of output data
points. Therefore, another more efficient method, PFNN, is
proposed in this article to emulate SiC/GaN-based transient
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FIGURE 4. PFNN-EMT hybrid model: (a) output waveform; (b) parallel
algorithm.

waveforms. As shown in Fig. 4(a), the PFNN method signif-
icantly reduces hardware resource consumption by allowing
customizable time-steps while outputting only the critical data
points, such as waveform inflection points and waveform peak
and valley points, based on the model’s physical features (PF).
The output data points of the PFNN method include not only
voltage values but also their corresponding time values. By
reducing the output of irrelevant information, this method can
greatly reduce the consumption of hardware resources when
the waveform does not change much. Similarly, the system-
level data points are calculated using the EMT model, while
transient data points are calculated in parallel using the PFNN
method. After obtaining the data points (t1, v1) to (tn, vn), the
piecewise linearization method can be used to insert interme-
diate data points according to the required time-step, as shown
in Fig. 4(b). This allows for the output of data points with a
time-step of 10 ns or even 1 ns. Although this data insertion
process requires some extra hardware resources, this method
saves significant computational resources and reduces latency
compared to the FTPNN method using ML training and output
strategies.

Fig. 5 illustrates the modeling and data selection process of
PFNN. Taking IGBT turn-off transient waveform as an exam-
ple, Fig. 5(a) shows a 3D dataset containing voltage, current,
and time. FTPNN method collects voltage and current data
at fixed time-steps for training neural networks, while FPNN
method requires data filtering before training. For instance,
as shown in Fig. 5(d), the voltage and current waveforms are
differentiated with respect to time, and the zero-crossing times
of the derivative waveform are marked as key data points.
Then, the (t, v, i) values at those time points are collected to
form a dataset for training the corresponding PFNN transient
waveform model. Fig. 5(b) and (e) show the original (t, v, i)
dataset and the waveform in 3D space with voltage or current
dimension reduced, respectively, while Fig. 5(c) and (f) dis-
play the compressed waveform in 2D for easier data analysis
and identification of critical data points. It is evident that NNs
have strong fitting capability for continuous 3D waveforms,
while 2D waveform plots are suitable for data analysis and
identification of critical data points.

FIGURE 5. PFNN modeling: (a) 3-D original current-voltage-time datasets;
(b) compressed 3-D voltage-time waveform; (c) 2-D voltage-time
waveform; (d) PFNN training dataset selection; (e) 3-D original
current-time datasets; (f) 2-D current-time waveform.

TABLE 1. Comparison of Models for Transient Waveforms

E. COMPARISON OF DIFFERENT METHODS
The comparison between models for transient waveforms is
presented in Table 1, primarily focusing on aspects such as
complexity, execution time, resource consumption, accuracy,
generality, and long-period output capability.

The look-up table (LUT) approach (empirical model) is the
simplest and most direct, with the advantage of having low
computation time and properly outputting the data points of
the transient waveform. The disadvantage of this method is
that 1) obtaining the data from the LUT or measuring the
parameters of the model details is complicated, and 2) the
model’s adaptability and generalization capacity is vulnera-
ble.

The EMT approach is now the most widely used offline
simulation method. When compared to other methods, it has
the advantages of high accuracy, versatility, and excellent gen-
eralization potential. The downside is that the computational
burden is heavy, and iterative or serial processes are necessary,
making the real-time emulation of a tiny time-step impracti-
cal.

The FTPNN method is a straightforward ML application.
In comparison to the EMT technique, this method sacrifices
precision but employs parallel computing to achieve real-time
emulation of the minuscule step size. When compared to the
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LUT technique, it is more versatile and simple because it only
requires input and output data to train.

The PFNN approach, incorporating FTPNN and a phys-
ical model, yields accurate results with minimal resource
consumption and latency. It exhibits robust generalization
and long-term output capabilities, but requires empirical
knowledge and skill in data processing, feature extraction, and
NN training.

III. IMPLEMENTATION FOR REAL-TIME DRM HIL
EMULATION
In this section, the topology and modeling of the DRM system
is introduced firstly. Then, the data processing, training, and
parameter determination of ML models are discussed. Finally,
the latency and resource consumption of the both EMT and
ML models are analyzed.

A. OVERALL DRM POWER SYSTEM
Fig. 6(a) shows the complete topology of the DRM system, in-
cluding the AC-transformer-rectifier subsystem (ACTRS), DC
railway subsystems, energy storage subsystems (ESSs), and
isolated DC/DC (IDCDC) converters, which are connected
via an 8 kV MVDC bus. The MVDC bus generates 380 V
LVDC, which is utilized to charge electric vehicles via the
IDCDCs. SiC IGBTs are used in the MVDC to LVDC IDCDC
to adapt to high-power operation, while GaN HEMTs are used
in the LVDC to electric vehicle IDCDC in order to increase
the switching frequency and reduce the power loss of the
charging device. Fig. 6(b) shows the topology of the IDCDC,
which mainly consists of 8 switches, one transformer, and
one LC filter. The transmission line method (TLM) is applied
to partition different subsystems for parallel computation.
The ACTRS topology is modeled using the traditional EMT
method, and the IDCDC module is also built by the EMT
algorithm to ensure accuracy and solubility. For example,
the transformer in the IDCDC system is modeled using the
trapezoidal rule algorithm, which can be expressed:

it1 = it−�t
1 + dt

(
vt

1 + vt−�t
1

)

2L11
− L12

(
it2 − it−�t

2

)

L22
, (1)

vt
2 = −vt−�t

2 + 2L12
(
it1 − it−�t

1

)

dt
+ 2L22

(
it2 − it−�t

2

)

dt
, (2)

where, i1, i2, v1, v2 are current and voltage on the primary
and secondary sides of the transformer, respectively; L11,
L22, L12 are the self-inductance of the primary winding, the
self-inductance of the secondary winding, and the mutual in-
ductance between the primary and secondary windings.

These EMT methods can ensure sufficient accuracy and
low computational complexity with a time-step of 1 μs. Then,
the GRU is applied to model the DC railway subsystem and
ESS, which is advantageous in terms of balancing hardware
resource consumption, accuracy, and latency. The expression
of the relative GRU DC railway subsystems and ESSs is given:

it = f (vt−�t , . . ., vt−n�t , it−�t , . . ., it−n�t ) , (3)

FIGURE 6. DRM: (a) overall system; (b) IDCDC topology; and
(c) time-domain modeling.

where n is the number of sequences length; v and i are the two
port output voltage and current of the subsystem.

For the SiC IGBT and GaN HEMT in the IDCDC, ML
methods are used for modeling, whose expressions are:

{i, v} = fFT PNN
(
vt1 , vt1+�t , it1 , it1+�t

)
, (4)

{t, i, v} = fPFNN
(
vt1 , vt1+�t , it1 , it1+�t

)
, (5)

where t, i, v, are output time, current, voltage vectors of device
transient; �t is the system-level time-step; and t1 represents
the moment when the transient of the switch starts.
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FIGURE 7. PF Data processing.

B. DATASET PROCESSING FOR PFNN MODELING
The crucial step in PFNN modeling is the careful selection of
data points with pertinent physical feature, directly impacting
the resultant waveform. The selection process is guided by
the waveform characteristics specific to GaN HEMT or SiC
IGBT devices, allowing for precise data point identification.
For instance, based on current polarity (turn-on, turn-off) and
voltage polarity (positive or negative), waveforms under pos-
itive voltage can be categorized into four groups: positive
current on, positive current off, negative current on, and nega-
tive current off. Each category exhibits distinct characteristics.
Subsequently, within each category, relevant data points are
chosen based on current and voltage derivatives, as well as the
identification of maximum and minimum values. Fig. 7 exem-
plifies this process, highlighting the extraction of important
characteristic data points.This variable-time-step, non-linear
modeling approach (PFNN) enables the reconstruction of
waveforms using a reduced number of data points, in contrast
to previous fixed-time-step methods (SaberRD and FTPNN).
Notably, the data point selection process is guided by human
expertise rather than AI algorithms, demanding a deep under-
standing of power electronics and practical experience. This
selection strategy relies on specialized knowledge to guaran-
tee precise representation of the waveforms, ensuring their
accurate capture and fidelity within the PFNN model.This
meticulous data point selection procedure ensures the fidelity
of the PFNN model and its ability to faithfully capture the
intricate details of the device behavior.

FIGURE 8. Parameter selection.

C. TRAINING PROCESS AND PARAMETER DESIGN
For ML models, to ensure their generalization and accuracy,
various operating conditions data need to be collected and
normalized for efficient and effective training. It is worth
noting that the device-level data was obtained from offline
simulations performed using SaberRD for the SiC IGBT
CMH1200DC-34S [29] and GaN HEMT IGT60R00D1 [30].
Before feeding the dataset into the training program, the data
are grouped and shuffled. Then 80% of the data are utilized
for training, while the remaining 20% are used for testing and
validation. For training a single GRU, the total training times
are about 5,000,000 forward computations and error back-
propagations. For SiC IGBT transient PFNN and FTPNN, it is
about 800,000 times, and it is about 650,000 times for that of
GaN HEMT. The training process uses the Adam [31] training
strategy with an initial learning rate of 0.001.

As for the design of the number of hidden layers and
neurons in the hidden layer of the model, it is a process con-
stantly obtained through experience and testing. According
to our previous research [27], [28], the general hidden layer
for the IGBT transient FNN is 1 with about 20–40 neurons,
which is a balance between hardware resource consumption
and accuracy. In pursuit of improved accuracy and general-
ization in ML models, it is advantageous to employ a larger
number of neurons under identical conditions. Nonetheless,
it is important to acknowledge that this approach comes with
the trade-off of increased hardware consumption and latency.
Hence, when determining the parameters for PFNN, careful
consideration is given to hardware implementation constraints
and requirements. The selection process aims to strike a
balance between achieving high accuracy and minimizing re-
source utilization, ensuring efficient and practical deployment
of the model. As depicted in Fig. 8, when the latency require-
ment is set to be less than 1 μs, a pipeline design for the
FPGA matrix is devised. This design aims to maximize the
number of neurons while minimizing the number of digital
signal processors (DSPs). Eventually, the number of neurons
is set to approximately 30. Following thorough verification, it
has been established that these parameters fulfill the criterion
of maintaining an average prediction error of less than 1%.
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FIGURE 9. Hardware setup of the DRM real-time emulation.

TABLE 2. Model Hardware Resource Consumption on Xilinx UltraScale+
XCVU37P FPGA

The GRU sequence length needs to be determined based on
the complexity of the model. The sequence length of the DRS
GRU is approximately 30, while the ESS GRU is relatively
simple with a length of about 5. Moreover, the sequence
length should take into account the emulation time-step. For
instance, if the emulation time-step is 1 μs, the sequence
length needs to be much larger than that for the emulation
time-step of 100 μs. The sequence length mentioned above is
determined by the parameters selected for a time-step of 50 μs
for DRSs.

D. HARDWARE PLATFORM
Fig. 9 depicts the hardware connection diagram of the DRM
emulation system. For this study, the Xilinx VCU128 board
with UltraScale+ XCVU37P FPGA was utilized, and Table 2
showcases the main hardware resource consumption of indi-
vidual modules. The Xilinx VCU128 board offers abundant
hardware resources, including 4332 block random access
memories (BRAMs), 9024 DSPs, 2607 k flip flops (FFs),
and 1304 k LUTs. The entire system is designed with one

ACTRS, three IDCDCs, three GRU DRSs, three ESSs, four
device-level SiC IGBTs, and four device-level GaN HEMTs.
The EMT subsystem features a simple model and calcula-
tions, which can be achieved with less than 5% of hardware
resources for a emulation step size of 1 μs. The GRU model
is implemented in relatively complex switch-controlled sys-
tems, and after TLM segmentation, only the current output is
considered. Therefore, the emulation step size is set to 50 μs,
resulting in relatively low hardware resource consumption.
The SiC IGBT transient model FTPNN has the input, output,
and hidden neuron numbers set to the exact same values,
leading to nearly identical computational resource consump-
tion and latency. As for the GaN transient model, the PFNN
output data points are fewer, making it significantly reduced
parameters and calculations than the FTPNN model, resulting
in lower resource consumption and latency (0.5 μs).

E. REAL-TIME HARDWARE IMPLEMENTATION OF PFNN
In the context of real-time PFNN requiring hardware acceler-
ation, the selection of data types in FPGA implementations
is crucial. While traditional methods often utilize floating-
point data types for their precision and larger data range,
fixed-point data types are more suitable for resource-saving
and low-latency applications. In this article, we leverage
the advantages of fixed-point data types, as the ML models
employed have normalized training data, including inputs,
outputs, weights, and biases within the range of -1 to 1. Con-
sequently, the ap_fixed< 32, 12 > data type is employed for
matrix operations in the FPNN model. This data type achieves
a precision of 10e-6 for the decimal part, while the integer
part adequately satisfies the requirements of a simple LUT.
By utilizing the ap_fixed data type, a significant reduction
in the utilization of DSP resources is achieved. To expedite
the tanh calculation, a LUT method is employed as described
in reference [27], necessitating a certain amount of BRAMs.
In contrast, this article adopts the rectified linear activation
function (ReLU) activation function within the FPNN model,
which significantly conserves hardware resources. These con-
siderations in selecting appropriate data types and activation
functions contribute to optimizing hardware resource utiliza-
tion and improving the efficiency of FPGA implementations.

The hardware optimization for PFNN implementation pri-
marily targets the matrix operations involved. Fig. 10 com-
pares the hardware resource consumption of different con-
figurations for matrix operations, including pipeline design
using for loops, partial unrolling, and full unrolling, as well
as the utilization of fixed-point and floating-point data types
under the pipeline strategy. To facilitate comparison, the re-
source consumption is expressed as percentages. According to
Fig. 10, the pipeline design demonstrates the lowest resource
utilization. For the SiC IGBT PFNN model with fixed-point
data types, it consumes 60 BRAMs, 80 DSPs, 3418 FFs,
and 7261 LUTs, representing 1.5%, 0.9%, 0.1%, and 0.6%
of the total available FPGA resources, respectively, while
achieving a latency of 0.89 μs. Partial unrolling reduces the
latency to 0.58 μs at the cost of additional DSPs (291), FFs
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FIGURE 10. SiC IGBT PFNN hardware resource consumption with different
optimized implementations.

(2302), and LUTs (19804). Full unrolling of the for loop
enables a computation time of just 60 ns but requires 3489
DSPs, 21109 FFs, and 158025 LUTs, occupying 38.7%, 0.8%,
and 12.0% of the total resources, respectively. By employ-
ing floating-point data types instead of fixed-point, the same
PFNN model experiences an increased latency from 0.89 μs
to 1.6 μs, along with the consumption of 105 BRAMs, 155
DSPs, 16734 FFs, and 15839 LUTs, corresponding to 2.6%,
1.7%, 0.6%, and 1.2% of the total resources, respectively.
The use of fixed-point data types reduces both hardware re-
source consumption and latency. It is worth noting that the
actual resource consumption may vary based on coding and
optimization techniques. For instance, utilizing LUT meth-
ods for partial function calculations can reduce DSP usage
while increasing LUT utilization. Storage options may involve
reducing LUTs in favor of BRAMs. Specific optimization
strategies and hardware implementations are case-specific and
depend on the scenario.

IV. RESULTS AND DISCUSSION
This section presents a comparison of the DRM emu-
lation results at both system-level and device-level. The
system-level reference comparison results are obtained from
PSCAD/EMTDC, while the device-level reference compari-
son results are obtained from SaberRD. The SaberRD method,
which represents the existing traditional approach validated
by commercial software. Although it offers high accuracy
due to the Newton-Raphson method, it falls short in real-time
simulation requirements due to point-to-point calculations and
extensive iterative computations. The IGBT device-level mod-
eling provided by SaberRD has been experimentally validated
in published papers [32], [33], [34]. The FTPNN method,
which we previously developed in [27] and [28]. This method
meets real-time emulation requirements for SiC IGBTs and
regular IGBTs. However, it requires significant computa-
tional resources, particularly when dealing with short transient
processes, and the training of the ML component presents
increased challenges. The PFNN method, proposed in this
article, builds upon the latest advancements of the FTPNN ap-
proach. It achieves a balance between accuracy and hardware
resource consumption, enabling data output with a minimum

FIGURE 11. System-level waveforms: (a) ESS output current from
PSCAD/EMTDC; (b) ESS GRU output current from real-time emulation;
(c) MVDC bus voltage from PSCAD/EMTDC; (d) MVDC bus voltage from
real-time emulation.

step size of 1 ns for the emulation of ultra-fast transient pro-
cesses in GaN HEMTs. The system-level emulation includes
outputs from both GRU models with a time-step of 100 μs
and EMT models with a time-step of 1 μs. For device-level
emulation, the FTPNN model has a fixed time-step of 50 ns,
while the PFNN model has a variable time-step that can reach
a minimum resolution of 1 ns.

Fig. 11(a) and (b) show the current outputs of the ESS in
PSCAD/EMTDC and the GRU ESS model, respectively, as
the current varies from 5 A to 15 A, then 18 A, −5 A and
finally returns to 5 A. This variation is determined by the
voltage changes on the MVDC bus, as shown in Fig. 11(c)
and (d). The voltage changes with power variations, and the
steady-state range is maintained between 7.9 kV and 8 kV.

Fig. 12 shows the voltage-current and power loss wave-
forms of the GaN HEMT switch transient process. The
waveform suffix “1” represents the reference waveform from
SaberRD, while the suffix “2” represents the output waveform
from the PFNN. Fig. 12(a) to (h) represent the positive cur-
rent turn-on current transient, positive current turn-off current
transient, positive current turn-on voltage transient, positive
current turn-off voltage transient, negative current turn-on
current transient, negative current turn-off current transient,
negative current turn-on voltage transient, and negative cur-
rent turn-off voltage transient, respectively. The voltage op-
erates in the range of 370 V to 390 V corresponding to the
LVDC bus voltage of 380 V. The turn-on and turn-off range
of current is from −100 A to 150 A. Each graph uniformly
shows waveforms for six different currents. The results show
that even though the GaN HEMT transient is less than 10 ns,
the PFNN model can efficiently and accurately reproduce the
transient waveform with an average error of less than 2%.
Furthermore, the comparison between the SaberRD waveform
and the PFNN waveform, and the FTPNN waveform is shown
in Fig. 12(i), (j), (k), and (l), respectively. They correspond to

574 VOLUME 4, 2023



FIGURE 12. Device-level GaN HEMT transient waveforms under changing load conditions (the 1st for offline SaberRD, and the 2nd for real-time PFNN):
(a) positive current turn-on transient current; (b) positive current turn-off transient current; (c) positive current turn-on transient voltage; (d) positive
current turn-off transient voltage; (e) negative current turn-on transient current; (f) negative current turn-off transient current; (g) negative current
turn-on transient voltage; and (h) negative current turn-off transient voltage; and waveform comparison: (i) positive current turn-on; (j) negative current
turn-on; (k) positive current turn-off; and (l) negative current turn-off.
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FIGURE 13. Device-level SiC IGBT transient waveforms under changing load conditions (the 1st column for offline SaberRD, the 2nd column for real-time
PFNN, the 3rd column for real-time FTPNN, and the 4th column for the comparison among SaberRD, PFNN, and FTPNN): (a) positive current turn-on
transient current; (b) positive current turn-on transient voltage; (c) negative current turn-on transient current; (d) negative current turn-on transient
voltage; (e) positive current turn-off transient current; (f) positive current turn-off transient voltage; (g) negative current turn-off transient current; and
(h) negative current turn-off transient voltage.
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four transients: positive current turn-on, positive current turn-
off, negative current turn-on, and negative current turn-off,
all at 100 A. From Fig. 12, the PFNN can accurately repro-
duce the GaN HEMT transient power loss, while the FTPNN
cannot reflect the power loss (the transient integrated power
loss is less than 10 μJ), because the transient is approximately
10 ns, which is far smaller than the fixed time-step of 50 ns for
FTPNN. The power loss calculated from the SaberRD data
for these four states is 1016 μJ , 34 μJ , 17 μJ , and 348 μJ ,
while the power loss for PFNN is 852 μJ , 32 μJ , 17 μJ , and
484 μJ , respectively. The error in power loss arises due to
the selective feature extraction employed in PFNN, which
solely relies on current and voltage features. Incorporating
power loss as a feature point in accordance with user specifi-
cations would yield results more consistent with SaberRD, at
the expense of heightened hardware resource utilization. The
optimized PFNN with power loss as a feature point, denoted
as PPINN_PL , is illustrated in Fig. 12, with respective values of
978 μJ , 32 μJ , 17 μJ , and 388 μJ .

Fig. 13 depicts the transient waveforms of SiC IGBT.
The suffix “1” denotes the reference waveform from SaberRD,
the suffix “2” represents the output waveform from PFNN, the
suffix “3” represents the output waveform from FTPNN, and
suffix “4” compares the output waveforms of the three models.
Similar to Figs. 12 and 13(a) to (h) represent the current and
voltage transients during turn-on and turn-off under positive
or negative current for six different current levels ranging
from 0 to 200 A. By comparing the waveforms in the first,
second, and third columns, it is evident that while FTPNN
can also reflect the IGBT transient process to some extent
(since the transient lasts for about 500 ns), PFNN is closer
to the SaberRD model output. PFNN accurately captures the
maximum and minimum values of the waveform during os-
cillation intervals. Moreover, PFNN is more efficient in not
wasting data points in smooth and unchanged intervals. The
waveforms in the fourth column at 100 A positive or negative
current reveal that PFNN can output more detailed transients
than FTPNN.

V. CONCLUSION
This article presents a novel approach for real-time hardware
emulation of the DRM system using ML-accelerated WBG
models. The proposed system is divided into different parallel
EMT or ML parts through TLM. To achieve WBG SiC/GaN-
based device-level transient modeling outputs for the critical
IDCDC converter, two NN strategies, namely FTPNN and
PFNN, are introduced. The GRU model at system-level is
validated by PSCAD/EMTDC, while the GaN HEMT and SiC
IGBT models at device-level are verified by SaberRD. The
proposed PFNN model offers several advantages over exist-
ing approaches: 1) strong versatility–PFNN can be applied to
different device-level components, such as SiC IGBTs, GaN
HEMTs, and conventional IGBTs, with varying power, volt-
age, current ranges, and transient time lengths; 2) ultra-fast
transient emulation capability–PFNN can emulate voltage and
current transients at the 10 ns level; 3) high flexibility with

variable time-step–PFNN can achieve a ultra-small time-step
(as low as 1 ns) or a time-step greater than 1 μs. In summary,
the proposed ML-accelerated PFNN model offers high ac-
curacy, strong generality, ultra-fast emulation capability, and
high flexibility, which has the potential to significantly accel-
erate the performance of real-time DRM emulation system.
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