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ABSTRACT With the prosperity of artificial intelligence, more and more jobs will be replaced by robots. The
future of precision agriculture (PA) will rely on autonomous robots to perform various agricultural operations.
Real time kinematic (RTK) assisted global positioning systems (GPS) are able to provide very accurate
localization information with a detection error less than ±2 cm under ideal conditions. Autonomously driving
a robotic vehicle within a furrow requires relative localization of the vehicle with respect to the furrow
centerline. This relative location acquisition requires both the coordinates of the vehicle as well as all the
stalks of the crop rows on both sides of the furrow. This extensive number of coordinate acquisitions of
all the crop stalks demand onerous geographical survey of entire fields in advance. Additionally, real-time
RTK-GPS localization of moving vehicles may suffer from satellite occlusion. Hence, the above-mentioned
±2 cm accuracy is often significantly compromised in practice. Against this background, we propose sets
of computer vision algorithms to coordinate with a low-cost camera (50 US dollars), and a LiDAR sensor
(1500 US dollars) to detect the relative location of the vehicle in the furrow during early, and late growth
season respectively. Our solution package is superior than most current computer vision algorithms used for
PA, thanks to its improved features, such as a machine-learning enabled dynamic crop recognition threshold,
which adaptively adjusts its value according to the environmental changes like ambient light, and crop size.
Our in-field tests prove that our proposed algorithms approach the accuracy of an ideal RTK-GPS on cross-
track detection, and exceed the ideal RTK-GPS on heading detection. Moreover, our solution package neither
relies on satellite communication nor advance geographical surveys. Therefore, our low-complexity, and
low-cost solution package is a promising localization strategy as it is able to provide the same level of
accuracy as an ideal RTK-GPS, yet more consistently, and more reliably, as it requires no external conditions
or hassle of the work demanded by RTK-GPS.

INDEX TERMS Computer vision, machine learning, navigation, precision agriculture, crop row detection,
localization, LiDAR.

I. INTRODUCTION
Precision agriculture (PA) has become a trending research
topic due to the increasing demands for environmental pro-
tection, cost reduction and yield enhancement [1], [2]. The
current aggregational approaches of irrigation, weeding and
insect control inevitably use more resources than needed. Ad-
ditionally, the extensive use of herbicide and pesticide has

posed potential danger to animals and human beings by leav-
ing toxic chemical components built up in the soil to a level
that eventually infiltrate crops and livestock.

Driven by the above limitations of current agricultural
methodologies, the University of St. Thomas is cooperating
with Rx Robotics and Molitor Brothers Farm to propose a new
set of solutions to precisely manage the farm fields to achieve
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FIGURE 1. Rx Robotics autonomous horticultural rover, the ‘bikebot’. The
rover is currently an electrically powered wheeled vehicle, which will be
remodeled with tracks.

higher productivity at a lower cost while also preserving the
environment. The PA system utilizes small-scale autonomous
vehicles equipped with robotic arms to collect field samples
and performs various agricultural operations. The collected
samples will be used to evaluate the soil health and plant con-
ditions, and employed to derive actions on plants or soil via
machine learning algorithms such as neural networks [3], [4].
Moreover, the vehicle will also be used to co-plant cover crops
to suppress weed growth instead of herbicides, maintain the
nitrates from being leached, and eliminate the cost incurred
by the expensive hybrid seeds for herbicide tolerance.

The robotic vehicle should be able to self-navigate through
the narrow furrows, and self-charge through a dock, so that it
is able to work 24/7/365 with little to no human interventions.
We have designed and implemented an electrically powered
rover, as shown in Figure 1, to serve as the above-mentioned
vehicular platform. The papers [5] detailed the dynamic inver-
sion based navigation algorithm employed by the rover. More
specifically, the navigation subsystem requires the cross-track
and heading errors of the rover with respect to the centerline
of the furrow as the input variables. As shown in Figure 2, the
cross-track error e is defined as the normal distance from the
centerline of the furrow to the rover center, with right offset
being positive. The heading error �e is the angular difference
between the heading of the rover and heading of the furrow.
The heading error is positive if the rover is skewed clockwise
from the heading of the centerline of the furrow.

To detect the relative location of the rover with respect to
the furrow precisely, the sensing subsystem can either use a
Global Navigation Satellite System (GNSS), or camera and/or
light reflective based sensors, such as LiDAR, sonar, radar,
etc. Real time kinematic (RTK) techniques can further en-
hance the accuracy of GNSS. Nevertheless, to calculate the
relative position of the rover with respect to the furrow, not
only are the coordinates of the rover required, but those of
each point constituting the furrow are also required. This
a priori information calls for large amount of work on ge-
ographical survey in advance. Besides, the aforementioned

FIGURE 2. Illustration of cross-track error e and heading error �e, as well
as the geometric relationship of the motion of the rover, when the furrow
is assumed to be straight around the rover.

RTK accuracy requires a constant connection to a large num-
ber of satellites, which cannot be obtained during occlusion of
GNSS satellites. Admittedly, the Kalman filter and its variants
can be used to fuse the GNSS data with inertial measurement
unit (IMU) measurements to estimate the rover positions [29].
Chiang et al. [30] reported a detection error of 8∼18 cm when
the GPS signal is lost for 60 seconds during highway travel.
All other similar fusion positioning systems reported higher
detection error [29].

Nevertheless, navigation in precision agriculture requires a
higher accuracy on localization. Hence, we propose to use
a low-cost camera and LiDAR as the sensors to detect the
relative location of the rover with respect to the furrow, during
the early and late growth season of the crops respectively.
The raw image data acquired by the camera or LiDAR are
processed using computer-vision algorithms, through which
the relative geographical location is extracted. This process
relies only on local devices (no satellite connection as GPS)
and hence is more reliable. The relative location is obtained
without any advance geographical survey and hence is more
convenient to use.

These advantages have motivated the computer vision tech-
nologies to mushroom since 1980s [6]. It has been extensively
used for indoor robotic navigation and outdoor transportation.

The NAVLAB1 [7]–[10] has used the red, green, blue
(RGB) pyramid and surface texture to distinguish the road
and non-road pixels, and Hough line approach to find the
exact edge lines. The NAVLAB1 also employs ALVINN
(Autonomous Land Vehicle In a Neural Network), which is
a Gaussian distribution enabled continuous neural network
to determine the steering angle corresponding to a captured
video image [11]. It realizes road edge detection and nav-
igation via a neural network, whose input is the raw im-
age and output is the steering angle. Another leading work
in computer-vision based road-following was done by Turk
et al. [12], who designed a system called VITS (VIsion
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Task Sequencer). It is able to combinatively consider the
factor of current position, speed, heading, etc., to make a
projection of the road boundary and create a road map for
the vehicle. Equally prominent is the research conducted
for vehicles travelling on the ‘Autobahns’ [13], [14] and all
the derived work [15], [16], including the EUREKA-project
Prometheus [17], [18], which aimed at improving the traffic
safety by developing a system to warn the drivers when they
are off-track. Other distinguished research work focusing on
computer-vision based road following include [19], [27], [31],
[32], [36].

Admittedly, computer vision has been extensively used in
self-driving and driver assistance systems in transportation as
stated above. Nevertheless, operation in precision agriculture
poses new challenges to localization of autonomous naviga-
tion for the following reasons:
� The furrow is much narrower than a highway road, hence

allowing for less trajectory oscillation.
� The agricultural vehicle is uniquely equipped with two

tracks as to reduce pressure to the soil, while most vehi-
cles in transportation have wheeled structures.

� The aforementioned two major differences evoke a dif-
ferent navigation algorithm [5], which relies on high-
precision detection of cross-track (lateral) distance and
heading values of the rover with respect to the fur-
row centerline to produce a narrowly bounded trajectory
without damaging the crops.

� Unlike most roads, the furrows do not have painted
lanes or physically existent boundaries. The scattered
bottom of each crop stalk forms an imagined boundary
of the furrow. Detection of these imagined boundaries
are interfered with the ever growing crop leaves and ever
changing ambient light.

� Unlike in transportation, there are much more furrows
present in one picture in agricultural fields. The irrele-
vant furrows may lead to compromised localization ac-
curacy, if all the furrows are not equidistant and parallel.

� The challenges presented in the above two items calls for
a more robust and effective crop row detection algorithm.

� When the crops are taller than a certain height, the com-
puter vision based algorithm may not be efficacious to
detect the crop rows and a LiDAR will be used instead
of a camera.

These new challenges posed by precision agriculture have
inspired a large amount of research in crop row detection and
autonomous rover localization. In 1987, Searcy et al. [37]
presented the primary steps a computer-vision based crop-row
sensing subsystem needs to include and serves as the foun-
dation followed by many other researchers [38]–[40]. Most
monocular based computer vision solutions contain the fol-
lowing fundamental steps: crop recognition, furrow edge for-
mulation, perspective (camera-view to top-view) conversion,
cross-track and heading calculation. Crop recognition can be
done either via pixel segmentation or column-wise compar-
ison. Pixel segmentation is a series of operations, where a
threshold of a color (normally green) index is set to filter

out the crop pixels and a black-and-white (BW) binary image
is consequentially generated [45]. The common furrow edge
formulation methods following segmentation approach are the
Hough transform [48] and its variations [42], [46], [47], where
a best line of fit will be generated penetrating as many crop
pixels as possible. However, segmentation with a constant
threshold is not very robust against inevitable environmental
changes, such as crop size and light conditions. To combat this
challenge, an opening operation may be conducted to remove
the small bright pixels in the foreground [42] before a constant
threshold is applied.

Another commonly used crop row recognition approach is
using column-wise comparison to decide the location of the
crop edges in an image. When this method is applied, the
by-column change of a certain indicator, normally the green
value or a linear combination of RGB values, is recorded.
One branch of this method is to sum the indicator per column
and locate the crop rows either by finding the peaks of the
achieved waveform [41], [43] or the median value of the row
histogram [44]. Another branch divides the whole image into
strips and finds the furrow edge points per strip followed by a
linear regression to figure out the complete furrow edge [40].
Nevertheless, all these algorithms have assumed a known
row spacing [51]. Winterhalter et al. [51] proposed a Pattern
Hough and Pattern RANSAC based crop row detection and
localization algorithm, which detect all the rows in 3D cam-
era or laser images simultaneously by exhaustively searching
through all the possible combinations of the normal distances
and angles of all the supposedly parallel and equidistant crop
rows. However, this method has relatively high computation
complexity due to the exhaustive searching process. Besides,
more advanced sensors such as stereo cameras [49], infrared
cameras [42], [50], or 3D laser scanners [51] may also be
used to provide more informative raw images to facilitate the
localization process.

Standing on the shoulders of all the above-mentioned and
many other giants, we propose an alternative approach to
detect the lateral and heading values of the rover in a low
complexity manner with low cost 2d camera ($50) and LiDAR
($1500). The major differences between our findings and the
above-mentioned previous excellent achievements lie in the
following aspects. First, during early growth stage, we set
a dynamic threshold to segment the crops, which is able to
change with environment. The dynamic threshold is derived
from two inputs that can be read directly from the images.
These two inputs are indicative of the two most influential
varying environmental factors, the crop volume and the am-
bient light intensity respectively. The exact formula of the
threshold as a function of the two inputs is obtained via a
heuristic machine-learning approach. We denote this process
as the adaptive RGB filtering algorithm in our paper.

Second, while most of the aforementioned papers presented
results only when the rover is aligned with the furrow, we did
extensive field tests with a large variety of preset cross-track
and heading offsets ranging from −16 cm to +16 cm and
−20◦ to +20◦, respectively. Through the test, we found the
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detection results to be increasingly inaccurate as the cross-
track offset gets bigger. The worsened detection error in mis-
aligned positions has led us to find out the non-negligible in-
terference imposed by the body of the tall crops. We quantify
the negative effect as a function of an input from the image
via heuristic machine learning approach and compensate for
the interference with the aid of the formula. This process is
denoted as the anti overinflation process in our paper.

Third, we fuse the information from the two track tachome-
ters with the previous location detection result to estimate the
current location of the rover, and calculate the predicted pixel
position of the centerline. This will help us filter out the un-
wanted furrows, which the rover is not currently between. We
name this strategy the triangle filtering in our paper. Fourth,
rather than an ordinary linear regression approach, we develop
an inverted linear regression approach to more accurately
obtain the furrow edge line. Last but not least, during the late
growth stage, the crop rows are detected through horizontal
scanning starting from the estimated centerline of the furrow
in the 2d point cloud obtained by the LiDAR sensor.

All of the above-mentioned meticulous operations result
in a greatly improved localization precision. Our field tests
indicate that our solution achieves an average cross-track and
heading detection error of 0.09 cm and 0.43◦ with a standard
deviation of 2.53 cm and 0.83◦ under all light and crop-size
circumstances and all possible preset positions during early
growth stage, and an average detection error of 0.83 cm and
0.37◦ with standard deviation of 1.38 cm and 0.94◦ for cross-
track and heading respectively during late growth stage.

This paper presents the methodologies and results of the
research continued from the IEEE proceeding paper [52].

The major improvements from the proceeding paper to this
treatise are reflected in the following aspects:
� This paper introduces the adaptive RGB filtering, which

quantitatively evaluates the dynamic threshold that
changes based on the crop volume and ambient light
condition.

� Triangle filtering is developed and presented in this pa-
per, which can remove the irrelevant interfering crop
rows.

� Inverted linear regression and Deming regression are
introduced to acquire the crop row edges.

� Anti overinflation adjustment is introduced to compen-
sate for the detection error incurred by the crop height.

� While the conference paper only focused on the early
growth stage, we introduce a LiDAR based low-
complexity localization algorithm for late growth stage
in this treatise.

� While the conference paper only presented results from
preliminary test done with tapes on floor imitating the
crop rows, we did extensive field tests throughout the
early and late growth stage of the crops, during different
times of the day, with a large number of combinations of
preset cross-track and heading values.

� On top of that, six combinations of two different
crop recognition approaches and three furrow edge

formulation methods are adopted to process the exper-
imental data and the results are compared.

The rest of this paper is organized in the following way:
The algorithm for early growth season will be introduced
in Section II. The proposed triangle filtering, the adaptive
RGB filtering algorithm, the anti-overinflation correction will
be introduced in Section II-B, II-C1 and II-E. Late growth
localization approach will be introduced in Section III. The
results of all six combinations of the algorithms introduced in
this paper will be presented in Section IV. The paper will be
concluded in Section V.

II. EARLY GROWTH SUBSYSTEM
The crops’ early growth stage is defined as the time from when
seeds germinate from the ground till when the height of the
crops are approximately 45 cm. During this stage, the color
of the crops is visually distinguishable from the dirt around it,
and the stocks of crops are not tall enough to reflect the beams
emanated from the light-reflective sensors such as radar, sonar
or LiDAR installed on the rover. Hence, image-based sensors
like a camera have a better opportunity to capture the edges of
the furrow.

Every 0.02 seconds, an image of the field is taken with a
camera facing the direction of the rover’s heading and located
on top of the rover. To best capture the information, we tilt the
camera with such an angle that the center of the camera will
face the point on the ground that is 2.25 meters in front. This
set up will ensure enough crop pixels present in the obtained
picture, yet is not that long to undermine the assumption that
the furrow edges appearing in the images are two straight
lines.

The overall flow chart of the entire computer-vision based
algorithm for early growth season is presented in Figure 3.
More details of each process will be given in the following
subsections.

A. IMAGE CAPTURE AND UNDISTORTION
All cameras are subject to symmetrical radial distortion and
tangential distortion [21], [22] caused by deviation from recti-
linear projection and non-parallel alignment between the lens
and the image recording component [23]. The effects of these
distortions can be clearly observed in the raw image of a
chessboard taken with the camera used by the same group of
authors in this treatise, as seen in Figure 2(a) of [52], while
the corrected image of it is shown in Figure 2(b) of [52].

On the one hand, the adjustments needed to apply to any
pixel in the raw image caused by radial distortion can be
formulated as [24]–[26]:

Cr =
[

Crx

Cry

]
=

[
δx(K1r2 + K2r4 + · · · )
δy(K1r2 + K2r4 + · · · )

]
, (1)

where Crx and Cry are the amount of revision needed to apply
to pixel (xd, yd ) in the raw distorted image in both axes, to
correct for the radial distortion.

In the equation, the location of the pixel (xd, yd ) in the raw
image is alternatively defined by δx and δy, the horizontal and
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FIGURE 3. A flowchart outlining all the possible steps to process the raw
image taken by the camera to get the cross-track error and heading error
during the early growth season. Please note that ovals are input/outputs,
rectangles are processes, and rhombuses are data.

FIGURE 4. Distorted raw image taken with ELPUSBFHD01 M in the corn
field. The red curves and blue dashed straight lines were both manually
added by the authors. The red curves delineating the crop rows were
created by connecting each contact point between the corn stalks and the
dirt, while the blue dashed straight lines were created by directly
connecting the lower and upper ending points of each crop row in the
image with a straight line. Obviously, the blue straight lines are not on the
crops.

vertical distances from the pixel to the center of the distorted
image, namely δx = xd − xc, δy = yd − yc. The radial distance
from the pixel to the center of the distorted image is then

denoted as r, where r =
√

δ2
x + δ2

y .

On the other hand, the adjustment caused by the tangential
distortion can be formulated as:

Ct =
[

Ctx

Cty

]
=

[
P1(r2 + 2δ2

x ) + 2P2δxδy

2P1δxδy + P2(r2 + 2δ2
y )

]
. (2)

In both Equations (1) and (2), Kn and Pn are the nth order
radial and tangential distortion coefficients, which can be ob-
tained through a training process. Finally, the total amount of
adjustments needed to be done to a pixel in the distorted raw
image is the summation of Cr and Ct . That is,

C = Cr + Ct =
[

Cx

Cy

]
=

[
Crx + Ctx

Cry + Cty

]
. (3)

Interested readers are welcome to refer to the IEEE pro-
ceeding paper [52] for more details about the application
process of the correction algorithm.

As an example, Figure 4 is a raw image taken with the
camera. As can be seen from the picture, the crop rows are
delineated with the red bulged curves, while the blue straight
lines are depicted as benchmarks. Clearly, the crop rows in
the raw image contort from their original straight-line shape.
After applying Equations (1)∼(3), the raw image can be rec-
tified as shown in Figure 5. Now the crop rows are recovered
to their original shape as being depicted by straight lines. Last
but not the least, as the objects in the distorted raw image swell
out as compared to their actual shape, the rectified undistorted
images are hence ‘shrunk back’ to the center, leaving some
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FIGURE 5. Rectified image of Figure 4. The blue dashed straight lines were
manually added by the authors. The blue dashed straight lines delineating
the crop rows were created by directly connecting the lower and upper
ending points of each crop row in the image with a straight line.

FIGURE 6. Cropped image of Figure 5. The blue dashed straight lines were
manually added by the authors. The blue dashed straight lines delineating
the crop rows were created by directly connecting the lower and upper
ending points of each crop row in the image with a straight line.

blackout areas on the edges of the image, as shown in Figure 5.
To reduce the interference from these blackout areas to the
true information conveyed by the images, the images need to
be cropped as shown in Figure 6.

B. TRIANGLE FILTERING AND CENTERLINE CALCULATION
Intrinsically, there are multiple crop rows in each distortion-
corrected and cropped picture as shown in Figure 6. However,
only the furrow traversed by the rover is of interest and all
the location detection algorithms introduced in this treatise
are developed to prevent the rover from running over the crop
row on either side of the interested furrow. Our experiments
have indicated that the inclusion of crop rows other than these
two rows of concern in the image interfere with, rather than

facilitate, the location detection process. Hence, as shown in
Figure 3, an extra step called ‘triangle filtering’ is applied
to filter out the interfering crop rows before any approach is
invoked to identify the crop row pixels in the image.

To do this, a priori location information of the rover is
required to estimate the pixel location of the centerline in the
image. To be more exact, the pixel location of the centerline in
the image is determined by the cross-track and heading errors
of the furrow. Hence, we will estimate the a priori cross-track
error ěk and heading error �̌e,k of the rover at the current
moment using dead reckoning method, based on the location
of the rover at the previous moment and measurements of the
track speeds at the current moment.

More quantitatively, the heading rate of the rover in ra-
dian/sec can be calculated as [5]:

�̇ = VL,act − VR,act

W
, (4)

where VL,act and VR,act are the measurements of the actual left
and right track speed in m/s obtained with encoders, and W
is the width of the rover. Hence, the estimated heading of the
rover at the current moment can be calculated as

�k = �k−1 + �̇ · dt, (5)

where dt is the sampling period. According to the rover kine-
matics [5], the fraction of the rover speed on x and y Cartesian
axes can be computed as:

Vk = VL,act − VR,act

2

Vx = Vk sin(�k )

Vy = Vk cos(�k ), (6)

where Vk is the computed rover speed along its heading at
the current moment. Therefore, the location coordinates of the
rover at the current moment (Xk,Yk ) can be derived as:

Xk = Xk−1 + Vx · dt

Yk = Yk−1 + Vy · dt (7)

As a result, the a priori estimation of the cross-track error
and heading error of the rover at the current moment can be
concluded as:

ěk = Xk − X0

�̌e,k = �k − �row, (8)

where X0 and �row are the x coordinate and heading of the
furrow centerline. Here we assume that X0 = 0 and �row = 0
for simplicity. That is, we assume that the centerline of the
furrow is aligned with the y axis. This assumption doesn’t af-
fect the development and application of the location detection
algorithms introduced in this treatise as the detection results,
namely the cross-track and heading errors are relative position
information of the rover with respect to the centerline of the
furrow.
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FIGURE 7. An example of applying the triangle filtering to the
distortion-corrected and cropped image. The areas filtered out are masked
in black, while the estimated centerline is depicted in white.

Now to decide the pixel location of the centerline in the im-
age captured by a camera located ěk meters away, and facing
�̌e,k degrees away from the centerline of the furrow, we went
through a set of images with known cross-track and heading
errors and recorded the pixel locations of the centerlines’
intersections with the top and bottom edges of each image,
which are denoted as Pt and Pb respectively. We then plotted
these sets of Pt and Pb values against the known heading
and cross-track values to determine the relationship between
them. Then, by fitting a line to the plotted data, the following
empirical equations are obtained to locate the centerline in the
picture:

Pb = 0.5Nc − 7.5�̌e,k − 4.5ěk

Pt = 0.5Nc × (1 − 0.02�̌e,k ) − 3.75�̌e,k − 0.75ěk (9)

where Pb (and Pt ) is the column index of the intersection
between the centerline and the bottom (and top) edge of the
image. To be more exact, both (Pb − 1) and (Pt − 1) are
the number of pixels between the intersections and the left
edge of the image. In Equation (9), Nc is the total number
of columns in the distortion-corrected and cropped images.
It may be worthy to mention that the numbers in Equation (9)
are dependent on the down angle of the camera, which is 31.37
degrees below horizon here.

An example of the estimated centerline can be seen in Fig-
ure 7. After the estimated centerline is calculated, any pixels
beyond a certain distance fr from the centerline on both sides
at the rth row will be filtered out from the image. As the
camera is mounted on the rover with a fixed height and angle
facing the ground [52], this set of distances fr , ∀r = 1, . . . , Nr

should also be fixed, where Nr is the total number of rows in
the image. Hence, starting from the top of the image with an
initial value of f1 = 55 pixels, the width of the filter on the
rth row of the image will be fr = 2( f1 + r − 1). This gradual
increase of the width causes the filtered area to resemble a
triangle. Hence we name this process the ‘triangle filtering’
process. An example of applying the triangle filtering ap-
proach can be seen in Figure 7.

C. LOCATING THE PLANTS IN THE IMAGE
The next step in the algorithm is to locate the pixels in the
image that represents the crops, as shown in the total flow
chart in Figure 3. Two approaches have been developed and
applied to complete this step: the self-adaptive red-green-blue
(RGB) filtering and the Canny edge detection algorithm.

1) ADAPTIVE RGB FILTERING
The adaptive RGB filtering algorithm is able to pick out the
pixels representing the crops despite the change of crop size
and brightness level. Each pixel in a color image taken by the
camera is associated with a set of red, green, and blue values
ranging from 0 to 255 according to its color. The set of pixels
in an image outputted from triangle filter can be defined as

P = {Pi} , ∀i = 1, 2, . . . , |P |, (10)

where Pi is a vector with

Pi = [
Pi,r, Pi,g, Pi,b

]
with Pi,r, Pi,g, Pi,b ∈ [0, 255], ∀i = 1, 2, . . . , |P |. (11)

To distinguish the crops from the dirt in the image, the
system should find a green threshold value γ such that all the
pixels in the image having green values Pi,g > γ constitute
the crops, and all the other pixels having Pi,g < γ constitute
dirt. Nevertheless, due to variations in brightness level, crop
height, crop color and location of the rover associated with
each picture, having one constant green threshold value γ

for all the pictures cannot optimize the performance of the
sensing subsystem. Therefore, an adaptive RGB filtering algo-
rithm is proposed to accommodate these variations. The gen-
eral flow-chart of the proposed adaptive algorithm is shown
in Figure 8.

First, an initial low green threshold γ0 = 140 is applied to
the images to filter out all the pixels with Pi,g < γ0. γ0 = 140
was selected empirically by looking at individual crop pixels
across all testing days having different brightness levels. γ0

was what we observed to be slightly lower than the lowest
green value for a plant pixel on the darkest day. Removing
all of the pixels with green values lower than γ0 will locate
all of the crops in the images in most cases, as well as some
other undesired objects, such as brighter spots in the soil.
To exclusively locate the crops, this filtering process needs
to be continuously repeated with an increasingly bigger γ

value until the black and white (BW) mean value of the
corresponding BW image is below the BW mean threshold.
Then, all white pixels in the resulted BW image will be
recognized as crop pixels.

Below we will introduce the method to determine the BW
mean threshold of each picture. To facilitate our discussion,
we denote the set containing all the pixels with a green value
bigger than γ as

P>γ =
{

Pi : Pi ∈ P
⋂

Pi,g > γ
}

∀i = 1, 2, · · · |P |. (12)
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FIGURE 8. The flowchart of adaptive RGB filtering algorithm.

To further visualize the filtering output of applying Pi,g > γ

to the image P , we turn the original picture P into a BW image
PBW,γ , with all the pixels in set P>γ marked in white and all
the pixels in set P<γ in black. More quantitatively,

PBW,γ = PW,γ

⋃
PB,γ (13)

where

PW,γ = {
PW,γ ,i = 255

} ∀i : Pi,g ≥ γ
⋂

Pi ∈ P

PB,γ = {
PB,γ ,i = 0

} ∀i : Pi,g < γ
⋂

Pi ∈ P

i = 1, 2, . . . |P | (14)

Figure 9 is an unprocessed raw image of the corn field. After
applying distortion correction, triangle filtering and Pi,g > γ

filtering to Figure 9, the achieved BW image PBW,γ is de-
picted in Figure 10. More exactly, all the pixels that have
Pi,g > γ are represented as white pixels in Figure 10, and the
rest are in black.

The mean value of the BW image PBW,γ is called the BW
mean value and is denoted as m, and m ∈ [0, 255]. Ideally, ev-
ery single pixel of the crop should be highlighted in white and
all other pixels should be in black. In this case, the resulting

FIGURE 9. An unprocessed raw image taken in the field, as a reference for
post-process pictures.

FIGURE 10. The image of the raw picture in Figure 9 after distortion
correction, triangle filtering and RGB filtering.

BW mean value would be the optimal value for BW mean
threshold of the image. More quantitatively, the BW mean
value of a BW image achieved after applying filter Pi,g > γ

is defined as

m(γ ) =
∑|P |

i=1 PBW,γ ,i

|PBW,γ | (15)

As the BW mean m can be any real number ∈ [0, 255],
exhaustively searching for the optimal value of it can be time
consuming and therefore not considered in real-time robotic
systems. We hereby propose a low-complexity algorithm to
find the suboptimal value of the BW mean and set it as the
mean threshold, which is denoted as m̃ in this treatise. The
two major factors that affect the value of m̃ are the volume
of the crops and the ambient brightness. With denoting the
crop-volume factor as α and the brightness factor as β, we
assume that the BW mean threshold of each picture can be
represented by

m̃ = α × β. (16)
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What we are trying to calculate with Equation (16) is the
sub-optimal mean threshold, or in other words, the mean pixel
value of the final BW image returned by the adaptive RGB
filtering algorithm (see flowchart in Figure 8). One may notice
that this mean value is essentially the number of crop pixels
divided by the total number of pixels in the image. As the
number of pixels in each image is the same, the sub-optimal
mean threshold m̃ is directly proportional to the number of
crop pixels.

A rough estimate of how many plant pixels there are in an
image is calculated by counting how many pixels have a green
value above a fixed constant γh. The high green threshold
γh = 160 is selected empirically, such that P>γh will never
include dirt in any circumstance. Thus, given the same level
of brightness, |P>γh | should be proportional to the volume of
the crops, or the number of pixels representing the crop rows.
Thus, we define the crop volume factor as the number of pixels
with green value higher than γh, i.e.

α = |P>γh |. (17)

Hereby, |P>γh | is actually an indicator of the crop volume
factor α, and |P>γh | can be easily obtained with any given
image. Notice, when the brightness level is the same, α is
determined by the age of the crops since sprout.

However this is not a perfect solution to calculate the
amount of crops in the image. On the brighter days, other
things in the image such as rocks, fallen leaves, and miscel-
laneous debris are more likely to fall into this count of pixels
with a green value. Similarly, on the pictures we took in the
evenings, we found that some of the crop pixels didn’t make
it above this threshold. To compensate for this, we multiplied
α by a variable β which is proportional to overall brightness
of the image, as shown in Equation (16).

Similar to the indicator of the crop-volume factor α, we
should also select an easily obtained property associated with
each image P as the indicator of brightness factor β. In-
trinsically, the average green value ḡ of all the pixels in the
undistorted color image P should be positively correlated to
the brightness level given the same crop size. Here, we define
the average green value of the undistorted image as

ḡ =
∑|P |

i=1 Pi,g

|P | , (18)

and the brightness factor can then be written as a monotonic
function of ḡ:

β = f (ḡ). (19)

In order to derive the exact form of the function f (), non-
linear regression is used on the test data obtained through
training process as shown in Figure 17.

To train the system, we collected pictures on five different
days spreading out the early growth season of the crops during
morning, afternoon and after sunset. This way, we will have
pictures varying both on crop heights and brightness level. On
each test day, we took pictures with various preset cross-track
and heading offsets. The test on each day normally lasts for

FIGURE 11. Standard deviations of the cross-track detection error on
testing Day 2 at different mean threshold values.

FIGURE 12. Standard deviations of the heading detection error on testing
Day 2 at different mean threshold values.

2 hours and contains 100∼150 pictures. It is reasonable to
assume that the crop volume and the brightness level on the
same testing day are relatively the same. Hence, to reduce
the complexity of calculation, we assume the optimal value
of BW mean threshold on the same day are the same, and
we denote the BW mean threshold on the dth day as m̃d .
Correspondingly, we denote the average crop-volume factors
on the dth testing day as ᾱd . Thus, Equation (16) can be
modified as:

m̃d = αd × βd , (20)

for training purpose.
We then search for the optimal value m̃d for BW mean

threshold on each day with maximum likelihood methodol-
ogy. More exactly, the standard deviation and average of the
detection errors for cross-track and heading of every picture
are calculated by using a large range of BW mean thresholds
(1 to 50 with increments of 1). Figures 11∼14 show an
example of these values on Day 2. These charts were then
visually inspected to find the min, max, and optimal BW
mean threshold candidates for each day, which can be seen
in Figure 15. The mean threshold that results in the smallest
mean and standard deviation of detection error for all six

82 VOLUME 1, 2020



FIGURE 13. Average of absolute cross-track detection error on testing Day
2 at different mean threshold values.

FIGURE 14. Average heading detection error on testing Day 2 at different
mean threshold values.

FIGURE 15. The minimum, maximum, optimal and calculated suboptimal
mean threshold for all the pictures taken on each testing day.

possible detection algorithms is selected as the ultimate BW
mean threshold on that day, while the min and max were the
bounds on range we considered to give acceptable results. For
reference, we chose the following values: Minimum = 22,
maximum = 50, optimal = 29 for testing Day 2 according
to Figures 11∼14.

FIGURE 16. The average crop-volume factor ᾱd on each testing day.

FIGURE 17. The nonlinear regression of brightness factor over average
green value, using the calculated βd and ḡd on each testing day.

Thus ᾱd can be calculated as

ᾱd =
∑Np

i=1 |P>γh,i|
Np

, (21)

where Np is the total number of pictures taken on the dth
testing day, and variable i refers to the index of the pictures
taken on the same day. The average crop-volume factor ᾱd on
each testing day is plotted in Figure 16. Figures 15 and 16
show that the optimal mean threshold m̃d and ᾱd on each
day are positively correlated, yet not directly proportional.
As predicted in Equation (16), the non-constant scaling fac-
tor between m̃d and ᾱd is the brightness factor βd . Next, to
derive the formula for the brightness factor β, we calculate
the theoretically expected βd value on each day. According to
Equation. (16), we should have

βd = m̃d/αd . (22)

In order to derive the exact form of the function β = f (ḡ)
as shown in Equation (19), the value of βd and ḡd are plotted
in Figure 17, where ḡd represents the average green value of
all the undistorted images taken on the dth testing day.

The function of β = f (ḡ) is generated through nonlinear
regression and recorded as

β = f (ḡ) = 1

5000

[
(ḡ − 135)2

70
+ 1

]
. (23)
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One thing maybe worthy of note is that the brightness factor
β is actually monotonically decreasing with the average green
value ḡ. This is understandable, as given the same volume of
crops, the same number of pixels should be selected to repre-
sent the crops, and hence the BW mean threshold m̃ should be
the same regardless of the brightness level. Nevertheless, on a
brighter day, with the whole image brighter, more pixels will
have their green values above γh, resulting in a bigger α value.
Hence, according to Eq. (16), to achieve the same BW mean
threshold m̃ with a bigger α, the brightness factor β needs to
be lower on a brighter day. As a conclusion, the brightness
level and the brightness factor β are negatively correlated.

To make sure that an abnormally bright or dark picture
wouldn’t cause overly large or small m̃ values, boundaries
are imposed on each side of the formula for β. The upper
boundary for β is set at ḡ = 110, because ḡ = 110 is slightly
darker than the darkest testing scenario after sunset. We want
to keep the range close to the value range used for non-linear
regression to avoid possible inaccuracies from extrapolation.
The lower boundary of β is set to be 1/5000 at ḡ = 135 for
a couple of reasons. First, (135, 1/5000) is the vertex of the
parabola shown in Figure 17. As stated before, the brightness
factor function β = f (ḡ) needs to be monotonically decreas-
ing. Hence, the upper bound of the value range of ḡ cannot
exceed the value of the independent variable at the vertex of
the parabola. Second, we could have created another equation
of β for ḡ > 135. Nevertheless, this will cause the β values
to be less than 1/5000 and further incur insufficient pixels
to be selected as crops. In addition to the aforementioned
boundaries set to β, we have also imposed minimum and
maximum values allowed for m̃ to be 1 and 50 respectively.
This is to further safeguard the system against selecting far
too few or too many plant pixels.

All in all, the brightness factor β can be defined piecewise
in terms of average green value ḡ as:

β =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

10

5000
, if ḡ ∈ (0, 110]

1

5000

[
(ḡ − 135)2

70
+ 1

]
if ḡ ∈ (110, 135]

1

5000
, if ḡ ∈ (135, 255)

(24)

Based on Eq. (20) and (24), the calculated BW mean thresh-
olds m̃d on each testing day are shown in Figure 15 as the
yellow line with dot markers. As can be seen from the figure,
the calculated BW mean threshold values are very close to
their optimal counterparts. During the actual application of
the adaptive RGB filtering to detect the crop pixels, the mean
threshold m̃ of each picture will be calculated using Equation
(16) with (17) and (24).

One thing worthy of note is that, equations in Sec. II-C1
are developed in the context of corn field. Nevertheless, the
formats of all the equations and steps of the algorithms will
maintain the same for different types of crops. However, the
thresholds and constants used in various steps and equations,
including γ0, γh and the constants in Eq. (24), will need to be

FIGURE 18. The result of applying triangle filtering and Canny edge
detection on the image in Fig. 9.

FIGURE 19. The resultant furrow edge lines after linear regression is
applied to all the detected plant pixels in the image of Fig. 9. All plant
pixels on the left side are highlighted in red and the right side in blue. The
resultant furrow edge lines are marked in white.

recalculated using the same methodologies for different types
of crops through training process.

2) CANNY EDGE DETECTION
A comprehensive description of the Canny edge detection
algorithm was addressed in [52], which will not be repeated
here. Fig. 18 shows the Canny edge detection result after
applying triangle filtering on the input image shown in Fig. 9.

D. CALCULATING THE FURROW LINES
After all the plant pixels have been picked out, the system
classifies the marked pixels into left and right sides based on
each pixel’s location in relation to the assumed centerline cal-
culated earlier (see Equation (9) and Section II-B). As shown
in Fig. 19 and 20, the left side and right side categories are
colored in red and blue for display. Then the left and right
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FIGURE 20. All the resultant Hough lines detected in the image of Fig. 9.
Hough lines on the left side are highlighted in red and the right side in
blue. The final furrow edge lines are marked in white.

furrow lines are obtained using either the regression method
or Hough line detection.

1) INVERTED LINEAR REGRESSION
For regression approaches, the system defines each marked
pixel as a point with (x, y) coordinates in a Cartesian plane
having the left top corner of the image as the origin. Then
either linear regression or orthogonal (Deming) regression is
applied to get a line of best fit in the form of

y = mx + b (25)

for both the left and right rows of crops.
The formulae to determine the slope m and intercept b for

a conventional linear regression can be found using the least
mean square error approach as [53]:

m = N
∑N

i=1(xiyi ) − ∑N
i=1 xi

∑N
i=1 yi

N
∑N

i=1(x2
i ) − (

∑N
i=1 xi )2

b =
∑N

i=1 yi − m
∑N

i=1 xi

N
(26)

While the conventional linear regression only minimizes the
mean square errors from the plant pixel points to the achieved
furrow line in the vertical y direction, the result in our appli-
cation is actually more sensitive to the errors in x direction.
Therefore, the x and y coordinates for each plant pixel are
swapped before calculating the slope and intercept, so that
horizontal distance is taken into account rather than vertical.
After using Equation (26), the x and y coordinates of the
resultant line is inverted back.

2) DEMING REGRESSION
Another regression approach, namely the Deming (orthogo-
nal) regression, minimizes the normal distances from each
plant pixel to the achieved furrow edge line in Equation (25).
Correspondingly, the parameters can be evaluated using the

following equations [54]:

sxx =
∑N

i=1(xi − x̄)2

N − 1

sxy =
∑N

i=1(xi − x̄)(yi − ȳ)

N − 1

syy =
∑N

i=1(yi − ȳ)2

N − 1
, (27)

and the slope and intercept in Equation (25) can be obtained
as:

m =
syy − sxx +

√
(syy − sxx )2 + 4s2

xy

2sxy

b =
∑N

i=1 yi − m
∑N

i=1 xi

N
(28)

3) HOUGH LINE DETECTION
Hough line detection is a process which exhaustively draws
lines on the image and then records all the lines colliding
with at least a given number of marked pixels [52]. In the
proceeding paper [52], after all of the Hough lines are gath-
ered, any lines within 45 degrees of the horizontal are filtered
out [52]. For each of the remaining lines, the intersection
between the lines and the top and bottom of the image are both
calculated. Next, a median of these coordinates is calculated
for top and bottom, and the resulting line drawn between these
two points is the final furrow line. This process is carried
out independently for each side of the furrow based on the
assumed centerline obtained earlier.

Nevertheless we had problems with far too many Hough
lines being drawn, causing very inaccurate results. So we
improve the Hough line detection algorithm by repeating the
Hough line process in a loop, continuously increasing the
number of points a line must connect until the number of
lines is below a certain threshold Nh = 70. This threshold
was found empirically by looking at the training data to get
a general range we expected it to be in, and then testing
values within that range to see what gave the best results. In
addition to this, if there are less than four lines on one side,
that side is ignored as it doesn’t have enough data to produce
an accurate result. Hence, the final calculation is done with
only the furrow line from the other side.

E. ADAPTIVE ANTI-OVERINFLATION ADJUSTMENTS
Ideally, the calculated furrow edges should be lines connect-
ing the base point of each crop stalk on the ground, such
as the black lines in Figures 21 and 22. Obviously, the base
lines of the crop stalks are not always the visual center of the
crop rows. Nevertheless, all the approaches used to acquire
the furrow edge lines discussed in Sections II-C2 and II-D
calculate each furrow line by generating a line that is roughly
the centroid of all the recognized plant pixels on one side. This
causes the obtained furrow lines to be drawn on the leaves of
the plants, rather than at the base of them, as delineated as
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FIGURE 21. The black lines were drawn on this image manually. They
show the ideal case of where the final furrow lines should be placed, at
the base of the crops. The red lines show the actual output from the
system, where the lines are drawn on top of the crops rather than the base.

FIGURE 22. As in figure 21, the black lines show the ideal case and the
red show actual output of the system. This image has a known cross-track
value of 16 cm, causing the furrow line on the right to be much closer to
ideal than the one on the left due to the change in angles from the large
cross-track value.

red lines in Figures 21 and 22. Hence, there will always be a
gap between the actual furrow edges and the calculated furrow
edges. This gap can be remarkable, when the crop height is
non-negligible.

On one hand, when the camera is located in the center of
the furrow, i.e. when the cross-track error is close to 0, the
distance between the actual furrow edges and the calculated
furrow edges have the same absolute value but opposite signs
on each side, causing them to cancel each other out. As a
result, the furrow looks slightly wider then it actually is, but
the detected cross-track error is still close to 0.

On the other hand, if the cross-track error of the rover gets
larger, mistaking the lines on top of the crops as the true fur-
row edges can cause additional errors to the detection results
of the cross-track locations. Figure 22 shows this scenario

FIGURE 23. This chart shows the cross-track inaccuracy caused by the
final furrow lines being drawn on top of the plants rather than at the base.
The green line was created by linearly regressing all the blue data in the
figure. The equation for the green line is included at the upper right corner
of the chart.

where the cross-track error is known to be positive 16 cm.
That is, the camera is 16 cm to the right from the centerline
of the furrow. The relatively big cross-track error on right
side causes the calculated furrow line to appear much closer
to the actual furrow edge on the right side, yet the distance
between the calculated furrow line and the actual furrow edge
on the left side is much bigger. Consequently, this leads the
sensing subsystem to assume that the camera is much further
away from the left side and the centerline of the furrow than it
actually is, causing an overinflated cross-track error.

The same phenomenon can be evidenced from the collec-
tive results shown in Figures 23 and 24(a). After the 2D furrow
edge lines shown in Figures 21 and 22 are converted to 3D
lines with geographical coordinates on the ground, the de-
tected cross-track error ê and the heading error �̂e of the rover
can be calculated using the approached introduced in [52].
The detection errors of the cross-track locations versus the
actual cross-track locations of all the test samples are plotted
in Figure 23. In order to better represent the massive number
of test results, a line of best fit is drawn as a green line in the
figure too. As can be seen in the figure, the bigger the preset
actual cross-track distance from the center line, the bigger the
detection error, which is supported by the positive slope of the
line of best-fit of all the results in Figure 23. This indicates
that the detection results of the cross-track distance is indeed
‘overinflated’ as analyzed theoretically above.

In order to account for this overinflation, an empirical equa-
tion is derived to quantify the line of best fit in Figure 23.
According to the formula shown in Figure 23, we can then
establish the equation to achieve the compensated cross-track
error ec from the detected cross-track error ê as follows:

∵ δe = 0.2578e + 0.5766

∴ ê = e + 0.2578e + 0.5766 = 1.2578e + 0.5766

∴ ec = ê − 0.5766

1.2578
, (29)
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FIGURE 24. A 3D surface showing the average cross-track detection errors
across all testing days at different rover locations (cross-track and heading
offsets) (a) before and (b) after anti-overinflation corrections.

where δe is the detection error of the cross-track location, and
hence is defined as δe = ê − e.

Applying Equation (29) to all the cross-track location de-
tection results shown in Figure 24(a), we achieved the anti-
overinflation adjusted cross-track detection results as shown
in Figure 24(b). As can be seen in Figure 24(a), there is a
distinct correlation between cross-track locations and cross-
track detection errors. Nevertheless, after applying the anti-
overinflation correction, the 3D surface is much less sloped,
meaning the correlation between cross-track locations and
cross-track detection errors has been significantly reduced.
With a comparison between both figures, the proposed anti-
overinflation process has largely reduced the cross-track de-
tection errors from ranging between −10 ∼ +10 cm to −3 ∼
+2 cm.

III. LATE GROWTH SUBSYSTEM
As the crops get larger, the algorithms introduced for the early
growth season in Section II become increasingly inaccurate
and inefficient, mostly due to the issue caused by tall crop

FIGURE 25. Flowchart of the row sensing subsystem algorithms to detect
the cross-track error ê and heading error �̂e during late-growth season.

stalks as discussed in Section II-E. So once the crops are
above 45 cm (a foot and a half), we consider them to be in
the late growth stage, in which a LiDAR (Light Detection
And Ranging) sensing system is used instead of the camera.
As now the crops are tall enough to reflect the laser beams
transmitted by the LiDAR sensor, producing a highly accurate
point cloud for locating crops.

The LiDAR sensor is mounted on the center of the rover,
with zero degree facing directly forward. Each time the Li-
DAR scans, it measures a distance to the nearest obstacle
every quarter of a degree for its 270 degree field of view,
resulting in 1080 distances with its angle index written to a
csv file. This csv file is then processed by our algorithm in
C to determine the rover’s heading and cross-track locations.
The flow chart of the late growth error-detection algorithm is
shown in Figure 25. One thing worthy of note is that unlike
the process for early growth season as shown in Figure 3,
there is no 2D to 3D coordinate conversion process in the
location detection algorithm for late growth season. As the
raw data obtained with LiDAR during late growth season
naturally comprise the geographical distances and angles of
any detected object. After the raw data are read in, they are
then converted to Cartesian format as shown in Figures 26
and 27.

Ideally, we want all the data points to represent the crop
stalks on both sides of the furrow of interest traversed by the
rover. Thus, the data points can be used to define the furrow
edges and further obtain the true centerline of the furrow for
calculation of cross-track and heading errors of the rover. Nev-
ertheless, as can be seen in Figure 26 and 27, some data points
are not from the furrow of interest, but the crops or objects
outside it. This is because some laser beams emanated from
the LiDAR travel through the gaps in the leaves of the desired
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FIGURE 26. An example of the raw data collected by the LiDAR sensor
represented in Cartesian format. This set of data has a known cross-track
error of 0 cm and a heading error of 0 degree.

FIGURE 27. Another example of the raw data collected by the LiDAR
sensor represented in Cartesian format. This set of data has a known
cross-track error of 8 cm and a heading error of 15 degrees.

crop rows and are reflected back from the objects behind them.
These undesired data points need to be filtered out to avoid
interfering in the process of determining the centerline of the
interested furrow.

To ferret out the desired data points from the whole set,
the first step is to calculate the estimated centerline based
on the estimated cross-track and heading errors ěk and �̌e,k .
The process of estimating the a priori cross-track and heading
errors is the same as used in early growth season, which were
detailed in Section II-B from Equation (4) to (8). The equation
of the estimated centerline during late-growth season can then

FIGURE 28. The kept data points after the closest points on each side of
the estimated centerline are found and the additional filtering process is
applied to the data in Figure 27.

be quantified as:

x = m × y + b (30)

where:

b = −ěk and m = − tan
(
�̌e,k

)
(31)

The raw Cartesian data are then broken up into discrete sets
based on their y value, where each set contains all the points
having their y values within a 1 mm range. For example, the
first set contains all points with y values in [0,1) mm and the
next set would contain all points with y values in [1,2) mm.
This continues until y = 6 m, resulting in 6000 sets of points.
For each set, the algorithm finds the closest points from the
estimated centerline in the horizontal (x) direction on both
sides. If either or both of the points are within 450 mm of
the estimated centerline in the x direction, they are kept as
desired data points, with all other points in the set thrown out.
The value of the threshold, i.e. 450 mm, is an empirical value
determined by the width of the furrows, which is 30 inches
(762 mm) here. The threshold of 450 mm is set so that if a
data point is further than 450 mm away from the centerline, it
is likely not from the crops of interest, but something behind
them, such as the crops in another row. The value of this
threshold should be readjusted when the algorithm is applied
to a crop field having different furrow width. An example of
the retained data points can be seen in Figure 28. After this
additional filtering process is completed, a line of best fit is
created on each side of the estimated centerline using orthogo-
nal regression. Lastly, the slope and x-intercept of each furrow
edge is utilized to calculate the final heading and cross-track
values.
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FIGURE 29. Please note values have been normalized for easier comparison and display. A vertical value of 1 corresponds to the following values:
average absolute cross-track detection error is 2.73 cm, average absolute heading detection error is 0.86◦, standard deviation of cross-track detection
error is 3.73 cm, and standard deviation of heading detection error is 0.92◦.

FIGURE 30. Comparison of histograms of the cross-track and heading detection errors, when a camera and an RTK-GPS are respectively used as the
sensor during the early growth season. When the camera is used, the adaptive RGB filtering and inverted linear regression are jointly adopted as parts of
the computer vision algorithm.

IV. RESULTS
In this section, Figures 29 and 30 present the experimental
results during the early growth season, while Figures 31 and
32 present the results during the late growth season. More-
over, Figure 33 displays the closed-loop route taken by the
rover given an offtrack initial position, when the navigation

algorithm introduced in [5] and the computer vision algo-
rithms introduced in this paper are jointly applied. In our ex-
periment, a camera with a part number ELP-USB30W04MT-
RL36, a LiDAR with a part number UST-10LX and a GPS
with a part number Emlid Reach M+ were used to generate
the results.
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FIGURE 31. A 3D surface showing the (a) cross-track and (b) heading detection errors over all possible rover locations during late growth season.

FIGURE 32. Comparison of histograms of the cross-track and heading detection errors when a LiDAR and an RTK-GPS are respectively used as the sensor
during late growth season.

A. EARLY GROWTH SEASON
According to the flowchart in Figure 3, for early growth sea-
son, there are 2 × 3 possible ways to implement the computer-
vision based algorithm to calculate the cross-track and head-
ing errors, with choices between ‘RGB filtering’ and ‘Canny
edge detection,’ and choices among ‘inverted linear regres-
sion,’ ‘orthogonal regression’ and ‘Hough line detection’.

In order to know which combination will achieve the best
results, all six combinations were implemented to process 575
raw pictures we collected at the Molitor Bros Farm in Min-
nesota. These pictures were taken at different times on differ-
ent days with different weather and light conditions through-
out corn’s early growth season. The normalized average de-
tection error and standard deviation of each combination is
presented in Figure 29.

The results indicate that regression was generally more
accurate than Hough line fitting. This is due to the fact that

regression does a better job when one side of the furrow is
brighter that the other. In this scenario, more pixels will be
marked as plants on one side, causing almost all of the Hough
lines to be drawn on that side, with only a few lines left on the
other side. On the other hand, the creation of the line of best
fit by regression is not influenced by the brightness difference
between two sides.

Also, both forms of regression showed similar results, but
the inverted linear regression turned out to be slightly more
accurate than orthogonal regression. The inverted linear re-
gression approach only tries to minimize the least mean square
errors from the resultant furrow edge lines to the scattered
pixel points in the horizontal direction (see Section II-D). Due
to the narrow width of the furrow, all the possible headings
a rover can have without damaging the crops are limited
in (−25, 25) degrees. The narrow heading range causes all
furrow edge lines to span from bottom to top of the picture
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FIGURE 33. Top view of the paths of the rover in the furrow when a low-cost camera, a LiDAR and an RTK-GPS are used as the sensor respectively. The
initial position of the rover is a cross-track error of 20 cm to the left of and a heading of 2◦ counter-clockwise from the centerline. Parameters of the
dynamic-inversion based navigation algorithm are as follows: the damping ratio ζ = 0.8 and the decay length Y0 = 1.5m. Please refer to [5] for more
details of the navigation algorithm. The horizontal and vertical axes in (a) do not have equal scales, while those in (b) have equal scales.

in vertical direction, while only taking up a short span in
horizontal direction, as can be evidenced in Figures 19∼22.
Therefore, minimizing the least mean square error in the hor-
izontal direction is more important to final detection results
of cross-track and heading locations, as compared to a nor-
mal distance between the scattered plant pixel points to the
achieved furrow edge lines.

As can be seen in Figure 29, the adaptive RGB filtering
and inverted linear regression produced the best results, so we
have included a histogram of the distribution of cross-track
and heading detection errors achieved by RGB filtering and
inverted linear regression in Figure 30.

One thing worthy to note is that the camera used to take
all the pictures had a problem causing the images to appear
grey and monotone. We recognized this after the first few
tests, but by the time the manufacturer got back to us with a
replacement the early growth season was over. With a largely
reduced color gradient, the proposed algorithms still provide
the sensing subsystem with a detection accuracy close to GPS.
It is hence safe to say that the accuracy will be enhanced, if a
better camera is used.

B. LATE GROWTH SEASON
It can be seen from the late-growth results in Figure 31 that the
cross-track detection error is bounded within −2 cm to +2 cm
for all the preset locations of the rover, except a very slanted
position at +16 cm and −20◦, while the heading detection
error is bounded within −2◦ to +1.5◦. An improvement in
standard deviation of cross-track values compared to early

growth is seen from 2.53 cm to 1.377 cm, while standard
deviation of heading offset increases slightly from 0.83◦ to
1.2056◦. Average absolute cross-track detection error goes
from 1.998 cm to 1.206 cm, while average absolute heading
error goes from 0.7379◦ to 0.8631◦ compared to early growth.
The system is also much simpler and more immune to the
interference from ambient light and crop heights.

C. OPEN AND CLOSED LOOP PERFORMANCE
COMPARISONS
The open-loop performance of the proposed computer vision
algorithms are compared with RTK-GPS during both the early
and late growth seasons in Figures 30 and 32, while the RGB
filtering and inverted linear regression are jointly used for
early growth detection.

From both figures we can see that the accuracy of the RTK-
GPS is slightly better than both the low-cost camera ($50)
and the LiDAR when the proposed computer vision algorithm
is used to detect the cross-track locations, as evidenced by a
smaller standard deviation achieved by the RTK-GPS. How-
ever, using standard deviation as the metric, our computer vi-
sion algorithms outperform the RTK-GPS in terms of heading
detection.

The detection accuracy of the RTK-GPS presented in
Figures 30 and 32 is only achievable during ideal conditions,
when constant high-quality satellite connection and accurate
geographical survey of all the crop stalks in the field are avail-
able. Unfortunately, these two assumptions are challenging
to meet in current agriculture environments, and hence the
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accuracy of RTK-GPS promised in Figures 30 and 32 are hard
to achieve. On the contrary, the proposed computer vision
algorithms are not dependent on satellite signals or onerous
geographical survey. Therefore the accuracy of the proposed
computer vision algorithms as presented in Figures 30 and 32
is easier to achieve and for a longer period of time.

Moreover, the gap of the detection accuracies between the
RTK-GPS and the proposed computer vision algorithms ob-
served in Figures 30 and 32 is diminished in the closed-loop
simulation results shown in Figure 33. It may be worthy of
note that the horizontal and vertical axis of Figure 33(a) are
not equally scaled. The horizontal scale is much bigger than
the vertical scale, hence the horizontal fluctuation of each
path and the differences among the three paths are exag-
gerated in Figure 33(a). If the same scales are applied (see
Figure 33(b)), the differences become negligible and all three
paths are straightly aligned with the centerline of the furrow
after a small vibration. This proves that the proposed computer
vision algorithms, when utilized with a low-cost 2D camera
or a LiDAR during early or late growth season, are able to
provide the rover with the same route as the RTK-GPS, yet at
a much lower realization complexity.

V. CONCLUSION
This paper continues the work published in [52] and intro-
duces advanced computer vision algorithms to detect the lo-
cation of the rover when it is travelling inside a furrow. The
proposed solution package utilizes a low-cost camera and a
LiDAR sensor during early and late growth season respec-
tively. Each sensor works with its own set of computer vi-
sion algorithms. The proposed computer vision algorithms for
early-growth season are able to adaptively adjust the threshold
to segment the crops in the picture according to the ambient
light intensity and crop size at the time when the picture is
taken. Six combinations of crop recognition and furrow edge
formulation algorithms are proposed and applied to process
the pictures taken at Molitor Bros Farm for optimal selection.
The combination of the adaptive RGB filtering and inverted
linear regression turns out to provide the most accurate de-
tection results. The proposed computer vision algorithm for
the late-growth season is low-complexity and independent of
environmental changes too.

The in-field tests at Molitor Bros Farm have shown that the
proposed computer vision algorithms are able to provide a
standard deviation of 2.51 cm and 0.83◦ for cross-track and
heading detection during early growth season, and a standard
deviation of 1.37 cm and 0.93◦ during late growth season.
These are very close to the accuracy achieved by the RTK-
GPS under ideal conditions, with its standard deviations of
0.88 cm and 1.51◦. The closed-loop simulation further proves
that there is no noteworthy difference in the path made by
the rover in the furrow, no matter whether the proposed sens-
ing systems or the RTK-GPS is employed. The advantage of
the proposed computer vision algorithms over RTK-GPS is
their reliability and facility. That is, while the RTK accuracy
will degrade significantly during reduced GPS coverage and

requires onerous advance geographical survey, the proposed
computer vision algorithms are expected to achieve the above-
mentioned accuracy over all kinds of weather conditions with-
out extra work.
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