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ABSTRACT Power Line Communication (PLC) and Simultaneous Wireless Information and Power Transfer
(SWIPT) are popular examples of applications, where power and information are transmitted simultane-
ously. In most cases, different devices have been used to generate the power and communication signals
independently. Usually, the information is superimposed onto the power signal using an external modulator.
Recently, power converters have been used to generate pulses not just for power conversion but also for
information transfer simultaneously. This approach represents a fundamental difference because it exploits
the signal processing potential of Pulse Width Modulation (PWM), where for power conversion only the
average pulse width is used, while the information is represented by the harmonics instead of being filtered
out, as typically done in power electronics. The concept of embedding information into the switching ripple
generated by a switched-mode power converter has recently been dubbed Talkative Power (TP), in this paper
referred as Talkative Power Conversion (TPC). TPC technologies are reviewed in non-isolated and isolated
converters in this paper. Potential applications include visible light communications, battery management
systems, switching reluctance generators/motors, microgrids, and wireless electric vehicle charging stations.
Finally, trending topics are identified.

INDEX TERMS Talkative power conversion, pulse width modulation converters, power line communication,
switching ripple communication, simultaneous wireless information and power transfer.

I. INTRODUCTION
Since renewable resources are geographically dispersed with
intermittent and random characteristics, distributed power
generation systems are established to effectively harvest and
utilize renewable energy. Distributed generations improve the
network performances, e.g., reduce line losses, improve volt-
age profile, attenuate the overload, and as a consequence
increase penetration of renewables [1]. In modern electricity
grids, the penetration of power converter-interfaced resources,
e.g., battery banks, electric vehicle charging stations, wind
turbines, photovoltaic panels and electric motors, is contin-
uously increased [2]. To control and manage these power
converter-interfaced resources, Communication (COM) in-
frastructure is also required.

Conventional PLC systems embed the information in sig-
nals superimposed onto the same channel as used for power
transfer, thus avoiding using an independent communication
system [3], [4]. Nevertheless, conventional PLC systems re-
quire passive inductive or capacitive coupling and a modem.
Moreover, using PLC along with a Power Electronic (PE)
converter might lead to interference [5], [6]. Sequential PLC
is proposed in [7] to overcome the aforementioned problem
by transmitting the data in the interval of power OFF. In the
COM community, this technique is called time sharing and
requires some hardware efforts but less than for conventional
PLC. Time sharing PLC is suitable for short distances.

Power converters can directly transmit data to the con-
nected grid without any additional hardware or hardware
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modifications. Data can be embedded into the pulses by modi-
fying the switching characteristics. In [8], this technology was
dubbed Talkative Power (TP). Considering that the modula-
tion of power and data happens in the power converter without
additional hardware, i.e. power conversion stage, it is referred
as Talkative Power Conversion (TPC) in this paper. TPC
has been called zero-additional-hardware PLC in [9]. Other
researchers have called it from the signal perspective such
as Power & Signal Multiplex Transmission (P&SMT) [10],
Power and Signal Synchronous Transmission (PSST) [3], and
Power/Signal Dual Modulation (PSDM) [11], [12]. Nonethe-
less, none of these definitions is wide and precise enough to
be taken into account for PLC and Simultaneous Wireless
Information and Power Transfer (SWIPT) while fulfilling the
concept of power conversion, transmission, and distribution.
Moreover, the term signal does not comply its original defini-
tion as a signal may not necessarily carry information [13]. In
practice, power and data both appear in form of current and/or
voltage signals.

Considering the modulation process in a power converter,
TPC can be implemented in several ways: superimposing
the data on the reference modulator, i.e. reference modifica-
tion, and carrier modification. Superimposing the data on the
reference is a straightforward method to realize TPC. This
method is called Reference-Signal-based TPC (RS-TPC). Tra-
ditional digital modulation strategies including Amplitude
Shift Keying (ASK), Frequency-Shift Keying (FSK), Phase-
Shift Keying (PSK), Pulse Position Modulation (PPM), and
Orthogonal Frequency Division Multiplexing (OFDM) can be
flexibly implemented [14], [15]. The second way of realiz-
ing TPC is to change the carrier in the modulation process.
This method is called Carrier-Signal-based TPC (CS-TPC).
A hybrid combination of RS-TPC and CS-TPC has recently
been proposed in [12]. Alternately, TPC modulations can be
implemented fully digitally [16].

PWM techniques suitable for TPC include PWM-FSK,
PWM-PSK, PWM-PPM, and PWM-Frequency Hopping-
Differential PSK (PWM-FH-DPSK) [17], [18]. Besides,
PWM Spread Spectrum (PWM-SS) communication was also
proposed to increase the resistance against interference [19].
As multiple electric-devices are communicated, multiple ac-
cess technologies such as Time Division Multiple Access
(TDMA), Frequency Division Multiple Access (FDMA), and
Code Division Multiple Access (CDMA) were employed, re-
spectively [20]. TPC modulation methods have been applied
in both non-isolated converters and isolated converters (with
a medium/high frequency transformer). In [21], TPC modula-
tion was employed for multiple buck and boost converters and
it was also investigated for a full-bridge converter via phase
shift modulation [22], [23].

There are many applications of TPC modulation in both
wired and wireless systems. Concerning wired communica-
tion, it has been applied to Battery Management Systems
(BMS) and switching reluctance generators/motors [24], [25],
[26], allowing the signal transmission for condition mon-
itoring, fault diagnosis, and efficiency optimization easily

achieved. Regarding wireless communication, TPC has been
employed in visible light communication and wireless electric
vehicle charging stations, far extending connections of electric
devices and reducing the establishment of both signal and
power lines [27], [28]. Recently, an overview of TP applica-
tion in microgrids (μ-grids) has been presented in [11] where
TP is referred as PSDM. Different modulation and converter
topologies have been compared in terms of data rate, distance,
and Bit Error Rate (BER). Despite the detailed technical dis-
cussions, the paper does not provide a comprehensive vision
of the TP concept as well as its potential applications in other
disciplines.

The motivation behind this work is to overview the state-
of-the-art of the TP concept and its potential applications in
electrical power grids and other disciplines. TPC modulations
are reviewed and classified as well as its applications in BMS,
wireless EV charging, and drive systems extending the previ-
ous work in [29]. Prospective applications of TPC in wireless
and wired applications are addressed. In particular, wireless
power transfer employing TPC might enable microwave en-
ergy harvesting and medical implants. Possible applications
for optical fibers are outlined. It has been shown that new
converter topologies can be realized using the TPC concept
which can be explored as a possible future research direction.

This review paper is structured as follows. TPC princi-
ples are explained in Section II starting from fundamental
requirements for PE and COM. Section III describes TPC
modulations and classifications. Wired and wireless TPC
techniques adopted in DC/DC converters are studied in Sec-
tion IV. Then, practical applications of TPC in both wired
and wireless systems are detailed in Section V. Future per-
spectives and developments of TPC in other disciplines are
described in Section VI. Finally, this paper is concluded in
Section VII.

II. TPC BASICS
This section provides the basic definitions and concepts which
are required to fully understand TPC. TPC explanations are
evolved from COM and PE modulation in the following sub-
sections.

A. COM MODULATION
In a so-called baseband COM system, the information is
represented by a train of weighted baseband pulses. If the
baseband signal is transformed to another frequency, then a
carrier-based COM system is obtained. The choice of the
baseband pulse is a trade-off between transmission band-
width, intersymbol interference, detector complexity, and
probability of error.

Given a sequence a0, a1, a2, . . . of data symbols and a
baseband pulse p(t ), the transmit signal can be written as

s(t ) = √
Es

∑

n

an p(t − nTs), (1)

where Es is the energy per symbol and Ts is the symbol
duration. The narrowest signal bandwidth without causing

68 VOLUME 4, 2023



FIGURE 1. Time and frequency domain properties of pulses: (a) square pulse, (b) Nyquist pulse, (c) the frequency bands where most of PE and COM
applications are designed.

FIGURE 2. COM and PE fundamental modulations: (a) simple modulation of a Nyquist baseband pulse, and (b) carrier-based double-edge naturally
sampled SPWM and its harmonic spectra for fsw = 11f0.

intersymbol interference is obtained by a Nyquist pulse:

p(t ) = sinc(t/Ts) = Ts

πt
sin(πt/Ts), (2)

where the single-sided bandwidth is 1/2Ts Hertz. When using
a Nyquist pulse, the data can be detected by sampling at mul-
tiples of the symbol duration [30]. Fig. 1(a) and (b) show how
the baseband signal spreads in time and frequency domains.

Usually, signal shaping is applied to the sinc-function. A

factor, e.g. T 2
s

T 2
s −4α2t2 cos( απt

Ts
), can be multiplied by (2) leading

to a trapezoidal pulse shape in time domain and bandwidth of
1+α
2Ts

Hertz. α is called the excess bandwidth factor. There are
schemes to make the bandwidth narrower than the Nyquist
pulse which is out of the scope of this paper [31], [32], [33].

In wireless transmission schemes, baseband signals are
transformed to higher frequencies. Fig. 1(c) shows the fre-
quency bands normally used in COM and PE, respectively.
Based on (1), the baseband pulse train can be multiplied by a
carrier as follows:

s(t ) =
√

2Es

∑

n

an p(t − nTs) cos(ωst ), (3)

where ωs = 2π fs is the carrier frequency. The modulated sig-
nal for a Nyquist pulse is shown in Fig. 2(a). COM modulation
shifts the center frequency of the baseband pulses from zero
to the carrier frequency at ωs = 2π fs.

B. PE MODULATION
PE converters operate based on rectangular pulses. The main
difference with COM is to construct a single frequency signal
by superposing many rectangular pulses which have SS in
frequency domain. Normally, frequency contents near the de-
sired fundamental frequency are eliminated using superposing
of pulses with different widths. Far frequencies are eliminated
using low-pass low-order filters, e.g. an LC filter, to preserve
high energy conversion efficiency. Any additional frequency
contents on the desired frequency, i.e. DC or 50/60 Hz in
todays AC grids, are referred as ripples and are limited to a
maximum bound by standard and codes such as IEEE Std.
519-1992 and IEEE Std. 519-2014 as well as European stan-
dards IEC 61000-2-2 and IEC 61000-2-4.

Fig. 2(b) shows the Sinusoidal PWM (SPWM) for gener-
ating an AC reference signal in a PE converter converting
energy from DC to AC. As it can be seen, the undesired
frequencies are eliminated as a function of the modulator
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FIGURE 3. TPC concept: (a) schematic representation, (b) hardware implementation, (c) data is encoded as power ripple, (d) general structure of data
and power packet protocols, (e) conventional power packet structure [34], and (f) data packet structure based on [35].

frequency f0 and carrier frequency fsw ratio. A detailed dis-
cussion of conventional PWM for PE can be found in [36]
as well as SS-based PWM in [37]. Due to the limitation of
physical semiconductors and other passive components, in
particular limited switching frequency due to increased power
losses and break-down voltage limits, different modulation
schemes have emerged in power electronics. Moreover, di-
verse applications from low-power to high-power applications
have let to enormous power converter topologies. A quick
survey of the topologies can be found in [38], [39].

C. TALKATIVE POWER CONVERSION
It is shown in [4] that ripples originating from the switching
functions of power converters can be used for data transmis-
sion. This finding can be further extended without violating
the grid codes and standard requirements for Total Harmonic
Distortion (THD) criteria. COM can be integrated into the PE
converter software providing simultaneous information and
energy transfer which is called talkative power [8], [18]. The
TP concept is represented in Fig. 3(a), schematically. Fig. 3(b)
and (c) show how data can be encoded into modulation and
then it appears as switching ripples. In this figure, the voltage
ripple is magnified to illustrate the concept, practically.

The SNR is defined as the ratio of signal power to noise
power [18]. The SNR must exceed a certain threshold value
in order to guarantee an acceptable bit error rate. Since
the ripple voltage is the useful signal, the signal power is
the average power of the ripple signal. Because the ripple
should be as small as possible from a power quality point
of view, a trade-off between PE constraints and COM re-
quirements exists. Channel coding is a suitable technique for
reducing signal power while still achieving an acceptable bit
error rate [18].

D. DATA PACKET STRUCTURES FOR TPC
The general structure of a data packet is shown in Fig. 3(d).
The data contents of the header, payload, and footer could
vary depending on the level of security as well as the used

communication protocol. It has been shown that power pack-
ets in the power grids can be conceived as data packets.
In [40], the concept of digital grid is introduced where the
main grid is divided to smaller μ-grids which operate asyn-
chronously. The power converters are defined as grid routers
and an IP address is given to each converter using conven-
tional PLC. A more general and comprehensive power packet
has been proposed in [34], [41] where a power packet is
directly generated using a switch matrix. Time-Division Mul-
tiplex (TDM) is used to avoid mixing the power packets even
in the same line. This power packet structure is shown in
Fig. 3(e). Most of the research in this context is at system
level [42], [43], [44], [45], [46]. This prior art provides a good
insight about how power can be augmented with data, called
energy packets. However, these energy packets are fundamen-
tally different from the TPC concept. The first category uses
PLC in addition to power conversion and the second category
uses the switch matrix only for TDM. Moreover, the data
packet structure is more complicated than the conventional
structure that has been elaborated in these conventional power
packets as shown in Fig. 3(f). TPC has no limitation on the
data packet structure, as long as it is not used in delay sensi-
tive applications. In low latency applications, both modulation
scheme and data packet structure must be selected consider-
ing the limitations. Worth mentioning are [47], [48], where
combined data and energy packets are directly generated using
a PE converter. Hence, these two references are instances of
TPC.

III. TPC MODULATIONS
A classification of TPC is given in Fig. 4. TPC can be di-
vided into RS-TPC and CS-TPC as shown in Fig. 4(a) and
(b) [14], [15], and hybrid combinations thereof [12]. RS-TPC
embeds information via superposition of data on the reference
voltage, while CS-TPC modifies the carrier signal for this
purpose. RS-TPC and CS-TPC resemble the operation of a
conventional PLC modem [49] but without coupler hardware.
Signals are modulated by shifting the carrier frequency (e.g.,
PWM-FSK) and/or phase (e.g., PWM-PSK, and PWM-PPM),
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FIGURE 4. Classification of TPC: (a) modifying the reference modulator for superposing data, (b) modifying the carrier to embedding data, (c) schematic
and implementation mechanism of PWM-FSK [21], (d) schematic and implementation of PWM-PSK [21], (e) principles of PWM-FH-DPSK [17], (f)
waveforms of the data and switching function of PPM [18], and (g) block diagram of the DSSS-based PWM strategy [19].

as well as combinations thereof such as PWM-FH-DPSK [8].
Commonly, one binary digit (i.e. one bit) is transmitted in
multiple carrier periods for improved demodulation perfor-
mance, which limits the transmission rate. Recently, channel
coding has been proposed to avoid signaling using multiple
carrier periods [18]. Besides, many modulation schemes can
be combined with SS communication to enhance the robust-
ness against interference, and configure multi-user access via
CDMA [19].

A. PWM-FSK
The PWM-FSK modulation schematic is shown in Fig. 4(c).
The TPC functionality is enabled by changing the switching
frequency [4], [18], [21]. The converter operates at frequency
f1 when transmitting bit “0,” while it works at frequency f2

when transmitting bit “1”. Hence, the duty-cycle of the driving
pulse can remain constant and meanwhile the data are embed-
ded into the pulse’s frequency. Based on this, the COM signal
can be demodulated via the sliding Fast Fourier Transform
(FFT) algorithm, and the length of the sliding window equals
the period of one bit.

It is noticeable that the variation of switching frequency
will cause data-dependent ripple fluctuations in TP converters
and as a consequence, PWM-FSK results in power quality
issues from a power system point of view.

B. PWM-PSK
A schematic diagram of PWM-PSK is shown in Fig. 4(d).
Given a fixed carrier frequency, the carrier phase angle is
a degree of freedom for PWM-PSK to modulate data [8],
[21]. A phase angle of 0◦ represents bit “0,” while the 180◦
represents bit “1”. By changing the phase of triangle carriers,
multi-level PSK can also be realized as the phase plane is
divided into multiple sectors.

As compared to PWM-FSK, PWM-PSK can maintain a
constant switching frequency, avoiding power quality issues
caused by the switching frequency variation.

C. PWM-FH-DPSK
Multi-TP-converters can be mutually interfered at their oper-
ating frequencies, distorting the communication and deterio-
rating the SNR. Thus, PWM-FH-DPSK was proposed in [8]
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FIGURE 5. Demodulation process of PWM-FH-DPSK [17].

and [17]. The modulation signals of DPSK and the demodu-
lation process are detailed in Figs. 4(e) and 5, respectively.

A data transmission enabling signal C(t ) is employed to
select the carrier frequency. When the converter does not
transmit data, fs(ω0t ) is chosen, otherwise, the modulated
carrier eDPSK (t ), baseband data b(t ), and carrier fs(ω1t ) are
chosen to send data. This method enables the converter to
communicate in DC grids with multiple converters and pro-
vides a high band utilization. The coherent demodulation
process is illustrated in Fig. 5. After the received signal passes
a bandpass filter, signal s(t ) can be regarded as a sinusoidal
wave. If the two frequencies are orthogonal, implying that the
integration of their products within a demodulation window
equals zero, the phase can be calculated, and the digital data
can be derived by subtracting the previous phase from the
current one.

D. PWM-PPM
In PPM, data symbols determine the pulse position [18].
Power determines the width of the pulse. Thereby, it leads
to TPC. The basic data sequence and switching functions of
PWM-PPM are shown in Fig. 4(f). In PWM-PPM, logical “0”
and “1” are related to falling and rising edges as shown in the
figure. PWM-PPM maintains a constant switching frequency,
guaranteeing good power quality.

E. PWM-SS
PWM-SS has been employed to enhance the system’s ro-
bustness and communication quality [19]. PWM-based TPC
methods can be combined with SS communication. The direct
sequence SS based modulation principle is shown in Fig. 4(g).
The baseband data spread is multiplied by a Pseudorandom
Code (PC) for data spreading. The data and power modula-
tion can be realized using aforementioned PWM techniques.
Via data despreading with the PC, the data can be extracted.
Since a system with multiple converters should configure mul-
tiplexing accesses, the distinctive PCs are assigned to each
converter. Then, multi-directional TP can be realized via Code
Division Multiplexing Access (CDMA), whose concept for a
system with multiple converters is shown in Fig. 6.

IV. TPC IN DIVERSE CONVERTERS
TP converters can be mainly divided into DC/DC and DC/AC
converters based on their output. Regarding the TP convert-
ers’ topology, namely, whether the transformer is available,

FIGURE 6. CDMA concept for a system with multiple converters [19].

DC/DC TP converters can be mainly categorized into non-
isolated or transformerless converters and isolated converters,
in which the full-bridge topology is widely employed. TPC in
diverse PE converters is detailed as follows.

A. NON-ISOLATED DC/DC TP CONVERTERS
The DC bus is a common channel for power and data trans-
mission, and the TP converters are connected in parallel to
the DC bus. With respect to the power flow, the functions of
TP converters are divided into load splitting and source split-
ting, corresponding to load-side TPC and source-side TPC,
respectively. To achieve reliable COM, the ripple should be
robust against interference, but for some PE topologies, the
ripple at the bus side wobbles drastically with the variation of
input voltage or load, decreasing the PLC system’s robustness.
Therefore, the operating conditions of each DC/DC topology
should be assessed. The applicability of different topologies in
source and load-side TPC, which instructs the design for PLC
among multiple non-isolated converters, has been detailed
in [21].

B. SINGLE ACTIVE FULL-BRIDGE-BASED TP CONVERTERS
Implementation of a talkative full-bridge converters is
schematically shown in Fig. 7(a) and (b). Both PWM-FSK and
PWM-PSK can be employed in full-bridge converters. Here,
PWM-PSK is preferred for obtaining good power quality.

The relative phase (ϕA − ϕB) between the leading leg and
lagging leg is determined by power control, which cannot be
changed during communication, but the common phase ϕA +
ϕB is a decoupled control freedom, which can be modulated
to embed signals.

In [23], a bipolar phase shift modulation was used to ensure
the average current constant. As shown in Fig. 7(c), bit “1”
is represented by triangle carriers with alternative shifting
phase +�ϕ and −�ϕ while bit “0” is represented by carriers
without phase shifting. Due to the phase shifting, the gate
signals S1 and S3 are shifted with a positive time +�t and
negative time −�t successively when transmitting bit “1,”
flexibly changing the amplitude of inductor current and output
power, and providing an intensity-controllable approach to
adapt complex operating environments.

C. THREE-PHASE AC/DC TPC
As early as 2010, many studies on PLC in inverter-fed motor
systems have been carried out, and most of them developed
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FIGURE 7. Full-bridge TP converter [23]: (a) schematic circuit, (b) power and data modulation process, (c) bipolar PSK waveforms.

FIGURE 8. CHB-TPC for EV applications [10]: (a) schematic circuit, (b) FSK-based level-shifting PWM TP modulation for CHB-TPC, and (c) an example
receiver, proposed in [50], for sampling high frequency data signals superimposing the current.

communication and energy harvesting on motor cable via
coupling interface and PLC modem [51], [52]. In this sys-
tem, high-bit-rate communication relies on high-frequency
sinusoidal carriers injected into the cable, which leads to
high-frequency noise and torque ripples. By contrast, TP in
AC/DC converters can be employed widely besides motor
cable scenarios, exempting the coupler’s design and main-
tenance. Nevertheless, little research relating to coupler-less
communication in a three-phase AC/DC converter has been
conducted.

Recently, a power and data composite modulation strat-
egy for a three-phase Voltage Source Inverter (VSI) system
was proposed [53]. This method borrows the concept from
RS-TPC and PWM-2FSK in DC/DC converters and can
switch to those two FSK modulations separately. Mean-
while, the small-signal model of the VSI with the superim-
posed information-carrying signal is built and its stability is
analyzed and guaranteed under the selected parameters when
communicating.

D. CASCADED H-BRIDGE TPC
Cascaded H-Bridge (CHB) converters might be an inter-
esting solution for EV charging, battery packs, and smart
transformer applications by reducing the required stages of
energy conversion in medium voltage systems [54], [55]. To
further improve the degree of optimization in CHB-based
EVs, TPC is employed for motor speed control and battery
State of Charge (SOC) balancing at a maximum data rate
of 600 b/s [10], which is called CHB-TPC in this paper.
There are four H-Bridges (HBs) in each phase, where one
of them is connected to a DC source and responsible for the
data signal generation and the rest are connected to batter-
ies as in Fig. 8(a). FSK-based level-shifted PWM has been
applied to a converter for achieving TP modulation. FSK is
only applied to HB 1 as shown in Fig. 8(b). The resultant
modulation influences the phase current waveform due to
high order frequency components. Such data can be recovered
easily by sampling the phase current as it has been designed
in [50].
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FIGURE 9. BMS employing the TP concept [24]: (a) schematic of the circuit topology, (b) generation of logical “1” in PMU, (c) generation of logical “0” in
PMU, (d) generation of logical “1” in CMU, (e) generation of logical “0” in CMU.

CHB-TP-converters presented in [10] and [50] have not
been completely researched in terms of data handling capac-
ity. CHB could generate more levels enabling TPC with an
M-ary alphabet, where M is the number of levels.

V. APPLICATIONS OF TPC
Potential application scenarios of TPC in both wired and wire-
less systems are detailed as follows.

A. BMS
The topology of a BMS is shown in Fig. 9. The battery pack is
equipped with a Pack Management Unit (PMU) at the primary
side of isolation transformers, and each cell is controlled by
a Cell Management Unit (CMU) at the secondary side of
transformers. The topology of a PMU contains two full-bridge
converters, one used for DC/DC conversion and another used
for DC/AC inversion while the topology of a CMU contains a
half-wave rectifier and a bidirectional equalizer circuit. PMU
and CMU measure the pack and cells’ voltage, current, sur-
face temperature, and the SOC, which are key indicators for
regulating packs and cells. Hence, TPC among the converters
in PMU and CMU can facilitate battery management.

In [24], the bidirectional data exchange among PMUs and
CMUs was realized via TDMA. The period of a transmission
cycle was divided into four slots from t0 to t4, the power
slot, recovery slot, idle slot, and signal slot. The power slot
is for power transmission and also for PMUs to send data,
while a signal slot is for CMUs to send data. PMU supplies
positive voltage in the power slot and generates a negative
voltage in the recovery slot to reset the magnetizing current
of the transformer in every CMU. The idle slot is inserted
between the recovery slot and signal slot, which guarantees
the magnetizing current recovers to zero. In the power slot
from t0 to t1, PMU transmits data to CMUs by changing the
duty cycle, as shown in Fig. 9(b) and (c), where duty cycles

FIGURE 10. TPC in SRM-based system [26].

dp1 and dp0 represent bits “1” and “0,” respectively. During the
signal period from t3 to t4, CMUs send out data by changing
the on/off states of the rectifier switch S5, which determines
the bus voltage which is depicted in Fig. 9(d) and (e), respec-
tively. When CMUs send bit “1” to PMUs, the power switch
S5 remains off, and the bus voltage keeps zero. When sending
bit “0,” S5 is turned on, clamping the bus voltage to V ′

C1, which
equals VC1/nT , where VC1 is the voltage of capacitor C1 and
nT is the ratio of the transformer. Hence, PMU and CMU
transmit data in different time slots, achieving bidirectional
communication.

B. SWITCHING RELUCTANCE MOTORS/GENERATORS
TPC has also been applied to electric drive systems [3],
[25], [26]. As shown in Fig. 10, a Switching Reluctance
Motor (SRM)-based energy conversion system is split into
the source side and load side, where an 8/6 (stator/rotor)
SRM is controlled by eight switches of the asymmetri-
cal half-bridge converter. By regulating the turn-off angle
of the SRM converter to embed signals with specific fre-
quencies, which can be the feature for demodulation, the
COM signals can be detected at the power supply side, and
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FIGURE 11. TPC in wireless battery charging with FSK modulation [56].

demodulated via the Auto-Regressive Power Spectrum Den-
sity (AR-PSD) method. The AR-PSD method considers the
estimated values outside the demodulated time window ran-
dom, thereby obtaining a higher resolution than traditional
FFT. Because the asymmetrical half-bridge converter receives
power with information ripples from the DC bus, expected
data can be received by demodulating signals on the source
side.

C. WIRELESS EV CHARGING
An overview of SWIPT in EV charging application has be pro-
vided in [57] where the classification has been done based on
the link and the carrier. TPC has been applied to wireless EV
charging, as shown in Fig. 11, in [56]. FSK is designed for co-
sine carriers signals in the vicinity of the magnetic resonance
frequency achieving OFDM. Electric vehicles can commu-
nicate with charging stations via the bidirectional PLC, thus
optimizing the charging process and bringing convenience for
EV owners.

D. µ-GRIDS
Standalone small μ-grids in isolated areas could benefit from
TPC as a low bandwidth COM [58]. TPC enables decen-
tralized and autonomous control strategies leading to optimal
resource allocation, load shedding and reconfiguration.

In [59], RS-TPC has been realized using three-phase con-
verters to enable communication between different converters
and energy sources in the μ-grid and to share their energy in
an optimal manner. The proposed RS-TPC injects an AC volt-
age into the shared line using the voltage reference vT PC

re f =
vCC

re f + Vδ sin(ωδt ) where vCC
re f , Vδ , and ωδ are voltage from

the current controller, TPC voltage amplitude and frequency,
respectively. Fig. 12 shows the μ-grid enabled by TPC. The
proposed method uses reference superposition therefore at
higher ωδ frequencies it might lead to stability problems. The
proposed strategy is useful for very small standalone μ-grids.
Further methods are needed to achieve a generalized TPC for
an μ-grids with arbitrary topology.

VI. FUTURE PERSPECTIVE OF TPC
COM plays a key role in many centralized and decentral-
ized systems where the system components need information

FIGURE 12. RS-TPC enabled µ-grid [59].

from each other to operate or to be optimized. Significant
literature can be found where power and data are transmitted
simultaneously not only for electrical energy grids but also
for low-power and Ultra Low-Power (ULP) electronics. Until
now, TPC has not been considered in a common framework.
In the next subsections, the power and data transfer, obeying
Maxwell’s equation, are classified and future applications are
contemplated.

A. TPC CLASSIFICATION
TPC can be briefly classified based on different channel types
covering both PLC and SWIPT technologies. Power and data
can be transmitted in wireless and/or wireline channels:
� Wireline: Nowadays, the bulk power in electric grids is

transmitted using copper or aluminum conductive chan-
nels. Electrical signal are delivered at low frequency in
high conductivity medium resulting in high efficiency
as well as long distances up to hundreds of kilometers.
Another well-known channel, which is commonly used
in communication, is optical fiber. Optical fiber is non-
conductive and it works based on electromagnetic field
propagation.

� Wireless: Wireless Power Transfer (WPT) can be di-
vided to near-field, mid-field, and far-field based on
the wavelength (λ), sender-receiver distance (r), and
device largest dimension, (D) [60], [61]. Near-field is
respected to the distances where rNF ≤ 0.62

√
λ−1D3.

Mid-field range is defined as 0.62
√

λ−1D3 ≤ rMF ≤
2λ−1D2. If rFF ≥ 2λ−1D2 then WPT is called far-
field. Near-field wireless power transfer can be further
divided to inductive, magnetic resonant, and capaci-
tive power transfer [62]. In the mid-field, both mag-
netic and electromagnetic fields transfer power and
data. Far-field conveys power through electromagnetic
fields where microwaves and laser beams have been
extensively used for power delivery [63], [64], [65],
[66].

Fig. 13 shows qualitatively the frequency and distance of
power and data transfer in TP as well as their classification.
The energy convey methods which do not obey Maxwell’s
Equations are out of the scope of this paper, e.g. acoustic
energy transfer etc [67].
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FIGURE 13. Qualitative comparison of wireless and wireline power
transfer in terms of distance and frequency.

B. PROSPECTIVE APPLICATIONS OF TPC
TPC concept sheds the light on new applications. Following
items can be highlighted for future applications of TPC:
� Talkative μ-grids: decentralized μ-grids could benefit

significantly from TPC without the need for additional
parallel communication infrastructure. The information
from different energy sources, loads, and storage can be
shared on the grid and therefore the power flow within
the grid can be controlled optimally. It is in particular
can enable μ-grids interfaced to main grid by a Smart
Transformer (ST) [68].

� Talkative e-Transportation: electrical traction sys-
tems [69], electric vehicles, electric buses, and electric
heavy duty trucks are the core of future carbon free trans-
portation [70]. Moreover, maritime transportation [71]
and aircrafts [72], [73] are not exempted from electri-
fication. All these electrified vehicles might use power
electronics either for their own standalone operation
or for connection to a grid to exchange energy. In
standalone mode, power electronic converters intercon-
nect the loads, electric machines, and batteries or fuel
cells [74]. Therefore, TPC can reduce the volume and
weight at least related to communication system of the
e-Transportation systems.

� Near-field TPC: Wireless charging, in particular EV
charging, is the most dominant near-field application
based on the literature. US department of energy has
announced that a data rate of 100kbps is required for
home users of EV charging [75]. Normally, wireless
communication is employed besides WPT [76] which
has a much higher bandwidth [77]. The control of the
wireless EV charging system is also possible without
any dedicated wireless communication system [78], [79]
by compromising the closed-loop control requirements.
Conventional PLC can be utilized at the cost of ad-
ditional communication modem [80]. Differently than
these methods, TPC has been adopted for EV charg-
ing [81] demonstrating a data rate of 64 kbps without
any additional communication instruments. It is shown
in [56] that using FSK, a data rate about 300 kbps

can be achieved at a resonant frequency of 1 MHz.
Since TPC is capable of guaranteeing EV charging re-
quirements, it can greatly reduce the converter volume
as well as the weight of required copper and insula-
tion material for the EV plug. In addition to charging
applications, near/mid-field TPC can be also used for
powering medical implants, in particular using magnetic
resonant coupling [82], [83]. Battery-free wearable sen-
sors have been enabled by this technology where data
and power can be exchanged between sensors easily in
near-field [84]. The reduced size of implants achieved
by simultaneous power and data transmission is a clear
advantage of TP in such applications [84], [85].

� Far-field TPC: The paradigm shift toward unifying en-
ergy and information transmission at far-field has been
coined out in [86]. Authors of [87] have contemplated
the applications of wireless far-field energy transmis-
sion. The wireless infrastructure might also radiate en-
ergy to power up billions of low-power devices and Ultra
Low-Power (ULP) devices [61], [88], [89], [90], [91],
[92]. Moreover, it can eliminate the need for batteries in
some mobile applications [92] eliminating the need for
additional power supply devices. Hence, this concept can
be classified as a sort of TPC. The focus of far-field TPC
is on harvesting energy using rectennas from the existing
radiate energy [93], [94]. However, further attentions
are needed in the high-power far-field transmitter design
and development. Especially, a switching mode power
amplifier might increase the efficiency of conversion
drastically [95].

� Visible Light TPC: Visible Light Communication (VLC)
is supposed to solve some of the conventional Radio
Frequency (RF) communication drawbacks such as vul-
nerability to interference and bandwidth limitation [96].
Usually, a converter serves as the signal modulator while
its load is replaced with a high-brightness Light Emitting
Diode (LED), and the receiver demodulates signals via
a photo-detector and conditioning circuits. In the VLC
scenario, the information transmission is performed by
modulating the light intensity waveform emitted by the
high brightness LEDs. To fulfill the both the lighting
and the communication tasks, LED current is made up
of a DC component that establishes the lighting level
and a high-frequency AC component that cannot be seen
by human eyes and is determined by the modulation
scheme [28]. A comprehensive review of VLC-LED
drivers and modulators types has been presented in [97].
Both linear and switching mode modulator circuits have
been discussed. The work highlights a trend toward
switching modulators due to higher efficiency and higher
power levels. This indicates that TPC can be easily em-
bedded in the physical layer of VLC-LEDs. Crystalline
silicon photovoltaic cells have been used not only for
solar energy harvesting but also as a receiver of VLC
modulated signals in [98]. The presented concept sheds
a light on the possibility of visible light TPC achieving
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FIGURE 14. Diagram of the prospective applications of TPC respect to main function of the devices.

more than 11 Mbps data rate while operating as a photo-
voltaic energy source.

� TPC over Optical Fiber: Transmission of power in ad-
dition to data over the same optical fiber is not new
and it dates back to two decades ago when power is
delivered using the optical fiber medium to eliminate
the need for external power supplies [99]. The core
cross-section size of the optical fiber is the main bar-
rier to deliver high-power. A double-clad optical fiber
structure has been proposed in [100], [101] to overcome
the drawbacks of conventional cores in handling power.
Successful delivery of 30 W power using a 1.3 μm-band
(wavelength cut-off) double-clad optical fiber for 300 m
has been shown in [102]. More over, 40 Watt and 150
Watt power transmission has been respectively achieved
in [103] and [104] based on this double-clad optical fiber
geometry. Maximum distance 1 km of power transmis-
sion over optical fiber has been reported in [105]. The
applicability of power transmission over optical fiber
has been demonstrated in applications such as remote
antenna units [106], [107]. Despite the long history of
transmission of power and information simultaneously
through optical fibers, there is a limited literature on the
topic. Introducing TPC over optical fibers might create a
solid foundation for this new niches of technology.

Fig. 14 represents the prospective applications of TPC in
different energy disciplines. TP not only promises reduced
components count and higher compactness but also paves
the way and contemplates new solutions for traditional com-
plicated systems where power and energy are inseparable
parts. The far-field talkative-powered devices could commu-
nicate, compute and sense surrounding environment without
the need for energy storage and its management unit resulting
in very compact designs. Similarly, it could lead to the reduced
component count and the power density without violating
the conversion efficiency. Power converters and submodules
could operate autonomous enabling new control modes that
are impossible by conventional communication techniques.

VII. CONCLUSION
In this paper, Talkative Power Conversion (TPC) technologies
are reviewed and its application to Power Line Communica-
tion (PLC) and wireless communication are addressed. TPC
is classified as Reference-Signal-based TPC (RS-TPC) and

Carrier-Signal-based TPC (CS-TPC). The combined modu-
lations of CS-TPC with Pulse Width Modulation (PWM)
are explained and compared. The applicability of TPC-based
non-isolated DC/DC converters, isolated single active full-
bridge, three-phase, and cascaded H-bridge converters are
detailed. Emerging practical field applications of TPC are
comprehensively analyzed, including battery management
systems, wireless EV charging stations, switching reluctance
motors/generators, and μ-grids. The future applications of the
TPC concept are contemplated not only for power electron-
ics and electric grids but also for low power and ultra low
power electronics whenever the switching function of semi-
conductors can lead to energy conversion and/or information
generation. TPC is extended to far-field, optical fibers, and
visible light communication.

An in-depth comparison between RS-TPC and CS-TPC
with respect to system stability, dynamic response, latency,
and data rate is subject to future work.
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