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ABSTRACT Lithium-ion battery prognostics and health management (BPHM) systems are vital to the
longevity, economy, and environmental friendliness of electric vehicles and energy storage systems. Recent
advancements in deep learning (DL) techniques have shown promising results in addressing the challenges
faced by the battery research and innovation community. This review article analyzes the mainstream
developments in BPHM using DL techniques. The fundamental concepts of BPHM are discussed, followed
by a detailed examination of the emerging DL techniques. A case study using a data-driven DLinear
model for state of health estimation is introduced, achieving accurate forecasts with minimal data and high
computational efficiency. Finally, the potential future pathways for research and development in BPHM are
explored. This review offers a holistic understanding of emerging DL techniques in BPHM and provides
valuable insights and guidance for future research endeavors.

INDEX TERMS Deep learning (DL), health and life-cycle analysis, lithium-ion battery (LIB) management
system, prognostics and health management (PHM), remaining useful life (RUL) prediction, state of charge
(SOC) estimation.

NOMENCLATURE
ATE Aging trajectories estimation.
BMS Battery management systems.
BPHM Battery prognostics and health management.
C Capacity.
CNN Convolutional neural networks.
DBN Deep belief networks.
EOL End-of-life.
EV Electric vehicle.
FOBSS Monitoring Data from a Modular Battery System.
GAN Generative adversarial networks.
GRU Gated recurrent unit.
LIB Lithium-ion battery.
LSTM Long short-term memory.
P2-D Newman’s pseudo-2-D model.
PCoE NASA Ames Prognostics Center of Excellence.
RNN Recurrent neural network.

RUL Remaining useful life.
SOC State of charge.
SOE State of energy.
SOH State of health.
SOM Self-organizing maps.
SOP State of power.
SPM Single-particle model.
TCN Temporal convolutional network.

I. INTRODUCTION
Nowadays, lithium-ion batteries (LIBs) are among the fore-
most technological innovations in contemporary society. This
is attributed to their notable safety, high gravimetric and volu-
metric densities, long durability, reusability, and recyclability,
as illustrated in Fig. 1 [1]. In 2019, the LIB market stood at
36.7 billion, and it is anticipated to soar to an impressive 128.3
billion by 2027. This surge, projected at a compounded annual
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FIGURE 1. LIB characteristics and usage.

rate of 18% from 2020 to 2027, is predominantly propelled by
the shift from combustion engine cars to hybrid and electric
vehicles (EVs) [2]. LIBs play a crucial role in promoting the
proliferation of diverse technologies, including EVs, portable
electronic gadgets, renewable energy integration, and grid sta-
bility support, as shown in Fig. 1. However, the foreseeable
growth of LIBs in our highly electrified world underscores
the need for accurate and reliable estimation of battery per-
formance parameters. In fact, the health degradation of LIBs
during charging and discharging cycles, attributed to their
complex aging mechanisms, can curtail their lifespan [3].
Studies indicate that by 2030, the number of retired LIBs from
EVs will surpass 12 million tons [4]. Thus, it is imperative to
promote battery prognostics and health management (BPHM)
systems to ensure that the batteries operate with utmost safety
and reliability [5].

BPHM’s primary objective is to monitor, predict, and main-
tain the health and performance of LIBs throughout their
operational life incorporating a myriad of algorithms and
tools [6]. Within BPHM, key battery internal states, such
as state of charge (SOC), state of health (SOH), and state
of power significantly influence the safety, efficiency, and
overall longevity of the battery storage system [7]. As a
result, the development of advanced algorithms and meth-
ods for efficient BPHM has emerged as a pivotal research
area in the realm of battery management systems (BMS) [8].
BPHM estimation models are taxonomized into three classes:
Model-based, data-driven, and hybrid approaches [9]. The
model-based techniques leverage the complicated physical
processes or mathematical models to represent battery degra-
dation behaviors [10]. Model-based techniques offer benefits,
such as lower data requirements and insensitivity to exter-
nal disturbances. Hence, these model-based techniques are
relatively complex. Methods such as the coulomb counting
method, electric equivalent circuit models (ECMs), and elec-
trochemical impedance spectroscopy (EIS) tests, which fall
under direct calibration model-based methods, rely on exten-
sive physical and chemical knowledge [11]. However, they
face challenges in fully capturing the intricate, dynamic, and
static characteristics of LIB.

In contrast, data-driven methods, which view the LIB
as a black-box system, have gained notable prominence in

recent years with the abundance of operational battery data.
Researchers have directed and implemented machine learning
(ML) techniques for BPHM, crafting data-driven solutions
adaptable to diverse battery chemistries, operating conditions,
and aging mechanisms [12]. These methods utilize statistical
and ML techniques to analyze historical battery performance
and operational data, with the aim of providing patterns
and relationships for accurate prognostics [13]. In particu-
lar, shallow ML methodologies are generally more flexible
and convenient than model-based approaches. By employing
various ML algorithms, such as regression analysis, support
vector machines, or random forests, these methods enable the
prediction of key battery parameters, such as remaining useful
life (RUL). These predictive models offer valuable insights
for proactive maintenance, optimized battery utilization, and
improved reliability in various BPHM applications. However,
their performance is heavily contingent upon the quantity and
quality of available data. Despite having access to large-scale
aging data, the classical ML models might not always gener-
alize effectively under novel conditions [14].

Traditional ML schemes for LIB face challenges in cap-
turing degradation characteristics [15], leading to potential
inconsistencies in the accuracy and robustness of the degrada-
tion process estimation. With the large volume of data, deep
artificial neural networks (DNNs) have gained significant at-
tention in the field of BPHM due to their ability to learn
feature representations on their own, thus, avoiding poten-
tially biased hand-crafted features [16]. Deep learning (DL)
models have been utilized to extract and analyze complex
patterns and temporal dependencies in battery data [17]. By
leveraging large-scale datasets and powerful computational
capabilities, DL algorithms can effectively learn and predict
battery degradation behavior. Moreover, DL methods have
demonstrated their ability to handle high-dimensional and
multimodal battery data, which includes voltage, current, tem-
perature, and impedance, thereby enabling comprehensive and
accurate battery health assessments. Therefore, DL methods
offer a promising avenue for advancing BPHM techniques.

A. BACKGROUND AND MOTIVATION
Proper LIB diagnostic assessment can help prevent unex-
pected shutdowns, extend battery life, optimize BMSs, and
enhance user experience [18]. Traditional BPHM methods,
such as empirical, electrochemical, and analytical models,
have limitations in terms of accuracy, computational complex-
ity, and adaptability to varying operating conditions [19]. DL
models have emerged as promising alternatives due to their
ability to decipher complex relationships from data, adapt
to changing conditions, and refine assessment accuracy [20].
Moreover, there has been a notable surge in DL models to bol-
ster the precision of battery health prognostic systems. Table 1
explicitly compares this review with the recently published
review works in the past three years on LIB informatics, enu-
merating the applicable cases and scenarios in BPHM where
ML can make a viable impact [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32]. This
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TABLE 1. List of the Related Review Papers on Battery Health Prognostics

comparison is based on coverage of topics: DL and LIB and
SOH and RUL and BPHM and LIB fault detection and LIB
aging trajectories, and a case study. Despite the increasing
focus on DL models, most of these reviews only dedicate a
brief paragraph or section to discuss their integration with
BPHM. To the best of the authors’ knowledge, comprehensive
reviews dedicated to the study of the combined potential of
DL and BPHM with a case study on a real-world dataset
do not exist in the current literature. Unlike existing review
works, this article provides extensive coverage of the wide
spectrum of BPHM algorithms that integrate the pioneering
works on DL. This work is supported by a case study for
the SOH estimation using a recent data-driven model and
compared with several benchmark models. This review delves
into various DL models, their applications, and the challenges
they encounter in RUL and SOH assessments. Furthermore,
future research pathways in the context of emerging battery
technologies and the increasing intricacy of LIB systems are
identified. This article is intended to be a valuable resource
for researchers, engineers, and practitioners in the domain of
BPHM.

B. OBJECTIVES AND SCOPE OF THE REVIEW
This article provides a comprehensive analysis of recent ad-
vances in BPHM using DL techniques. The introduction
covers the fundamentals of battery aging processes, followed
by a brief overview of traditional methods employed in these
estimations. The discussion, then, delves into state-of-the-art
techniques applied to battery state estimation, highlighting
the strengths, weaknesses, and practical implications of each.
Further exploration reveals the impact of different factors on
the accuracy and performance of these techniques, including
considerations, such as feature extraction and selection, data
preprocessing, model architecture, and training strategies. The
text identifies existing challenges, knowledge gaps, and po-
tential future directions by finding synergies between DL and
LIB storage systems to enhance the accuracy, robustness, and
scalability of estimation models. A bibliometric analysis has
been conducted using a thesaurus file from the WoS web-
site to define the review’s structure, as depicted in Fig. 2.

FIGURE 2. Keywords map for BPHM methods.

This structure is influenced by the identified keywords. Fig. 2
highlights two topic clusters: DL models and their integration
on BPHM. These clusters guide the organization of the review
in the subsequent section.

C. LIST OF CONTRIBUTIONS AND ARTICLE ORGANIZATION
The article primarily focuses on offering an in-depth review
of contemporary literature on DL techniques with application
to BPHM systems.

1) A systematic literature review of the emerging BPHM
solutions is provided using the most advanced DL meth-
ods. Despite the numerous papers applying DL for LIB
informatics in the last three years, these models have not
been sufficiently reviewed and analyzed.

2) The study highlights unaddressed research areas and
potential challenges in existing BPHM studies. Multiple
key technical bottlenecks are depicted to solidify the
applicability of DL in LIBs.

3) An efficient data-driven model is exploited for SOH
estimation. The proposed model uses limited data
to provide accurate forecasts on a real-world dataset
with the merits of competitive performance and high-
computational efficiency. To the best of the authors’
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FIGURE 3. Flowchart of the commonly-used BMS.

knowledge, this is the first time the DLinear model is
applied to a LIB dataset.

The rest of this article is organized as follows. Section II
provides an in-depth analysis of the used models to simulate
LIB operation and the degradation mechanisms involved. The
DL network structures for BPHM are detailed in Section III.
Section IV taxonomizes the use of DL techniques in BPHM.
Section V provides a detailed analysis of a specific use-case
scenario. Section VI discusses the challenges and potential
future directions in BPHM-based DL. Finally, Section VII
concludes this article.

II. BATTERY MODELING APPROACHES
The BMS is pivotal for modeling and controlling LIBs. The
BMS monitors and manages battery packs, as shown in
Fig. 3. It tracks parameters, such as capacity, voltage, and
temperature, and performs functions like cell balancing and
fault diagnostics. Through battery modeling, it predicts per-
formance, ensures safety through thermal management, and
communicates with other systems via the controller area net-
work protocol. Battery modeling involves understanding the
electrochemical, thermal, and electrical behavior of a battery.
Effective models capture essential features such as voltage,
current, temperature, and aging. At present, commonly used
battery models fall into three categories: ECMs, electrochem-
ical, and data-driven models. ECMs use ordinary differential
equations to reflect the phenomenology of the electrical cir-
cuits. These methods are efficient for real-time applications,
but accuracy varies based on the circuit’s complexity.

For instance, the second-order resistor–capacitor ECM
model has garnered significant attention from scholars and
practitioners due to its optimal balance between complex-
ity and accuracy [33]. To accurately simulate high-dynamic
electrochemical processes and aging effects, electrochemical
models are derived from electrochemistry principles and offer
detailed insights into internal processes in the electrodes and
the electrolyte, such as chemical reactions and charge conser-
vation laws [34]. Therefore, the electrochemical-based model
is anticipated to supersede the ECM, serving to observe and
estimate the states and properties of the battery throughout
its aging process [35]. These models can record variations
induced by temperature fluctuations as such variations elicit
distinct responses from an electrochemical standpoint. New-
man’s pseudo-2-D (P2D) model is one of the widely used
electrochemical models.

FIGURE 4. Accuracy versus computational time and explainability for ECM,
SPM, DNN, and P2D model.

The P2D model incorporates over 20 parameters, employ-
ing nonlinear and partial differential equations to meticulously
explore the behavior of LIBs [33]. This presents a notable
computational expense and optimization difficulty as signif-
icant hurdles when implementing this electrochemical-based
model within BPHM systems in real-time scenarios. From a
technical point of view, ECMs perform with reduced compu-
tational demands compared with P2D models [36]. To strike
a balance between modeling accuracy and computational ef-
forts, a simplified LIB electrochemical-based model, namely,
the single-particle model (SPM) is proposed [37]. The SPM
originates from the comprehensive full-order electrochemical
model, thereby inheriting several crucial properties. Within
the SPM, each of the two electrodes is conceptualized as a
singular spherical solid particle. Unlike the P2D models, the
SPM does not take electrolyte dynamics into consideration
and the LIB concentration in the electrolyte reaction is as-
sumed to be uniform [37]. The SPM exhibits a more limited
dynamic behavior compared with the full-order model, partic-
ularly excluding mechanical responses. The impact of these
responses on diffusion becomes notably significant when the
electrode material possesses a high modulus and elevated par-
tial molar volume [37]. Nonetheless, the accuracy of the SPM
commonly diminishes at elevated charge/discharge rates due
to its inability to account for electrolyte dynamics. To mitigate
this limitation, integrating electrolyte dynamics can be an ef-
fective approach [38]. Data-driven models use empirical data
and ML to depict battery behavior, balancing accuracy and
computational efficiency. The Thevenin model is one of the
most commonly used ECMs. Fig. 4 illustrates a fair compari-
son of the common LIB models (DNN, SPM, ECM, and P2D)
in terms of accuracy, computational time, and explainability.
From Fig. 4, it is evident that the DNN model stands out
in delivering superior accuracy. However, this high accuracy
comes at the cost of skyrocketing computational time. This
suggests that while DNN offers precise predictions, it might
require more resources or time to process, which could be a
consideration for real-time applications or systems with lim-
ited computational power.
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ECMs predict battery behavior using electrical compo-
nents. These models describe voltage changes in response
to current changes. By simulating the internal resistance and
other processes, ECMs offer insights into battery performance
and lifespan. The choice of an ECM depends on battery chem-
istry, desired accuracy, and application. Battery degradation
affects performance and longevity, especially in LIBs. Degra-
dation mechanisms include capacity fade, power fade, and
solid-electrolyte interphase (SEI) formation. Capacity fade
results from the loss of active material, whereas power fade
arises from increased internal resistance. SEI layer formation
can increase resistance and reduce capacity. Factors such as
temperature and operating conditions affect these degradation
mechanisms, thereby influencing the overall battery perfor-
mance and lifespan.

III. EXISTING DL METHODS IN BPHM
In this section, DL methods are classified based on data struc-
ture into sequential and nonsequential methods. Sequential
methods, such as recurrent neural network (RNN) and long
short-term memory (LSTMs), process time series or ordered
data. In contrast, nonsequential methods, such as feedforward
neural networks and convolutional neural networks (CNNs),
handle fixed-size data without emphasizing sequence or order.

A. SEQUENTIAL NEURAL NETWORKS
Sequential neural networks (SNNs) process time-series data
by assuming that the state at any given time step depends on
prior states. SNNs consider the time-ordered or sequential as-
pects of data. The following sections describe the commonly
used SNNs for BPHM systems.

1) RNN AND THEIR DERIVATIVES
RNN model, designed for time series data, uses feedback
loops in hidden layers to retain past state information. For
input sequences xt and output vectors yt , the hidden states
are ht [39]. The current hidden state, ht , is computed using
the input, previous hidden state, and associated weights and
biases. The output is expressed as yt =Whyht + by, where W
and b represent the weights and bias, respectively. LSTMs
excel in temporal feature extraction, attributed to three gates:
input it , forget ft , and output ot [39]. Each gate uses spe-
cific weights, biases, and the sigmoid activation function.
Elementwise multiplication is denoted by �. Gated recurrent
units (GRUs) designed to reduce the LSTM’s computational
load, utilize two gates. The update gate functions similarly
to the LSTM’s forget gate, deciding on information retention,
whereas the reset gate determines information preservation.
In the vast majority of papers applying the RNN models, the
memory gates improve the model accuracy [40].

Li et al. [39] delved into an innovative approach leveraging
LSTM and the ECM to diagnose LIBs faults in EVs. The
ECM provides a detailed representation of the battery’s inter-
nal dynamics, enhancing diagnostic accuracy. However, the
proposed approach was primarily tested through simulations

FIGURE 5. (a) Conceptual diagram of a stack of dilated causal
convolutions with dilation factors d = 1, 2, 4, 8. (b) Architecture of the TCN
consisting of two residual blocks.

or lab settings, with limited verification in real-world EV
implementations. In [40], the authors introduced an improved
SOC estimation model based on a two-hidden-layer GRU
trained with the one-cycle policy. The proposed model has
demonstrated satisfactory outcomes with a low error rate un-
der various EV drive cycles at different ambient temperatures.
Nonetheless, the proposed GRU model involves significant
hyperparameters selection, and there is a lack of studies high-
lighting the influence of these hyperparameters on model
performance.

2) TEMPORAL CONVOLUTIONAL NETWORKS
Temporal convolutional networks (TCN) are designed to han-
dle time series sequences [41]. TCN consists of a stack
of residual blocks hierarchically distributed, as shown in
Fig. 5(a). The TCN architecture contains causal (dilated) con-
volutions, as shown in Fig. 5(b). The dilated convolutions
ensure that the output at time t is convolved only with infor-
mation up to time t as follows:

yt = f (xt−d , xt−d+1, . . ., xt ) (1)

where f is a function implemented by the TCN layers, x is
the input sequence, and d is the size of the receptive field.
TCNs can be used for forecasting battery health by processing
sequential battery usage and health data to predict future states
or RUL.

A conditional temporal convolutional encoder–decoder
(CTCED) is proposed for predicting the available capacity
of LIBs under various scenarios, including different battery
chemistries and changing conditions [41]. The CTCED model
is nonrecursive, making it faster than traditional models on
modern hardware optimized for vectorized computations. Un-
fortunately, the CTCED’s GPU RAM usage is higher during
training, especially when longer sequences are involved. Zhou
et al. [42] addressed the challenges of predicting the SOH and
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RUL for LIBs. By applying the TCN model, the dilated con-
volution improves the training speed and memory caused by
network depth. However, obtaining accurate measurements of
impedance, which are essential for battery health monitoring,
is challenging and costly.

3) BIDIRECTIONAL RNNS
Bidirectional RNN processes sequences in both directions:
From past to future and vice versa [43]. This gives them a
wider context for each time point [44]. The output of the

forward hidden unit
−→
ht and the backward hidden unit

←−
ht are

computed as [43]

−→
ht = −→f (xt ,

−−→
ht−1) (2)

←−
ht =←−f (xt ,

←−−
ht+1) (3)

where
−→
f and

←−
f are forward and backward RNN functions,

respectively. This approach can be utilized to incorporate both
historical and anticipated usage patterns in estimating the
health of batteries.

Zhang et al. [43] proposed a bidirectional GRU (BiGRU)
method to map LIB measurements, such as voltage, current,
and temperature, directly to the SOC. The proposed BiGRU
learns the effects of ambient temperature variations, result-
ing in accurate SOC estimations with a root mean square
error (RMSE) values less than 2.5% and 3.5% for different
battery types. However, the bidirectional architecture might
start to overfit after a certain point. Such model has a trade-
off between performance and computational cost, with larger
models requiring more floating point operations per second
and runtime. Zhang et al. [45] proposed a ground-based
LIB state estimation technique for low Earth orbit satel-
lite systems. This technique utilizes an unscented Kalman
filter-based model that leverages battery current and voltage
predictions made by the bi-directional LSTM (Bi-LSTM)
network. The proposed technique’s SOC estimation RMSE
converges to about 1.7 A for current and 0.2 V for voltage.
However, in the early stages, when there is insufficient train-
ing data, the SOC estimation error can increase to about 9%.

4) TRANSFORMER MODELS
Transformers use self-attention mechanisms to weigh the rele-
vance of different parts of the input sequence when producing
an output. The attention mechanism is mathematically repre-
sented as [46]

Attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V (4)

where Q, K , and V are query, key, and value matrices, re-
spectively. Transformers can process irregular time series
data from batteries and consider long-range dependencies,
which might be crucial for accurate prognostics. In [46], a
transformer-based model has been proposed to capture both
local and global temporal dependencies in the data. The
transformer model can efficiently process the entire sequence

in parallel, leading to faster training times compared with
RNN-based models. Chen et al. [47] introduced a multiview
information perception transformer (MVIP-Trans) framework
for LIB SOH estimation. This framework combines local in-
formation perception (LIP) and global information perception
to enhance noise tolerance and long-term feature learning.
Despite the high training time of the proposed approach, the
MVIP-Trans model outperforms other models in prediction
accuracy, especially on certain datasets, such as B0005.

5) CONVOLUTIONAL RNN
A combination of CNNs for feature extraction and RNN
for sequential processing is introduced in the literature to
boost the prediction system performance on time series LIB
data [48]. While the CNN layers capture spatial patterns,
the RNN layers capture temporal patterns. CNN-RNN are
used for batteries that have spatial and temporal data, like
arrays of sensors spread across large batteries, to capture
both spatial degradation patterns and temporal usage patterns.
A convolutional GRU framework is proposed for SOH by
extracting key features from segments of voltage, current,
and temperature curves during the charging process [49].
While the CNN-GRU model offers a low mean absolute error
(MAE) of 0.013, there are still some outliers observed in
the results. A CNN-LSTM-DNN model has been proposed
for RUL, offering a data-driven, self-adaptive, and nonlin-
ear approach [50]. Experimental validation on datasets from
the National Aeronautics and Space Administration (NASA)
and Center for Advanced Life Cycle Engineering (CALCE)
demonstrates its superior prediction accuracy over single ML
methods, offering both high accuracy and acceptable execu-
tion time. However, the method’s reliance on historical data
might not account for unforeseen changes or anomalies in bat-
tery behavior variations, such as heat and aging. Navigating
through the complexities of LIB behavior, a combination of
CNN and GRU enriched by the potency of transfer learning
is proposed in [51]. It was proven that transfer learning aids
the CNN-GRU model by utilizing pre-existing knowledge,
enhancing generalization and accuracy, and improving model
performance. Nonetheless, If the domains are significantly
different, the benefits of transfer learning might be dimin-
ished.

6) ATTENTION RNN
RNN can be enhanced with attention mechanisms by focusing
on specific parts of the input sequence when producing each
output, similar to transformers but in RNN framework [52].
The attention mechanism in this enhanced RNN model can be
mathematically represented by [52]

ct =
∑

i

αt ihi (5)

where ct is the context vector and αt i are the attention weights.
Attention RNN can be utilized when certain periods or events
in the battery’s life are more critical than others, allowing the
model to focus on those crucial moments for prognostics. A
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calendar health prognostic based on knowledge-data-driven
attention is proposed in [6]. The model integrates battery em-
pirical knowledge, which significantly improves prognostics
performance, especially for unwitnessed conditions. Unfor-
tunately, potential biases in semiempirical models for the
proposed framework might need further refinement. An in-
tegrated attention mechanism leveraged with a Bi-LSTM
network is proposed for SOC [53]. The authors claim that
the proposed method may not be as effective for datasets with
very long sequences, and further refinements are needed to
handle such scenarios.

B. NON-SNN
The nonsequential networks extract features related to space
and interaction. Moreover, they can represent temporal data
either by modeling the end state or by assessing the entire
history of observed states, without presuming a conditional
dependence on earlier states. This section delves into the key
nonsequential networks for LIB systems.

1) CONVOLUTIONAL NEURAL NETWORKS
The CNN model consists of an input layer, multiple convolu-
tion layers, pooling layers, a rectified linear unit with a fully
connected layer, and the output layer [47]. For BPHM, CNNs
can be employed to analyze image or time series data to detect
anomalies or predict battery failures [54]. Mathematically, the
convolution operation in CNNs is given as [55]

(Y ∗ X )[i, j] =
∑

m

∑
n

Y [m, n] · X [i − m, j − n] (6)

where Y is the kernel and X is the input. Xu et al. [55]
proposed 1-D CNNs for estimating the SOC of LIBs. The 1-D
CNN model takes the voltage, current, and temperature values
of a battery corresponding to specific timesteps as inputs and
predicts the SOC value at a given timestep. 1-D CNNs stride
only in one dimension, which is the temporal dimension in
this context. This ensures that the network captures patterns
relevant over time, which is crucial for battery SOC estima-
tion. However, the CNNs might potentially face challenges
in handling long-term dependencies in the data or require
fine-tuning for accurate SOC.

2) BOLTZMANN MACHINES AND DBNS
Boltzmann machines are stochastic RNN [56]. In the context
of BPHM, they can be used for feature learning or modeling
complex interactions in battery data. The energy of a state in
a Boltzmann machine is computed as [57]

E (v,h) = −
∑

i

aivi −
∑

j

b jh j −
∑
i, j

viwi jh j . (7)

Deep belief networks (DBNs) are composed of multiple layers
of stochastic, latent variables [58]. They are trained greedily,
one layer at a time. In BPHM, DBNs can model complex rela-
tionships and detect intricate patterns in battery datasets. The
energy function of a Restricted Boltzmann machine (RBM)

(the building block of DBNs) is calculated as follows [57]:

E (v, h) = −
∑

i

aivi −
∑

j

b jh j −
∑
i, j

viwi jh j (8)

where v and h are visible and hidden units, respectively. Mas-
saoudi et al. [59] introduced a DBN method for estimating the
capacity of LIBs based on features derived from the charging
process. Health indicators are extracted from charging curves,
optimized using grey relation analysis, and then processed
with a DBN. The proposed approach is limited to the heavy
computational requirements of DBN training. Meanwhile,
Cao et al. [60] combined the partial incremental capacity
(IC) with a DBN optimized by particle swarm optimization
for the health diagnosis of LIBs. The IC curve’s evolution,
which correlates well with the battery’s SOH as the number
of cycles increases, is used. Peaks and valleys in the IC curves
are applied as input features. The estimation errors are mostly
below 2.5%, with the best estimation results corresponding to
fully charged and discharged operating conditions, reaching
less than 1%. However, there are occasional outlier points
with larger estimation errors.

3) AUTOENCODERS AND THEIR DERIVATIVES
The autoencoders learn to encode inputs into a reduced di-
mensional space and then decode them back [61]. In BPHM,
they can be used for feature reduction or anomaly detection
by analyzing the reconstruction error [62]. Given an input x,
an encoder function f , and a decoder function g, the recon-
struction is given as [63]

x̂ = g( f (x)). (9)

Jiao et al. [64] introduced a stacked denoising autoencoder
(SDAE) combined with clustering by fast search to select
significant features for LIB RUL prediction. This approach
effectively reduces the dimensionality of the data, which
is beneficial for improving the efficiency of the prediction
model. Unfortunately, the challenge of the SDAE model is
rooted in the high complexity, which might make it harder
to interpret compared with simpler models.

An improved variational autoencoder (VAE) method is pro-
posed to reconstruct the inconsistency of multidimensional
parameters of battery packs [65]. The VAE-based method can
generate parameters with better similarity to the original data
using a small sample size (95 samples). It can be noticed
that the temperature standard deviation error of the proposed
method can reach up to 4.53%, which might be significant in
certain applications.

4) GENERATIVE ADVERSARIAL NETWORKS
GANs consist of two networks: A generator and a dis-
criminator [66]. The generator produces fake data, whereas
the discriminator tries to distinguish between real and fake
data [67]. For BPHM, GANs can generate synthetic battery
data to augment datasets. A capacity forecast GAN (CFGAN)
is proposed for forecasting the calendar aging of LIBs [68].
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FIGURE 6. Application of DL for BPHM.

The CFGAN aims to model the joint distributions of forecast-
ing targets at different lead steps. The model is trained to be
consistent with the electrochemical theory of calendar aging.
Unfortunately, the CFGAN model requires alternating train-
ing, which can be computationally intensive and challenging
to implement and optimize. Zhao et al. [69] introduced a
GAN-based SOC estimator for synthetic battery operation
data generation. This method aims to produce synthetic data
that closely resembles real battery operation data. However,
the synthetic data generated by GAN, no matter how well
generated, might not capture all the nuances of real-world
data.

5) SELF-ORGANIZING MAPS
Self-organizing maps (SOMs) are unsupervised neural net-
works that produce a low-dimensional representation of the
input space [16]. For BPHM, SOMs can cluster similar bat-
tery states or behaviors together, aiding in visualization and
analysis. Given a weight matrix W and an input x, the best
matching unit (BMU) is computed as

BMU(x) = arg min
i
||x − wi||. (10)

A SOM is employed to identify aging conditions in
LIBs [70]. The methodology can be employed to depict the
aging process in batteries intended for the second-life mar-
ket, even if their past uses are unknown. This approach can
assist in identifying suitable second-life applications for used
cells based on their performance capabilities. However, the
technique’s accuracy might be affected if the battery has been
subjected to varied conditions not covered in the training
dataset.

IV. APPLICATIONS OF DL IN BPHM
This review divides the BPHM methods into five classes,
namely, SOC estimation, RUL estimation, battery fault de-
tection and diagnosis, SOH estimation, and aging trajectories
estimation (ATE), as shown in Fig. 6. In this section, each
class is described and demonstrated through real applica-
tions from the literature. Additionally, Table 2 presents a
compilation of DL approaches used for battery performance
prediction. Each model’s unique benefits and constraints are
discussed, with considerations of computational demands and
environmental conditions factored into their practical applica-
bility.

A. SOC ESTIMATION-BASED DL
With the fast-changing electromechanical features, SOC is a
way to measure the current state of a battery varying in a short
time span. SOC is defined as the ratio of its remaining capacity
and its initial capacity [71]. The SOC estimation is a crucial
factor in BMS, as it directly influences the performance and
lifespan of batteries [51]. DL techniques have emerged as
promising approaches for accurately estimating SOC, thus,
enhancing the overall efficiency of battery systems and pre-
venting catastrophic thermal runaway. The SOH represents
the percentage of the battery cell’s available capacity, and it
is calculated using the formula below [42]:

SOH(t ) = Ct

C0
(11)

where Co and Ct denote the initial capacity and the capacity
at the t th cycle, respectively. DL techniques, such as CNNs,
RNN, and LSTM networks, have demonstrated their prowess
in capturing complex temporal relationships in battery data.
By harnessing the power of DL methodologies, researchers
have made significant strides in overcoming the potential dis-
crepancies of traditional SOC estimation techniques, paving
the way for more reliable, efficient, and intelligent BMS.

Flores et al. [72] introduced a method for estimating the
SOH of lithium ionphosphate batteries. One of the significant
advantages of the proposed method is its ability to utilize
images as input, which has been shown to help the DL model
capture and learn features more effectively than using se-
quences as input. However, a limitation was observed for
specific datasets, such as R5. The difficulty in transferring
degradation model (DM) knowledge from synthetic datasets
to real datasets like R5 restricts further improvement in SOH
estimation accuracy. A bilateral branched visual transformer
with dilated self-attention is introduced in [73]. This in-
novative framework considers partial charging segments of
different SOC ranges, enhancing its applicability to real-world
scenarios. It is worth mentioning that traditional direct cali-
bration methods, such as coulomb counting and open-circuit
voltage methods are time-consuming, costly, and less practical
for real-world EV applications, being more suited for lab
settings. Yang et al. [74] offers a novel approach that leverages
advanced algorithms for accurate predictions. One of the key
advantages of this method is its ability to provide precise
SOH estimations, as evidenced by its performance metrics
like RMSE and MAE.

B. RUL ESTIMATION-BASED DL
The battery’s RUL in the early-cycle stage refers to the num-
ber of operational cycles from the current working cycle
before the battery’s capacity degrades to the failure threshold.
Lu et al. [75] indicates that a battery approaches its end of
life (EOL) when its capacity declines to between 70% and
80% of its original rating. Degradation processes, including
metal erosion, expansion of the protective surface coating on
the electrodes, and the depletion of reusable lithium ions,
influence the lifespan of the LIB. RUL estimation is a critical
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TABLE 2. Comparative Analysis of DL Models for Battery Performance Prediction

aspect of battery health and safety management, as it sup-
ports quality inspection, optimal operation, maintenance, and
replacement decisions. The RUL is calculated as follows [42]:

RUL(t ) = t − tEOL (12)

where EOL denotes the number of cycles at the end of bat-
tery life, and t is the t th cycle number. Likewise, end users
could estimate their battery life expectancy. DL techniques
have emerged as powerful tools for accurately predicting the
RUL of batteries, leveraging complex patterns and correla-
tions hidden in historical and real-time data. By exploiting
the wealth of data generated by sensors monitoring battery
performance, these algorithms can predict the deterioration of
battery capacity, voltage, and internal resistance, ultimately
leading to a more precise estimation of the RUL. This im-
proved understanding of battery health not only enhances the
reliability and safety of power systems but also contributes
to cost reduction, resource optimization, and the extension of
battery lifetimes. As such, the application of DL techniques
for RUL estimation represents a significant stride toward more
efficient and sustainable power systems.

Fei et al. [76] introduced a novel attention-assisted tem-
poral convolutional memory-augmented network framework

for predicting the RUL of LIBs. This method boasts supe-
rior accuracy, speed, and generalizability, even with limited
data, setting it apart from existing models. It adeptly pro-
cesses high-dimensional battery data by integrating attention
mechanisms, temporal convolution, and memory augmenta-
tion. However, its effectiveness is primarily demonstrated in
laboratory settings with ample training samples. The model
requires separate training for different battery types due to in-
herent degradation discrepancies. A particle filter-temporal at-
tention mechanism-BiGRU (PF-BiGRU-TSAM) is proposed
in [77]. By seamlessly merging model-based and data-driven
strategies, this innovative approach not only provides timely
data feedback and correction but also utilizes the BiGRU-
TSAM predicted value to refine the PF model, ensuring more
accurate RUL predictions. Furthermore, it can determine a
95% confidence interval for battery RUL at various predic-
tion junctures. However, a notable limitation is its design for
individual batteries. In [78], a capsule network and transfer
learning (TL) are leveraged for RUL using the curves of bat-
tery charging and discharging cycles. Capsule networks are
believed to be adept at extracting numerical data from images,
similar to human cognition. The method offers the potential
for high estimation accuracy with limited knowledge of the
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studied cell, making it suitable for BMS or health-conscious
fast-charging protocols. The use of images as inputs to the
capsule network can create more robust and reliable networks
by minimizing data preprocessing. Despite its potential, the
capsule network architecture is not yet mainstream, primarily
due to its high computational demands and challenging imple-
mentation compared with more established architectures like
CNNs and LSTMs.

C. BATTERY FAULT DETECTION AND DIAGNOSIS-BASED DL
The abusive use of LIBs can result in over-charging/
discharging, overheating, and internal short circuits [79]. DL
methods can be harnessed to monitor and predict LIB faults
with a higher degree of accuracy and reliability compared
with traditional methods [80]. By training DL models on large
datasets reflecting a variety of operational states and fault
scenarios, these models can learn to recognize early fault in-
dicators and distinguish between different types of faults [81].
This ability not only enhances fault diagnosis precision but
also offers opportunities for proactive intervention, therefore
increasing battery lifespan, improving safety, and optimizing
performance [7], [82].

Xiong et al. [83] introduced a Lebesgue sampling-based
DBN model for diagnosing LIBs. This data-driven framework
combines DBN and particle filter (PF). DBN, with its deep
architecture, learns the state evolution and Lebesgue time
transition models, whereas PF estimates the fault state. To-
gether, they predict the battery’s RUL. While the proposed
method offers cost-efficiency, reduced computation, and bet-
ter uncertainty management, it faces challenges in accurately
modeling the dynamic degradation patterns of modern bat-
teries. Hong et al. [84] introduced a many-to-one LSTM
architecture for fault prognosis of battery systems. Tested
across different seasons, the model demonstrates robustness
and adaptability, offering a promising solution for battery
voltage prediction in varied conditions. In [85], the authors
proposed an intelligent diagnostic framework for li-ion battery
packs. The method leverages the Pearson correlation coeffi-
cient (PCC) improvements and transforms the improved PCC
series into pseudo images. These images, which visualize
fluctuations indicative of different faults, are then processed
using CNN to judge fault occurrence, type, and grade. Exper-
imental results demonstrate high accuracy rates for fault type
isolating, reaching up to 99.63% on Gramian angular field
images (GAFIs) and 99.75% on Markov transition field image
(MTFIs). However, the method has limitations. The CNNs
used require similar image texture backgrounds for stability,
and images for model training and testing should come from
the same pair of cells in both pre and postfault injection due to
potential differences in electrochemical characteristics among
healthy cells.

D. SOH ESTIMATION-BASED DL
Understanding and estimating the SOH of LIBs on the long-
term timescale is a crucial area of research that aids in their

effective management, extends their operational life, and pre-
vents irreversible damage [86]. DL models are trained on
vast datasets using early-cycle data encompassing parameters,
such as voltage, current, temperature, and charge-discharge
cycles, among others, and output precise SOH estimations. A
convolution transformer-based multiview information percep-
tion framework is proposed for SOH prediction of LIBs [47].
The MVIP-Trans framework provides an enhanced noise tol-
erance through LIP, and improved long-term feature learning
via GIP. However, potential limitations might encompass
computational demands, dataset dependencies, and optimal
performance conditions.

Cai et al. [87] presented a novel method for estimating the
SOH of LIBs. The approach employs an evolutionary multi-
objective method to simultaneously find the best combination
of features, attention layer, and hyperparameters of the net-
work. An LSTM neural network is utilized to establish the
data-driven model, with an added attention layer to finalize
feature selection. Future paper work should focus on refin-
ing solution selection based on different charging scenarios
and improving the generalization of the effect of temper-
ature on the estimation. An encoder–decoder model-based
SOH estimation is proposed in [88]. The encoder part of the
model is constructed using a hybrid neural network that com-
bines CNN, ultra-lightweight subspace attention mechanism
(ULSAM), and simple recurrent unit (SRU) structures. This
encoder is adept at extracting features from the input data.
The article introduces three different decoders, with the third
decoder (decoder 3) incorporating an attention mechanism.
This attention mechanism allows the model to generate atten-
tion weights corresponding to encoding vectors at different
moments, ensuring that the resultant new context vector ef-
fectively captures the information of the entire sequence. The
attention mechanism, while beneficial for longer encoding se-
quences, might introduce unnecessary complexity for shorter
sequences.

To use the attention mechanism more effectively, a con-
volutional block attention module (CBAM) is proposed to
meticulously focus on distributing attention across both chan-
nel and spatial dimensions [86]. The CBAM consists of two
submodules: The channel attention module (CAM) and the
spatial attention module (SAM) [86]. The CAM identifies
and prioritizes input data, whereas SAM emphasizes differ-
ent feature map areas, enhancing attention distribution. This
meticulous attention distribution along the channel and spa-
tial dimension ensures a nuanced, selective prioritization and
learning from the most relevant data during training and pre-
diction, thereby enhancing the accuracy and robustness of the
SOH estimation model.

E. ATE-BASED DL
The operational longevity of LIBs is hindered by complex
aging mechanisms, which can precipitate critical failures,
such as power loss, fire, or explosion, resulting in substantial
economic damage [89]. The SOH is typically viewed as an
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important clue to reflect the battery aging process, Neverthe-
less, merely determining a LIB’s present SOH is not sufficient
to investigate the aging behavior of LIBs. In essence, the
operators attempt to get insights into the LIB’s future aging
trajectory to alleviate concerns about its lifespan. It is impor-
tant to note that the projected aging patterns are not directly
derived from the current SOH. LIB ATE-based DL is a critical
aspect of BPHM [90]. As the LIB ages nonlinearly, capacity
declines linearly until a “knee point” where the aging trajec-
tory accelerates. Predicting the knee point effect is crucial, but
early-stage data-driven solutions are scarce [91].

Xu et al. [92] introduced a sequence-to-sequence DL
method for predicting battery capacity degradation trajectory.
The proposed framework consists of three main steps: Feature
extraction, clustering and data augmentation, and predic-
tion. However, the proposed model performance is untested
under varying external conditions or with different battery
chemistries. In [93], a novel approach for early prediction
of LIB degradation trajectory using CNN and a synthetic
dataset generated through a polynomial function. With only
limited initial data, the validation on a large dataset with
over 100 cells demonstrated the method’s robust performance,
achieving less than 2% MAE and RMSE in most cases.
Nonetheless, the choice of the pretraining dataset might in-
fluence the method’s accuracy. Specifically, pretraining with a
dataset that closely matches the target dataset yielded superior
results. Zhao et al. [94] presented a LIB health prognos-
tic method using aging trajectory matching with ensemble
deep TL. By incorporating a bidirectional LSTM network the
proposed method features its robustness to incomplete data,
superior performance compared with other methods, adaptive
recognition of battery degradation patterns, and accurate tra-
jectory matching. Nevertheless, the original model and the
transfer model should be applied to identical battery types,
leading to potential performance deterioration when applied
to batteries with uncertain operational conditions.

V. CASE STUDY: A NOVEL SOH ESTIMATION APPROACH
UTILIZING DLINEAR MODEL AND BAYESIAN
OPTIMIZATION
A. EXPERIMENTAL DATA
The testing dataset for LIBs was derived from the Prognos-
tics Center of Excellence’s data repository at the National
Aeronautics and Space Administration’s (NASA) Ames Re-
search Center. In the experiment, the LIB data were collected
at the Idaho National Laboratory using multiple commer-
cial li-ion 18650 LIBs tested on a specialized prognostics
testbed [101]. The process of charging a battery adheres to the
constant-current constant-voltage methodology. The acquired
time series data contains 34 866 measurements including the
voltage, current, temperature, current load, voltage load, and
SOH values. The testbed comprises a suite of diagnostic tools
including a power supply, programmable DC electronic load,
voltmeter, thermocouple sensor, environmental chamber, EIS,
and a PXI-based data acquisition system [102]. Operational

FIGURE 7. Capacity degradation (at a temperature = 24 ◦C).

TABLE 3. Battery Aging Conditions in the Experiment

tests at ambient temperature involved charge, discharge, and
impedance profiles. At a room temperature of 24 °C, a steady
current of 1.5 A is used for charging until the voltage hits the
4.2 V threshold [102]. Following this, the voltage is main-
tained steady at 4.2 V, while the charging continues until the
current reduces to 20 mA. Discharge occurred at a constant
2 A down to specific voltage thresholds for each battery.
Impedance assessments were performed via EIS spanning a
frequency range of 0.1 to 5 kHz. Such cycles expedited wear,
terminating the experiment when the batteries reached a 30%
capacity reduction, indicative of EOL. The experiments were
stopped when the batteries hit the EOL threshold, fading in
the rated capacity (from 2 to 1.4 Ah). Four battery types
(B0005, B0006, B0007, and B0018) with different capacity
degradation behavior are provided and shown in Fig. 7. The
battery aging conditions are provided in Table 3, including the
charge/discharge cut-off voltage (C/DCV), minimal charge
current (MCC), and constant discharge current (CDC).

B. PROPOSED METHODOLOGY
Consider a historical instance of a multivariate time se-
ries, denoted as χh = [x1, x2, . . . , xn] ∈ Rn×c, where n is
the length. The objective of time series forecasting tasks is
to estimate the values of the next m steps, represented as
χ f = [xn+1, xn+2, . . . , xn+m] ∈ Rm×c, across all c channels.
These tasks necessitate the learning of a mapping function
ψ : χn×c

h → χm×c
f , where χh and χ f are sequential. To ad-

dress this requirement, the DLinear model, introduced in
2022, offers an innovative approach. Known for its high pre-
cision, DLinear has a straightforward structure, which only
comprises a decomposition scheme and two linear networks.
In other words, it predicts the output of a given input by
simply combining the input features in a linear fashion. How-
ever, unlike traditional linear models, the DLinear model uses
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FIGURE 8. Graphical model representation of the DLinear network.
(a) Structural design of DLinear. (b) Configuration of a single-layer linear
network.

a deep neural network to learn the weights of the linear
combination. This allows the DLinear model to learn more
complex relationships between the input features and the out-
put. Thus, it outperforms the more intricate transformer model
in terms of predictive accuracy. During the forecasting pro-
cess, DLinear initially decomposes the original sequence X
into a trend component Xt and a residual component Xr (Xr =
X − Xt ). Following this, two single-layer linear networks are
employed to predict each component separately. Finally, each
subsequence is predicted by the novel DLinear algorithm in-
dividually. The structure of the model, which effectively maps
χh to χ f , is depicted in Fig. 8.

DLinear breaks down the time series into a trend sequence
and a remainder series. It then employs two singular-layer
linear networks to predict based on these sequences. The
DLinear model first decomposes historical time series data
into a trend (Trend) data and remaining (Remainder) data,
and then, applies a single-layer linear network to the two
sequences obtained by decomposing [103] as

Hs =WsXs ∈ RT×C,Ws ∈ RT×L (13)

Ht =Wt Xt ∈ RT×C,Wt ∈ RT×L (14)

X̂ = Hs + Ht (15)

where Hr and Ht denote the output values of the single-
layer linear networks corresponding to the residual and trend
components, respectively. In a similar vein, Wr and Wt sym-
bolize the single-layer linear networks associated with the
residual and trend components. The model generates at the
end the summation of the outputs of the two single-layer
linear networks. Also, if the variables of the dataset have
different characteristics, i.e., different seasonality and trends,
then sharing weights between different variables may not per-
form well. Therefore, two kinds of DLinear were proposed:
DLinear-S where each variable shares the same linear layer,
and DLinear-I: In which each variable has an independent
linear layer. Fig. 9 presents the adopted methodology for the
proposed model. According to the figure, the DL framework
is conducted through data collection and preprocessing, DL

FIGURE 9. DL framework for LIB SOH prediction.

model implementation, model comparison, and error metrics
assessment.

C. RESULTS AND DISCUSSIONS
The feature vector in the database is formulated as �k =
[Vm(k), Im(k),Tm(k),At ,Cl ,Vl , t,C], where Vm(k), Im(k), and
Tm(k) signify the voltage measured, current measured, and
temperature measurement of the battery at each time step k,
respectively; At is the ambient temperature, Cl is the current
load, Vl is the voltage load, t is the time, and C represents
capacity, all of which contribute to a comprehensive evalu-
ation and monitoring of the performance and health status
of a battery system. In this article, we use the LIB data of
B0018 in this dataset. The prediction model is trained using
a dataset D = (�1, SOC1), . . . , (�N , SOCN ), where SOCk is
the ground-truth value or the observable SOC value at time
step k and �k is the vector of inputs at the same time step, k.
For the B0018 battery, 80% and 20% of the total cycle data
are selected as the training and testing samples, respectively.

The Bayesian optimization (BO) technique is valuable
when the cost of function evaluation is high due to its effi-
ciency in evaluations [104]. The technique involves surrogate
and acquisition functions. The surrogate functions commonly
used include Gaussian Processes (GPs) and tree-structured
Parzen estimators (TPE). A GP is a distribution over func-
tions, parameterized by a mean and covariance function. The
function values are drawn from a normal distribution consid-
ering the prior observations [105]. Random forest and TPE
serve as alternatives to GP. Acquisition functions are em-
ployed to choose the next point of function evaluation in a way
that the optimization progresses toward the maximum. This is
often achieved by maximizing the expected improvement. The
likelihood of the improvement is computed from the normal
density function.

Table 4 presents the search space for the hyperparameters
used in each of the models studied in this work, where ICL,
OCL, and RS denote the input chunk length, the output chunk
length, and the random states, respectively. The implemented
models include neural basis expansion analysis for time series
(N-BEATS), RNN, GRU, LSTM, neural Hawkes integrated
temporal self-attention (NHITS), and DLinear models. [106],
[107], [108]. For instance, the DLinear model performed best
when the ICL is set to 42, the OCL is set to 7, the number of
epochs is set to 284, and the RS is set to 100.

In order to evaluate the performance of DNN models, multi-
ple dependent scales and independent scale score metrics were
introduced. These metrics comprise the RMSE, coefficient of
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TABLE 4. Search Space of the Proposed Models

determination (R2), and MAE as follows [109]:

MAE = 1

n

n−1∑
i=0

|yi − ŷi| (16)

RMSE =
√

1

n

∑n−1

i=0
(yi − ŷi )2 (17)

R2 = 1−
∑n−1

i=0 (ŷi − yi )2∑n−1
i=0 (ȳi − yi )2

, ȳ = 1

n

n−1∑
i=0

yi (18)

where yi, ŷi, and n illustrate the actual SOH values, the pre-
dicted values, and the total number of samples. For a more fair
comparison, ten-fold cross-validation (10-CV) is performed
to evaluate the model universality. All experiments have been
implemented via Google Colab Pro Plus High-RAM and
background execution options enabled. Preinstalled packages,
which reduce potential errors due to the compatibility of all
the versions. The BO is implemented using Optuna Python
library [110]. In contrast, DLinear is implemented using the
Darts library [111].

Fig. 10 illustrates the models’ performance for SOH. Re-
garding Fig. 10, the DLinear model interestingly outperforms
all N-BEATS, RNN, Transformer, and NHITS models. Partic-
ularly, the NHITS overfits to noise and miss simpler patterns
that are more indicative of the SOH. This is because the
NHITS’s complexity allows it to fit the small fluctuations
that do not generalize well outside of the training dataset.
Table 5 illustrates that the proposed DLinear model surpasses
the benchmark models N-BEATS, RNN, Transformer, and
NHITS in performance across several evaluation metrics,
namely R2, MAE (102), RMSE (102), and computation time.
The obtained results clearly show that the DLinear model
improves the accuracy of the SOH estimation. Alternatively,
the Transformer model performs reasonably well in tracking

FIGURE 10. Diagrams of the estimated SOH results using NASA LIB
degradation data.

TABLE 5. Comparison Results

the general trend of the SOH but may need improvements
for finer accuracy, especially in predicting sudden changes or
long-term trends.

Regarding Table 5, the DLinear model achieved an im-
pressive R2 of 91.91%, indicating high predictive accuracy.
Furthermore, it demonstrated a superior prediction precision,
with the smallest MAE and RMSE values, 0.15 and 0.21
(10−2), respectively. The high accuracy of the DLinear is due
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FIGURE 11. (a) Radar plot of DL models metrics (b) Computational
training time results (s).

to its potential to capture the periodicity and seasonal effects.
On the other side, NHITS has a relatively lower R2 of 74.31%,
indicating less predictive accuracy compared with DLinear.
According to Table 5, NHITS has a notably short training time
of 53.16 s, which is significantly less than that of N-BEATS at
328.92 s but more than DLinear at 105.11 s. DLlinear, while
it has the best prediction accuracy, still has a competitive
testing time of 0.09 s. The Transformer model achieves an
R2 of 90.05%. The experimental findings indicate that the
attention mechanism is unnecessary for capturing temporal
dependencies.

Fig. 11(a) illustrates the radar plot of the ML models used
for predicting the SOH. From the radar plot, we observe that
the DLinear model outperforms the others across all three
key predictive performance metrics: R2, MAE, and RMSE.
R2, which reflects the proportion of variance explained by the
model, is particularly high for DLinear, indicating a strong
predictive power. The MAE and RMSE values are lowest
for DLinear, suggesting high precision and reliability in its
predictions. The radar plot reveals that the Transformer model
closely rivals the DLinear model in terms of R2, albeit with
slightly higher error rates as indicated by MAE and RMSE.
Meanwhile, models like N-BEATS and NHITS show larger
errors and lower R2 values, hinting at less accurate predictions
for SOH.

Fig. 11(b) shows the comparison of the computational ef-
ficiency of the models. According to Fig. 11(b), it is evident
that the N-BEATS model requires the most extended train-
ing time, which could be a significant drawback in scenarios
where model retraining is frequent or computational resources
are limited. On the contrary, NHITS stands out as the most
time-efficient model for training, though this comes at the
cost of predictive accuracy. The Transformer model requires a
training time of 170.40 s, which is significantly longer than the
DLinear’s training time of 105.11 s. This difference suggests
that the Transformer model may have a more intricate or
expansive training process, potentially due to a more complex
architecture or a greater volume of parameters to optimize
during training. On the other hand, the testing times for both
models are very close, with the Transformer model at 0.12 s
and the DLinear model slightly faster at 0.09 s. The similarity
in testing times indicates that once trained, both models can
perform predictions with nearly equal speed, making them
both suitable for real-time or near-real-time SOH estimation
where rapid decision-making is critical.

VI. CHALLENGES AND FUTURE RESEARCH PATHWAYS
Despite the advances that have been made with regard to DL
methods for BPHM, there are still many challenges that need
to be addressed. In this section, we highlight some of those
challenges and give insight as to how they can be addressed.

A. RESEARCH CHALLENGES
Numerous challenges exist in this field, including the non-
linear and complex nature of battery behavior, the impact
of various operational factors (e.g., temperature, aging, and
cycling), and the difficulty in obtaining accurate and robust
measurements.

1) Data Quality and Quantity Limitations: High-quality,
large-scale LIB data is essential for training robust DL mod-
els. According to [112], this data must be representative of
various operating conditions and LIB states to ensure the
model is robust and generalizable to real-world scenarios.
However, obtaining such data from the material community
can be challenging due to the complex nature of batteries,
varied usage conditions, and the time-consuming process of
collecting LIB degradation data [113]. Only a handful of
material properties have been properly cataloged in sufficient
quantity and quality. For instance, Cobalt, a key component
in lithium cobalt oxide and lithium nickel manganese cobalt
oxide (NMC) batteries, is a limited resource and most of
it comes from politically unstable regions, which can cre-
ate supply chain uncertainties [114], [115]. Several publicly
available datasets are employed by pioneering researchers to
develop prediction models for the RUL of LIBs, as provided
in Table 6. The variety in datasets reflects diverse testing
conditions and battery types, from the smaller 2 Ah 18650
to larger 10 Ah LiFePO4 batteries, across various temper-
ature conditions [116]. The main challenge identified is the
high cost associated with data collection. As DL necessitates
substantial computational resources, the BPHM algorithms
require powerful computational capabilities to process and
analyze the data effectively, which might not always be readily
available or economically feasible, especially in real-time or
on-board applications where computational resources might
be limited [112].

2) Integration With Physics-Informed DL Models: Relying
solely on battery tests or simulation data in a completely
data-driven manner to learn the LIB behaviors can be inef-
ficient with the current test setup limitations and the high
uncertainties existing in real-world driving profiles [125].
Ensuring the robustness of DL models against uncertainties,
such as sensor noise, operational variations, and environ-
mental changes remains a challenging task in BPHM [126].
Physics-informed neural networks combine physical laws
with data-driven insights to provide comprehensive and re-
liable BPHM [127]. With LIB data scarcity, physics-guided
DL can conserve a high performance of DL algorithms un-
der unseen conditions [68]. Typically, as a battery model
encompasses more physical phenomena, it becomes increas-
ingly complex. Therefore, the ongoing challenge is to create
a simplified multiphysics model that enhances computational
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efficiency without compromising accuracy. For instance, Wei
et al. [128] presented a novel and effective method for op-
timizing the fast charging of LIBs. The proposed model
leverages a deep reinforcement learning strategy combined
with an improved deep deterministic policy algorithm.

3) Interpretability and Generalizability: DL models, which
are often referred to as “’black boxes,” inherently lack inter-
pretability [129], [130]. In the context of BPHM, this lack of
transparency can be problematic, particularly in safety-critical
applications, as it becomes challenging to understand and
justify the model’s prognostic predictions [131]. Also, DL
models may struggle to generalize to unseen battery types,
usage conditions, or failure modes. While a model might excel
in its training data, its performance may degrade significantly
when confronted with scenarios not covered in the training
set [132].

4) Computational Efficiency and Cybersecurity Considera-
tion: End-to-end DL models often require significant compu-
tational resources, which may not be available in all BPHM
applications, particularly in embedded systems or edge de-
vices. Furthermore, with the growing integration of internet
connectivity and communication channels for battery moni-
toring, cybersecurity becomes essential, especially when rely-
ing on extensive data [133]. Malicious hackers can trigger bat-
tery fires or explosions by manipulating BMS parameters and
measurement information through online access. Typically,

a dual-phase approach is essential to counter intrusions.
The initial phase focuses on promptly detecting fraudulent
data, which includes replay attacks and noise-injection at-
tacks [54]. The second phase involves taking actions to lessen
the effects of the attack [134]. Blockchain platforms (e.g.,
Hyperledger-Fabric [135]) can play a vital role in ensuring
the trustworthiness of battery sensors and communication
data [135]. On the other hand, federated learning is a promis-
ing method for battery informatics by aggregating locally
computed updates from LIB apparatus for privacy preserva-
tion [136]. Nonetheless, cybersecurity threats of the LIBs are
usually overlooked according to the existing literature.

B. FUTURE RESEARCH DIRECTIONS
In light of recent advancements in DL for BMSs, it is imper-
ative to delve deeper into specific methodologies for BPHM.
The integration of these cutting-edge approaches can signifi-
cantly improve the performance and applicability of current
DL techniques in this domain. This section provides some
potential aspects for more efficient LIB informatics.

1) Hybrid Estimation Methods: Future research should
explore the development of hybrid estimation methods that
combine the strengths of both DL techniques [137]. This
approach could lead to more accurate and robust SOC and
RUL estimations, taking advantage of the complementary
capabilities of these techniques. The study of hybrid sys-
tems introduces a myriad of BPHM strategies that can be
broadly categorized into two groups [138]. The first group
uses heuristic rule-based or fuzzy logic strategies, offering
low computing complexity and resilience to driving behav-
iors but lacking optimal vehicle control. The second category
applies optimization techniques to power-splitting decisions,
using methods, such as dynamic programming, Pontryagin’s
minimum principle, and convex programming. While these
offer optimal solutions, they rely on prior knowledge of future
driving conditions, limiting their real-time application. For
practical feasibility, real-time optimization methods, such as
the adaptive equivalent consumption minimization strategy
and model predictive control have been studied, though they
come with their own set of challenges.

2) Explainable DL and Model Interpretability: The Eu-
ropean Union released ethics guidelines for AI, mandating
models to be lawful (compliant with regulations), ethical
(upholding values), and robust (stable under varied condi-
tions) [139]. As battery state monitoring techniques evolve,
understanding the multiple interconnections between key pro-
cesses and battery variables remains challenging due to their
intricacy. There is an increasing need for trustworthy AI and
DL interpretability spurred by governmental policies and sub-
sidies. Currently, interrelations among key processes. Future
research should focus on developing models that not only
provide accurate estimations but also offer insights into the
underlying mechanisms of battery degradation and perfor-
mance [140]. In essence, we have to remain vigilant whether
the operators are able to discern features that affect the ac-
tion [141]. Nevertheless, the investigations conducted in this
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review indicate that the use of explainable DL in this domain
is still in its infancy, with only a few attempts documented.
For instance, an uncertainty-guided LSTM model-based EOL
estimation is proposed in [142]. Through an explainability
analysis, the model highlights the significance of specific
input features for varying battery lifespans. These insights
correlate with known chemical degradation effects, ensuring
the model is not just a “black box” but offers meaningful
interpretations of its predictions.

3) Real-Time Implementation and Big Data Tools Con-
siderations: For batteries deployed on-site, the development
of computationally efficient algorithms and hardware solu-
tions that enable real-time state estimation requires further
investigations [94]. To accurately depict battery behavior,
DNNs necessitate vast datasets and significant computational
efforts. As a result, when developing DMs, it is crucial to
factor in the computational capabilities of onboard hardware.
Most DMs that utilize DNNs depend on recursive computa-
tions. Thus, by creating a noniterative model that matches
the precision of iterative ones, both training and prediction
speeds can be boosted. However, crafting such a noniterative
approach for LIB state modeling is challenging, given the
need to correlate both historical cycling data and upcoming
conditions with future behavior change stages. Big data tools
and cloud computation can provide an excellent alternative
to reduce the computational burden of BPHM [143]. It is
of conspicuous importance to emphasize data privacy for
management based on cloud-connected health monitoring and
data analysis. In this context, encryption and access control
technologies have been implemented in real-world applica-
tions [144]. Through data encryption or the use of access
control measures, only those with authorization can access the
extensive battery data, thereby bolstering data security.

4) Battery Calendar Health Prognostics (BCHP): After
manufacturing, a LIB operates in two main modes: Calendar-
ing and cycling [145]. Continuous efficient BCHP advance-
ments in AI and battery technologies are expected to make
better efficiency for BPHM [146]. In practical use cases such
as EVs, LIBs experience degradation via both calendar and
cycling modes [3]. Given that more than 70% of an automo-
tive battery’s lifespan is consumed under storage conditions,
there is an urgent need for effective solutions to monitor and
manage battery health under calendar degradation mode [3],
[6]. For instance, a transferred RNN (TRNN) approach has
been proposed for predicting the future calendar capacity of
LIBs [147]. The TRNN structure ensures that the base model
provides foundational mapping information, which guides the
transfer model, enhancing prediction performance for unwit-
nessed storage scenarios. The transfer model part is fine-tuned
using only a small portion of starting capacity data from un-
witnessed conditions.

VII. CONCLUSION
This article navigates through the contemporary advance-
ments and methodologies permeating BPHM across a spec-
trum of applications, with a discerning lens focused on DL

approaches. This study diligently underscores the pivotal role
of DL in addressing the multifaceted challenges tethered to
battery state estimation while also shedding light on its inher-
ent strengths and limitations. This article has unearthed the
quintessential characteristics and requisites of efficacious LIB
state monitoring systems, encapsulating accuracy, robustness,
adaptability, and computational efficiency. Furthermore, this
work has delved into the emerging DL approaches, includ-
ing CNN, RNN, and LSTM networks, which have shown
promising results in handling complex, nonlinear, and high-
dimensional battery data. DL techniques have shown the
potential to overcome these limitations by automatically ex-
tracting relevant features from raw data, resulting in improved
accuracy and adaptability. The harmonious amalgamation of
DL, edge computing, and federated learning collaborations
heralds a transformative era for LIB research. This triumvirate
not only ignites innovation but also acts as a cornerstone for
the broader journey to design next-generation state estimation
models. Despite the strides made in DL toward assiduously
monitoring the operational status of batteries, a myriad of
challenges and prospects for future research linger on the
horizon. These include the need for larger and more diverse
battery datasets, improved interpretability and explainability
of DL models, and the development of real-time monitoring
systems that can adapt to changing operating conditions and
battery degradation mechanisms. In addition, the integration
of domain knowledge and physics-based models with data-
driven techniques could lead to more accurate and reliable
BPHM. Nonetheless, considering LIBs stochastic degradation
behavior, prevailing temperature, and testing conditions, DNN
models in practical applications emerge not merely as a trend
but as an imperative, steering the future course of BPHM
systems toward enhanced precision and reliability.
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