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ABSTRACT Voltage unbalance is a growing issue that, among other things, can impact three-phase motor
and drive loads, result in nuisance tripping of generation units and capacitor banks, and prevent optimization
of conservative voltage regulation strategies. This difference between the three phases of voltage delivered
to customers can damage the equipment of these customers as well as negatively impact the power system
itself. This work presents an approach for predicting voltage unbalance using machine learning. Historical
megawatt and megavar data—obtained through a Supervisory Control And Data Acquisition (SCADA)
system—are used to train an artificial neural network model as a binary classifier with a portion of the
data serving to validate the trained model. Voltage unbalance is predicted at an accuracy above 95% for
eight substations within the power utility’s extra-high voltage transmission network and over 91% for all 42
substations. The trained model is tested in a manner that would be employed using simulated data generated
by state estimation software. This simulated data validates the model’s capacity to predict the substation
buses that would experience voltage unbalance.

INDEX TERMS Artificial neural network (ANN), automation, classification, prediction, prediction model,

supervisory control and data acquisition (SCADA).

I. INTRODUCTION

Voltage unbalance is a measure of the asymmetry between
the voltages of a three-phase power system [1]. When power
is generated, the resulting voltages on the three phases are
equal in magnitude and 120° apart in phase angle [2]. How-
ever, voltages on the system itself can become unbalanced in
magnitude, phase angle, or harmonic distortion levels. One
major driving factor of voltage unbalance is the presence of
single-phase loads, which draw power from one phase and
not the others. An unequal allocation of these loads will lead
to greater unbalance. The fact that many distribution lines
are single-phase contributes to these uneven loads. Another
known cause of voltage unbalance is the transmission of
power across long distances from base load generation to
load centers across untransposed transmission lines [1]. The

retirement of traditional spinning generation and its re-
placement with inverter based resources (IBRs) has also
contributed to the growing voltage unbalance issue. Voltage
unbalance harms the power system, which will incur more
losses and heating effects under unbalanced conditions [2].
This is because the system cannot respond to emergency load
transfers. The unbalance can also adversely affect large com-
mercial or industrial customers operating large equipment.
The effects are particularly severe on induction motors, power
electronic converters, and adjustable speed drives (ASDs).
The authors of [3] determined the average voltage un-
balance within an operational power transmission system
using four seasonal periods for 22 sites and determined that
line configuration (e.g., transposed lines) and line length do
not significantly influence voltage unbalance. The authors
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calculated voltage unbalance using Supervisory Control And
Data Acquisition (SCADA) and Digital Fault Recorder (DFR)
data collection methods. The average voltage unbalance is
calculated as 0.59% and 0.64% using the SCADA and DFR
data collection methods, respectively. The authors of [3] high-
lighted that the SCADA system did not detect a 1.5% voltage
unbalance condition reported by a large industrial customer;
thus, the work in [3] is not predictive and highlights the need
for a voltage unbalance prediction method within operational
power systems.

Several methods exist for quantifying voltage unbalance,
but few exist for predicting it before it occurs. In [4], the au-
thors create a three-phase state estimation framework focused
on estimating measurement information due to incomplete or
missing information within the power system network and
the location, level, and impacts of voltage unbalance within a
power distribution network (33 and 11 kV). The authors pre-
dict voltage unbalance using statistical estimation using real
and reactive power measurements generated by a simulated
24-bus system representing a portion of an operational power
distribution network. Due to limited network observability, the
authors use pseudomeasurements to “fill in missing data.”

The authors of [5] estimate voltage unbalance using data
simulated at the power distribution level. A load flow is
performed using the Newton—Raphson method to generate
the three-phase voltages. These are then transformed into
sequence voltages, which are needed to calculate the volt-
age unbalance percentage. Probabilistic estimation of voltage
unbalance is then performed using Monte Carlo (MC) simu-
lations. The random variation of the power factor—at different
buses—highlights which buses are the sources of the voltage
unbalance. These methods are then tested on an operational
power distribution system, and considering other loading con-
ditions, they are used to determine the expected level of
voltage unbalance. Individual voltage unbalance source con-
tributions are summed to determine the total unbalance on any
bus. The authors of [6] leverage the findings in [5] to simulate
the selection of the optimal locations for a limited number of
voltage unbalance monitors that would be placed in the power
distribution system.

The authors of [7] developed an algorithm that detects volt-
age unbalance using the space vector property (SVP), which
transforms three voltages into a single complex variable. The
algorithm sums the instantaneous values of all three voltages.
The authors use a zero-sum to indicate the three-phase volt-
ages are balanced, but adding zero does not guarantee that
the voltages are balanced. Thus, the SVP is then compared to
a reference space vector to determine whether or not voltage
unbalance occurs. The algorithm is tested using five cases, and
voltage unbalance is correctly predicted for all five cases.

In [8], the authors use a stochastic approach to predict
voltage unbalance within a low-voltage power distribution
system due to the presence of single-phase Photovoltaic in-
verters (PVIs). A stochastic approach is taken because the
PVIs’ locations and connected phases are unknown before
deployment. The authors show that the random connection
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of 6 kW PVIs can lead to a voltage unbalance over 1% but
is highly improbable of exceeding 2%. The power utility can
use this information to quantify the risk associated with the
location and concentration of PVI deployments within their
system.

The authors of [9] present a voltage unbalance detec-
tion approach for three-phase induction motors using an
artificial neural network (ANN). A dataset containing one
hundred samples—collected over nine days from an opera-
tional three-phase induction motor—is used to train the ANN.
A feed-forward structure, the most common structure, is used
for the ANN. During training, the unbalanced voltages are
labeled as “—1” and the balanced voltages are labeled as
“1”. The performance of this model is measured using mean
squared error (MSE) and root mean squared error (RMSE).
The trained ANN correctly detects voltage unbalance with an
accuracy of 100%.

Our approach predicts voltage unbalance within an op-
erational, extra-high voltage (EHV) 500 kV transmission
network using historical Megawatt (MW), megavolt-ampere
reactive (Mvar), or both values collected by a SCADA
system [10]. Voltage unbalance prediction is performed
within the 500 kV network because it is the “backbone” of
the utility’s transmission system. Performing voltage unbal-
ance prediction within an EHV network is advantageous
because of the following: 1) it permits corrective action before
the unbalance cascades to lower voltage level networks and
2) it is a much simpler network with fewer substations, thus,
making modeling and prediction easier. In addition to predict-
ing voltage unbalance within an operational EHV network,
our work can be paired with state estimation software. Utility
personnel use state estimation software to calculate expected
line flows and simulate the impact of taking particular lines
out of service. However, state estimation software does not
currently predict voltage unbalance. This is important be-
cause voltage unbalance is primarily caused by transmission
lines operating at their loading limit. This can be exacer-
bated when other lines are removed from service as part of
planned maintenance. Thus, pairing voltage unbalance pre-
diction with state estimation software allows utility personnel
to identify potential locations of voltage unbalance and de-
velop and simulate a remediation plan before the planned
maintenance is initiated. The contributions of this work are as
follows.

1) Voltage unbalance prediction is performed for a 500 kV
power transmission network comprised of 42 sta-
tions/buses

2) All of the data used in this study are collected from
an operational EHV transmission system rather than a
simulation.

3) All of the data are obtained by the utility’s SCADA
system at a sampling rate of one sample every four
seconds. The use of SCADA data make our approach
applicable to every transmission utility.

4) This approach shows that voltage unbalance can be pre-
dicted using only MW or Mvar data, which is appealing
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since three-phase current or voltage data are not always
available.

5) Each station’s voltage unbalance prediction model is
developed and tested using inputs that include data from
all lines and substations in the entire EHV network. This
approach ensures the interconnection between stations
is accounted for within the model.

The rest of this article is organized as follows. Section II
presents information on quantifying voltage unbalance and
the ANN design. Section III presents the methodology used
in gathering the data, ANN training & testing, and a state
estimation software line outage study used to assess the
trained model’s effectiveness in predicting voltage unbalance.
Section IV presents the trained model’s voltage unbalance
prediction performance results obtained using both historical
data and the simulated state estimator data. Finally, Section V
concludes this article.

Il. BACKGROUND

This section explains the voltage unbalance measurement
method used in this work—since multiple methods exist—and
the ANN.

A. VOLTAGE UNBALANCE MEASUREMENT

The International Electrotechnical Commission (IEC) voltage
unbalance measurement method uses a percentage known as
the voltage unbalance factor (VUF) that is given by [11]

V2l
w, = —— x 100% (1)
V1l

where u; is the percent VUF, V| and V, are the positive
and negative sequence voltages, respectively. The calculation
for V| and V; has its basis in the theory of symmetrical
components. The Fortescue transformation translates voltages
from the phase domain to the sequence domain by

Vo 1 Vab

v, =[A] Ve 2)
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Vo, V1, and V; are the zero, positive, and negative sequence
voltages, respectively, and V4, V., and V., are the three
phase-to-phase voltage phasors, respectively [1]. A drawback
to the Fortescue transformation is that the calculation of
the sequence voltages requires knowledge of the voltage
magnitudes and phases, which are generally unavailable
in SCADA data. The Fortescue transformation’s drawback
is overcome by calculating the VUF using (4), which is
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equivalent to (1) [11]

L=V3=68 100 (4)
U = | —
*"VI1+/3-6p ’

where
WVl Vel + Veal*
- 5.
(IVa|® + Vie > + [Veal?)

Equation (4) removes the phase angle component of the
VUF calculation to permit the use of SCADA system-
measured phase-to-phase quantities.

B. ARTIFICIAL NEURAL NETWORK DESIGN

An ANN performs pattern recognition by mimicking the neu-
rons and synapses of the human brain using a collection
of interconnected nodes (a.k.a., artificial neurons). Like the
human brain, trained ANNs can recognize complex nonlin-
ear input-output relationships [12]. The ANNs used herein
are feed-forward networks—the most popular neural network
architecture—trained using supervised learning [13]. In super-
vised learning, labeled input data are used to train the ANN
to learn the nonlinear patterns and relationships between the
inputs and a desired output or set of outputs. In this work, the
labeled input data are the SCADA collected MW, Mvar, or
MW and Mvar values (a.k.a., the predicting features) along
with their voltage unbalance status (a.k.a., the labels). The de-
sired output is the prediction of voltage unbalance or voltage
unbalance (a.k.a., the target features). All inputs correspond-
ing to voltage unbalance are labeled using a ‘1’, and all others
are labeled ‘0.

The block diagram in Fig. 1 shows the adopted ANN ar-
chitecture. Ny, data vectors are input into the ANN that is
constructed with ten feature extracting, hidden layers, one
output layer, and an output vector that contains the two pos-
sible class predictions of voltage unbalance or not [12]. The
values for the number of input measurements (Nys), number
of substations (Ng), and number of ten-minute periods (V;)
are given in Section III-A.

Ill. METHODOLOGY

This section describes the processes used to construct a
dataset, preprocess the dataset, and train the ANN used for
voltage unbalance prediction. This section also describes the
process of simulating a transmission line outage and how
voltage unbalance is predicted.

A. DATA COLLECTION AND PREPROCESSING

Voltage unbalance prediction is performed using MW, Myvar,
or both measurements. The use of MW and Mvar is moti-
vated by the fact that they are three-phase measurements that
capture the three-phase nature of the power system, making
them advantageous for cases in which three-phase currents or
voltages are unavailable. The utility’s SCADA system collects
and transmits all the data via Distributed Network Protocol
3 (DNP3) to a central database to store the data from all
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FIGURE 1. Representative diagram of an ANN.

Station 1 Station 5
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Station 4 A

FIGURE 2. Initial, eight station portion of the 500 kV power transmission
system studied in this work.

transmission system substations. The SCADA system records
each substation’s MW and Mvar measurements every 4 s,
which results in a sampling rate of fifteen measurements per
minute. However, voltage unbalance is not typically observed
over short periods; thus, the average of the MW or Mvar mea-
surements is used. One average MW or Mvar measurement
is calculated using ten minutes of SCADA-measured MW or
Myvar values. This process is repeated for every transmission
line and transformer associated with the selected substations
over the selected period.

Using the averaged MW and Mvar values, two datasets
are constructed. The first dataset is built using SCADA
MW and Mvar measurements accumulated over a 28-month
period—from January 1, 2020, to April 30, 2022—for Ng =
8 substations (see Fig. 2) within the utility’s 500 kV
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transmission system. These eight substations contain mea-
surements from transmission lines or transformers; there are
a total of Ny = 70, individual, average MW or Mvar values
per 10-min period and a total of N; = 122 000 10-min periods
over the 28-month period. Each 10-min interval-consisting of
seventy individual, average MW or Mvar values—constitutes
one sample used to train, validate, or blind test the ANN.
The averaged MW and Mvar measurements are interleaved,
meaning that MW and Mvar measurements are alternated as
they are fed into the ANN.

The second dataset spans thirty months—from January 1,
2020, to June 30, 2022—and Ny = 42 substations, encompass-
ing the entirety of the utility’s EHV transmission system.
This second dataset is comprised of N; = 131000 10-min
averages. Each 10-min average consists of Ny = 374 MW or
Myvar values—one per transmission line or transformer—each
constitutes one sample used to train, validate, or blind test the
ANN.

B. ANN TRAINING AND VALIDATION

During ANN training, each input is assigned a class label
corresponding to voltage balance or unbalance. The label as-
signed is determined by calculating the VUF using (4) for
each set of three voltage values measured on the three phases
(a.k.a, phases A, B, and C). In cases where the voltage is
measured from the line rather than the bus, the percent VUF-
for the lines at a given substation—is averaged together. VUF
values over a threshold of 1.4% are assigned a class label
of ‘1’ (a.k.a., unbalanced), while values below that threshold
are assigned the class label of ‘0’ (a.k.a., balanced). This
threshold is the same as defined in IEC 61000-3-13 as the
planning level for high-voltage (HV) systems [11]. Though
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the system studied here is at the EHV level, the 1.4% threshold
was adopted by the utility.

Both datasets are divided into training and “blind” testing
subsets in which 80% of the data are randomly assigned
to the training set and the remaining 20% assigned to the
testing set. This partitioning can be changed based on individ-
ual needs. Each training data are then normalized to ensure
that the MW and Mvar values—of all transmission lines and
transformers—are in the range of zero and one. The blind test
sets are normalized using their corresponding training set’s
normalization values.

An ANN is created for each substation or bus using the
inputs and labels in the training dataset. The inputs for each
substation’s unique model are the 10-min average MW and
Mvar measurements for all lines and transformers in the
studied region, which accounts for the interconnection of
the system. Each station’s model is trained using k =5-fold
cross-validation [14], tested using the blind data subset (i.e.,
data not used during ANN training), and the ANN’s class
assignment compared with the “blind” testing set’s known
labels. This allows for determining whether the trained ANN
correctly predicts balanced voltage (Class 0) or unbalanced
voltage (Class 1). Each sample that is not classified correctly
is counted as an error. The ANN’s percent correct classifica-
tion performance is calculated by
Ns - Ne
— x 100% (5)

N,

s

9% Accuracy =

where N; is the number of samples in the blind testing dataset
and N, is the number of classification errors produced.

C. TESTING IN A LINE OUTAGE STUDY
As an additional test of the developed voltage unbalance pre-
diction approach, the trained ANN is tested in an outage study
conducted by utility personnel. These outage studies involve
state estimation software to simulate what would happen in
the transmission system should a line be removed from ser-
vice. These studies are conducted weeks or months ahead of a
scheduled line outage; thus, the utility knows in advance how
a line outage will affect the loading of the lines in the system.
However, these studies are currently unable to predict voltage
unbalance. Voltage unbalance on the EHV system is often a
function of the line loading, so removing a critical line from
service would cause very high power flows on the remaining
lines. The ANN voltage unbalance prediction approach aug-
ments these outage studies so that the impact of a line outage
on voltage unbalance is included. The state estimation tool—
used in this case study—is not inherently capable of predicting
voltage unbalance because it only outputs a single-phase volt-
age reading, thus, preventing the calculation of VUF using
(4). However, MW and Mvar readings are produced by the
simulation so that these measurements can be used as inputs
to the developed prediction model.

The goal is to determine whether voltage unbalance—
resulting from a previous line outage—could have been
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TABLE 1. Voltage Unbalance Prediction Results With an Overall Average
Accuracy of 99.14% Using the MW and Mvar Values of the First Dataset
Associated With the Eight Substations Shown in Fig. 2

Station-Bus % Above Threshold % Accuracy

1-1 1.09% 99.95%
1-2 0% 99.99%
2-1 0.19% 99.92%
2-2 3.61% 98.66%
3-1 0% 100%

3-2 0.01% 100%

4-1 0.55% 99.94%
5-1 0.12% 99.93%
6-1 20.90% 96.75%
7-1 2.01% 99.28%
8-1 11.94% 99.41%
8-2 2.71% 98.82%

accurately predicted using the trained ANN. Voltage
unbalance occurred when the transmission line—connected
to Substation 4 in Fig. 2 and connected to a substation not
shown—was removed from service on May 4, 2020. Since the
voltage unbalance event is present in the first dataset, it is
assumed that its associated ANN learned the event’s patterns
or features. The simulation case was created on April 27,
2022, to remove the same line from service on May 4, 2022,
corresponding to the exact calendar date of the unbalance
event on May 4", two years prior. The system is configured
as it is on April 27, 2022, except that a particular line is
opened. The MW and Mvar measurements from this case
study are then recorded and used as the inputs to the second
dataset’s trained prediction model. The outputs of the ANN
(either balanced or unbalanced) are then compared with the
“true” values of unbalance from the event two years before to
gauge the model’s prediction accuracy. The previous event’s
unbalance measurements is only used as estimates since the
impacts of opening the same line today are not fully known.

IV. RESULTS

An ANN is trained for each substation or bus, and the accu-
racy is calculated using (5). All results are presented using
tables in which the first column indicates the substation and
bus. For example, a substation number of “2—1" corresponds
to Substation 2, Bus 1. The second column shows the per-
centage of the blind test set entries above the 1.4% voltage
unbalance threshold for each substation and bus. In contrast,
the third column provides the average percent correct classifi-
cation performance.

A. RESULTS: FIRST DATASET

The first dataset’s blind test results are displayed in Table 1
for the eight substations in Fig. 2. The results shown in Table I
are very accurate, with the lowest accuracy being 96.75% for
Substation 6, Bus 1. The issue with some stations is that there
are too few or no data points above the 1.4% VUF threshold,
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TABLE 2. Voltage Unbalance Prediction Results With an Overall Average Accuracy of 92.65% Using the MW and Mvar Values of the Second Dataset

Station Number % Above Threshold Average % Correct

Station Number % Above Threshold  Average % Correct

1 2.96% 91.80%
2 0.16% 92.28%
3 0.01% 92.42%
4 0.00% 92.42%
5 0.00% 100.00%
6 11.40% 92.16%
7 1.06% 92.44%
8 1.54% 92.02%
9 0.00% 92.47%
10 0.00% 92.32%
11 0.03% 92.31%
12 0.00% 92.58%
13 0.02% 92.42%
14 0.01% 92.38%
15 0.00% 92.43%
16 0.01% 92.48%
17 0.01% 92.44%
18 0.00% 92.39%
19 0.02% 92.40%
20 0.00% 92.53%
21 0.00% 92.35%

22 0.30% 92.49%
23 11.70% 90.54%
24 0.35% 92.28%
25 0.24% 92.41%
26 19.20% 89.88%
27 0.06% 92.41%
28 0.59% 92.34%
29 2.46% 91.66%
30 0.00% 100.00%
31 0.48% 92.28%
32 0.48% 92.33%
33 0.11% 92.46%
34 0.03% 92.48%
35 0.90% 92.40%
36 0.00% 94.00%
37 0.10% 92.29%
38 0.01% 92.34%
39 0.00% 94.02%
40 0.01% 92.41%
41 0.01% 92.46%
42 6.56% 90.72%

TABLE 3. Voltage Unbalance Prediction Results With an Overall Average Accuracy of 92.72% Using Only MW Values of the Second Dataset

Station Number % Above Threshold Average % Correct

Station Number % Above Threshold  Average % Correct

1 2.96% 92.04%
2 0.16% 92.37%
3 0.01% 92.51%
4 0.00% 92.56%
5 0.00% 100.00%
6 11.40% 92.01%
7 1.06% 92.49%
8 1.54% 92.21%
9 0.00% 92.66%
10 0.00% 92.53%
11 0.03% 92.52%
12 0.00% 92.41%
13 0.02% 92.51%
14 0.01% 92.55%
15 0.00% 92.74%
16 0.01% 92.49%
17 0.01% 92.59%
18 0.00% 92.60%
19 0.02% 92.55%
20 0.00% 92.46%
21 0.00% 92.50%

22 0.30% 92.45%
23 11.70% 90.59%
24 0.35% 92.48%
25 0.24% 92.34%
26 19.20% 89.44%
27 0.06% 92.59%
28 0.59% 92.40%
29 2.46% 91.67%
30 0.00% 100.00%
31 0.48% 92.37%
32 0.48% 92.49%
33 0.11% 92.53%
34 0.03% 92.59%
35 0.90% 92.52%
36 0.00% 94.06%
37 0.10% 92.57%
38 0.01% 92.60%
39 0.00% 94.10%
40 0.01% 92.53%
41 0.01% 92.53%
42 6.56% 90.21%

thus, impeding the ANN’s ability to predict voltage unbalance
at the corresponding substation or bus accurately. A possible
solution to this problem would be either of the following: 1)
find more data for model training further in the past or 2)
lower the threshold for those particular stations or buses to
something lower than 1.4% since the thresholds are adaptable
for each station or bus. The results are still very accurate for
the stations with more data above the threshold. This demon-
strates the robustness of the training algorithm and shows the
connection between line MW and Mvar loading and voltage
unbalance.
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B. RESULTS: SECOND DATASET

Voltage unbalance prediction results are presented in Tables 2,
3, and 4 when using MW and Mvar, only MW, and only Mvar
values to represent all transmission lines and transformers
within the utility’s 500 kV system (a.k.a., 42 substations in
total), respectively. The results in Tables 2, 3, and 4 allow
the voltage unbalance predicting contributions of each mea-
surement and their contribution to be determined. The MW
and Mvar as well as only MW results are very similar and the
ANN’s voltage unbalance prediction accuracy is poorer than
the eight substation results in Section IV-A. This is attributed
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TABLE 4. Voltage Unbalance Prediction Results With an Overall Average Accuracy of 95.33% Using Only Mvar Values of the Second Dataset

Station Number % Above Threshold Average % Correct

Station Number % Above Threshold Average % Correct

1 2.96% 94.79%
2 0.16% 95.13%
3 0.01% 95.32%
4 0.00% 95.33%
5 0.00% 100.00%
6 11.40% 94.71%
7 1.06% 95.24%
8 1.54% 94.94%
9 0.00% 95.36%
10 0.00% 95.28%
11 0.03% 95.32%
12 0.00% 95.24%
13 0.02% 95.27%
14 0.01% 95.38%
15 0.00% 95.47%
16 0.01% 95.29%
17 0.01% 95.33%
18 0.00% 95.35%
19 0.02% 95.36%
20 0.00% 95.31%
21 0.00% 95.31%

22 0.30% 95.28%
23 11.70% 93.30%
24 0.35% 95.21%
25 0.24% 95.20%
26 19.20% 91.75%
27 0.06% 95.36%
28 0.59% 95.13%
29 2.46% 94.36%
30 0.00% 100.00%
31 0.48% 95.12%
32 0.48% 95.23%
33 0.11% 95.28%
34 0.03% 95.38%
35 0.90% 95.33%
36 0.00% 96.31%
37 0.10% 95.34%
38 0.01% 95.31%
39 0.00% 96.29%
40 0.01% 95.31%
41 0.01% 95.32%
42 6.56% 93.23%

to the large amount of data (i.e., 374 MW or Mvar values
for each of the 131 000 ten-minute averages), thus, the ANN
must discriminate between more cases. Using only Mvar mea-
surements results in the highest average voltage unbalance
prediction accuracy of 95.33% which is 2.68% higher than the
MW and Mvar case in Table 2 and 2.61% higher than the only
MW case in Table 3. One explanation for the improvement
in voltage unbalance prediction accuracy—when using only
Mpvar measurements—could be the transmission lines’” untrans-
posed nature. When transmission lines are not transposed, the
transmission lines’ inductance and capacitance are different
across the three phases while the resistance is essentially the
same on all three. Since inductors consume and capacitors
produce Mvar, this would impact Mvar flow. There is also
a known relationship between Mvar and voltage. The work
in [15] discusses ways to improve the VUF of a power system
through different methods of injecting Mvar. Also, the fast
decoupled power flow method can separate MW and phase
angle from Mvar and voltage magnitude [16]. Thus, it makes
sense that Mvar is found to be the main factor in predicting
voltage unbalance.

C. RESULTS: LINE OUTAGE STUDY

The ANN trained using the first dataset is further tested using
the outage study described in Section III-C, and the corre-
sponding voltage unbalance prediction results are shown in
Table 5. The first column contains the same station and bus
numbers as Table 1, the second column lists whether or not
voltage unbalance occurred during the actual event two years
ago, and the third column lists whether or not the ANN pre-
dicts the presence of voltage unbalance in the simulated line
outage conducted in the present day.
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TABLE 5. Voltage Unbalance Prediction Results for a Line Outage Study
Using State Estimation Software

Station-Bus  Unbalanced Before?  Unbalanced Now?

1-1 No Yes
1-2 No Yes
2-1 Yes Yes
2-2 Yes Yes
3-1 No Yes
3-2 No No
4-1 Yes Yes
5-1 Yes Yes
6-1 Yes Yes
7-1 Yes Yes
8-1 Yes No
8-2 Yes Yes

The trained ANN is very accurate when used in the line
outage study. The outputs from the simulation—balanced or
unbalanced—are compared to the historical unbalance values
as an approximation of the ANN’s performance. One issue
with this comparison is that the system is not configured in
the same way as it was when the historical event occurred,
so it is not known what the actual voltage unbalance values
would be if the line were opened today. A future test should
conduct an outage study on a line that will be opened in the
future, predict whether unbalance occurs, and compare the
results with the actual values after the line is opened. That
was not feasible in this case as the line known to cause the
most voltage unbalance was not scheduled to be removed from
service in the near future.
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When comparing the line outage study’s voltage prediction
results to those of the historical event, the ANN performs well
overall. Station 1 Bus 1’s and Station 3 Bus 1’s historical
events have VUF values of 1.38% and 1.26%, respectively.
Both values are very close to the 1.4% threshold, so the fact
that the ANN predicts unbalance is not a serious issue and
makes it slightly more secure. In the historical line outage,
Bus 2 at Station 1 was de-energized, so the ANN did not have
an example within the training data as to whether or not volt-
age unbalance would occur due to the simulated outage. The
misclassification of Station 8 Bus 1 is not immediately appar-
ent. Still, it is attributed to conflicting data within the training
data regarding the VUF value(s) when the simulated line is
removed from service within the operational system. Another
explanation could be that the difference in system configu-
ration between the historical event and the current/simulated
event could be enough to cause Station 8 Bus 1 to not result
in voltage unbalance. Overall, the ANN is biased toward pre-
dicting voltage unbalance even if it does not eventually occur,
which is preferable because the opposite bias could cause
significant voltage unbalance risks to be missed in outage
studies.

V. CONCLUSION

This article presents an approach for voltage unbalance pre-
diction using an ANN and historical SCADA measurements
of MW and Mvar, only MW, and only Mvar. An initial in-
vestigation focused on eight substations within an operational
EHV system. It showed that the trained ANN can predict
voltage unbalance at an accuracy of 91% or higher for each
of the 70 transmission lines and transformers. The study was
expanded to include all 42 substations, and it was determined
that using only Mvar measurements results in the highest
average voltage unbalance prediction accuracy of 95.33%
compared to 92.65% and 92.72% when using MW and Mvar
and only MW, respectively. Additionally, the voltage predic-
tion capability of the trained ANN is validated using a line
outage study conducted using the power utility’s state esti-
mation software. The line outage study removed the same
line from service for which there was a historical case of
voltage unbalance within the operation 500 kV system. Our
voltage unbalance prediction process will save utilities time
and money by reducing voltage unbalance-induced damage to
power system equipment and increasing customer satisfaction
by lowering damage to their equipment. Future work will
include the following: 1) gathering more training data to rep-
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resent all cases of voltage balance or unbalance, 2) performing
an outage study before an actual line is removed from service
and studying the real-world impact, and 3) incorporating this
voltage unbalance prediction approach into the state estima-
tion software used by power utilities to conduct line outage
studies.
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