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ABSTRACT This article develops a recurrent neural network (RNN) with an encoder–decoder structure to
predict the driving sequence of SiC MOSFET active gate drivers (AGDs). With a set of switching targets as
the input, the predictor generates an optimal active gate driving sequence to improve the switching transient.
The development is based on a hybrid platform across MATLAB, PyTorch, and LTspice. A high-fidelity
switching model is implemented in MATLAB to obtain reliable training data. The sequence predictor is
trained with PyTorch. The predicted sequence is verified on an example Buck circuit in LTspice. In contrast
to the state-of-the-art approach, the proposed method avoids exhaustive search in a large solution space; the
sequence length is dynamically predicted per the driving strength at each step. The AGD sequences generated
by the predictor effectively and precisely improve the switching transients, making the proposed sequence
predictor an integral and valuable component for active gate driving.

INDEX TERMS Active gate driver (AGD), deep learning, recurrent neural network (RNN), sequence pre-
diction, SiC MOSFET.

I. INTRODUCTION
Despite the benefits of SiC MOSFETs in building high ef-
ficiency, high power density, and high-performance power
conversion systems, the high switching speed also causes
more significant overshoot, oscillation, and elevated electro-
magnetic interference (EMI). Active gate driver (AGD) is a
remedy for adopting SiC devices while addressing problems
they introduce.

Although extensive efforts have been made on AGD circuit
implementations [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], a methodology for designing the active driving
sequence still needs to be developed. To address the challenge,
a search approach is proposed in [9] and is improved in [13]
where a dynamic resistance sequence with 60 time steps is
searched by the particle swarm optimization (PSO) algorithm.
Another model-based solution was proposed in [14] to find the
optimal resistance sequence for the AGD reported in [8]. The
optimal gate resistance value adopted for oscillation reduction
is found by trial and error.

As shown in Fig. 1, the state-of-the-art method initializes
a group of candidate AGD sequences with predefined fixed

lengths [9], [13]. Then, the AGD sequences are applied to the
physical circuit, and switching results of interest are captured.
The actual circuit is regarded as an AGD to switching results
(SR) model, which a high-fidelity simulation platform can
also implement. The PSO algorithm takes the SR model’s
feedback to update the candidate AGD sequences and itera-
tively searches for the optimal solution. The fixed sequence
length assumption of the state-of-the-art method is of concern.

In this article, an AGD sequence prediction method is de-
veloped to address the challenge, as shown in Fig. 1. The
total length and individual driving strengths are predicted, and
their values are dynamically matched. Instead of searching
from candidate AGD sequences, which can be poorly defined,
the predictor takes switching targets as input and generates
the driving sequences. The predictor uses the recurrent neural
network (RNN) to process the sequential data effectively. The
proposed method can fine-tune the switching transient param-
eters to reduce the switching loss or improve the EMI profile.

The rest of the article is organized as follows. The principle
of RNN-based sequence prediction is given in Section II,
training data generated from a high-fidelity switching model
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FIGURE 1. Working principle of AGD sequence searching method based on
PSO algorithm [13] in conjunction with the proposed prediction method
based on RNN.

FIGURE 2. Data-driven workflow using an encoder–decoder recurrent
neural network (ED-RNN).

is discussed in Section III, the neural network structure and
the training process are elaborated in Section IV, and the
AGD performance verification is given in Section V. Finally,
Section VI concludes the article.

II. RECURRENT NEURAL NETWORK-BASED SEQUENCE
PREDICTION
The hybrid data-driven workflow for AGD sequence pre-
diction is demonstrated in Fig. 2. The deep-learning neural
network developed for the task is at the workflow’s core. A
predictor that models the long-term dependency within a time
series is critical for the prediction problem. For example, to
generate a driving sequence leading to a particular switch-
ing loss, the predictor must oversee the loss generated in
the previous steps and then, predict the present step. Since
tradeoffs always exist among multiple switching targets in
one switching transient, understanding long-term dependen-
cies by the predictor is essential. The encoder–decoder RNN
(ED-RNN) presented in this article is developed to solve the

FIGURE 3. (a) The DPT circuit modeled in MATLAB for data generation.
(b) The I-V characteristic curve extracted from the device SPICE model.
(c) The C-V characteristic curve extracted from the device datasheet.

time-series modeling problem; the structure of the ED-RNN
will be elaborated in Section IV.

The training data for the ED-RNN consists of AGD se-
quences paired with their corresponding switching results,
including Esw, di/dt, dv/dt , overshoot, and oscillations. In
this work, a high-fidelity switching model is developed in
MATLAB where large numbers of switching transients can
be quickly simulated and quantified. The switching results are
treated as the inputs to the ED-RNN, and the AGD sequence
prediction is the expected output.

The implementation and training of the ED-RNN are based
on PyTorch, a high-performance integrated library for AI ap-
plications [27]. Once the neural network is trained, it makes
the AGD sequence prediction, referred to as the inferring
process. The ED-RNN predictor takes user-defined switching
targets as the input and predicts a driving sequence, which is
verified in the LTspice platform.

The hybrid workflow enables a cross-verification of the
proposed method. The training data generation and AGD per-
formance verification are conducted on different platforms,
hence, the AGD predictor is a generalized approach and not
platform dependent.

III. HIGH FIDELITY SWITCHING MODEL FOR NN
TRAINING
A. DATA GENERATION MODEL
The training data can be obtained from a circuit as simple
as a double pulse tester (DPT). A DPT circuit is modeled
in MATLAB script for training data generation, shown in
Fig. 3(a). Die models of a SiC MOSFET and a diode are used
to eliminate the influences of packaging parasitic inductance.
The parasitic driving loop inductance is neglected, while the
commutation loop inductance (LLP) is retained. The dc bus
voltage (VDC) and switching current (I0) are fixed for the
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TABLE 1. Parameters of the DPT Switching Model for Data Generation

FIGURE 4. High fidelity data generation workflow.

model but can be modified to obtain switching data on dif-
ferent operating conditions. An active gate current (Ig) driver
is considered in this work and is assumed to generate discrete
currents from i = 0.1 A to i = 2.0 A with 20 levels. The time
step for Ig is selected based on the switching speed of the
target SiC MOSFET. On the one hand, a shorter time step is
preferred to fine-tune the switching transient of the device, but
on the other, it should be long enough for the active Ig to alter
Ids and Vds at each step. Given that the turn-ON time of the
device is typically 30–80 ns [15], 3 ns time step is a proper
choice to have around ten steps in the driving sequence even
for the fastest switching transient. The circuit parameters are
listed in Table 1.

B. HIGH FIDELITY DATA GENERATION
Fig. 4 highlights the high-fidelity data generation workflow.
Three methods are applied to obtain reliable data from the
switching model: the device I-V curve, the capacitance C-V
look-up table (LUT), and the ordinary differential equation
(ODE) models. Quasi-random AGD sequences are generated,
serving as the switching model excitations.

1) DEVICE I-V CURVE
The characteristic Ich − Vds curve of the CPM2-1200-0025B
is critical to describe the output behavior of the SiC MOSFET.
The curve is usually available on the device datasheet, but

the Vds range is limited and insufficient to model the device
entirely. This work uses the SPICE model developed by the
device manufacturer to extract the extended I − V curve. The
I − V curve of CPM2-1200-0025B obtained from the manu-
facturer SPICE model at 25 ◦C junction temperature is shown
in Fig. 3(b).

In the ohmic region, the channel current (1), as proposed
in [16], is adopted to approximate the I − V curve.

Ich = βohm

1 + βohmVds
gsat

(
Vgs − VT H − k

2
Vds

)
Vds (1)

where Ich is the channel current of the MOSFET, Vds, Vgs,
VT H are the drain-source, gate-source, and threshold voltages,
respectively. The βohm, gsat , and k are device-related param-
eters and are obtainable by fitting the device I − V curves
using (1). Note that (1) differs from the current equation for
Si MOSFETs.

The channel current equation for the Saturation region is

Ich = βsat

2
(Vgs − VT H )2(1 + λVds) (2)

where λ is channel length modulation coefficient, βsat is a
device parameter. These device parameters are obtained by
fitting the I − V curve in the saturation region.

The MOSFET I − V characteristic is given as a group of
Ich − Vds curves under different Vgs gate voltages. For a partic-
ular Ich − Vds curve, the device parameters (βohm, gsat , k, βsat ,
λ) can be obtained by curve fitting using (1) and (2). There-
fore, for multiple I − V curves under different Vgs, the device
parameters are formulated as functions to Vgs. A boundary
voltage Vct is also formulated such that the MOSFET is in the
ohmic region if Vds < Vct ; it is in the saturation region when
Vds > Vct . The curve of Vct is shown in Fig. 3(b).

2) CAPACITANCE C-V LUT
The conventional method for modeling the nonlinear capaci-
tances of MOSFETs, i.e., Ciss, Crss, Coss as shown in Fig. 3(c),
is done by curve-fitting the capacitances to theoretical equa-
tions [17], [18]. However, the curve-fitting results cannot
precisely match the experimental values of the capacitances,
especially in the low Vds range where the capacitances vary
remarkably. The mismatch in the nonlinear capacitances re-
duces the fidelity of the data generation. As discussed in
the paper, the DPT circuit dynamics is described by ODEs
and solved numerically. Under this framework, LUT-based
implementation of the capacitance C − V curves can achieve
better accuracy. By adopting a small time step to solve Vds and
updating the capacitance values accordingly, the switching
model incrementally incorporates the nonlinear capacitances
into the transient simulation model without using any explicit
equation.

3) ODE MODEL
The DPT circuit is modeled by its differential equations to ob-
tain accurate switching transient data and solved numerically
by MATLAB. Unlike behavioral modeling methods such as
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in [17], [19], [20] where certain assumptions are made to de-
rive the analytical equations, the numerical solution based on
the circuit ODE model requires the fewest assumptions while
retaining the nonlinearities, which provides better accuracy.

The turn-ON process is divided into four modes and named
in the format “x - y,” where “x” is the state of the MOS-
FET, and “y” is the state of the diode. Starting from the
OFF–ON mode where the MOSFET is OFF and the diode is
free-wheeling. The gate current Ig is charging the Ciss and
brings Vgs up from VEE = −5 V to VT H . In this mode, no
dynamics in the commutation loop are involved. The gate
voltage equation is given below where Ciss = Cgs + Cgd

Vgs = VEE + Ig

Ciss
t . (3)

At the moment the MOSFET turns ON, Vds = VDC , and
hence, the MOSFET is in the saturation region, and the turn-
ON process is in the Sat-On mode. The Sat-On mode ends
when Id reaches the load current I0 as in Fig. 3(a), and the
diode turns OFF (Sat-Off). The gate driver loop equation is
shown in (4)

Ig

Cgs
t + Crss

Cgs
Vds − Ciss

Cgs
Vod −

[
Crss

Cgs
V 0

ds − Ciss

Cgs
V 0

od

]
= 0 (4)

where Vod = Vgs − VT H is the overdrive voltage. V 0
ds and V 0

od
are initial values of Vds and Vod in each simulation time
step. The commutation loop voltage and current equations are
shown in (5) and (6), the parameters are shown in Fig. 3(a) and
Crss = Cgd , CB = Coss + CD. Here, Vf is the forward voltage
drop of the SiC diode CPW41200S020B. Its value to the
forward current is curve-fitted by the datasheet information
as Vf = 0.03194I f + 0.9205.

VDC + Vf − Vds − LLP
dId

dt
= 0 (5)

βsat

2
V 2

od (1 + λVds) = Id + Crss
dVod

dt
− CB

dVds

dt
. (6)

Generally, the actual switching loss Esw caused by the
MOSFET channel current Ich is immeasurable; the measured
switching loss Eme is calculated by the drain current Id , but is
an underestimation of the actual loss [21]. One feature of the
proposed modeling approach is that the actual switching loss
Esw and the measured switching loss Eme can be differentiated
as described in (7) and (8). Both Esw and Eme can be obtained,
but only Esw is used as the training data in this work.

dEsw

dt
= IchVds = βsat

2
V 2

od (1 + λVds)Vds (7)

dEme

dt
= IdVds. (8)

The Sat-Off mode starts when the diode turns OFF and ends
when the MOSFET transitions from the saturation region to
the ohmic region (Ohm-Off). The commutation loop voltage
equation for this mode changes from (5) to (9), where CT is the
parasitic capacitance of the top switch and CT = Coss + CD.

Meanwhile, (4), (6), and (7) remain unchanged.

dVds

dt
+ 1

CT
Id + LLP

d2Id

dt2
− I0

CT
= 0. (9)

In the Ohm-Off mode, the circuit begins oscillating. As Vgs

increases till VCC , the turn-ON process finishes, and the MOS-
FET reaches its steady operating point in the ohmic region.
Commutation loop current (6) and loss (7) are changed to (10)
and (11), while (4) and (9) remain the same.

βohm

1 + βohm
gsat

Vds

(
Vod − k

2
Vds

)
Vds = Id + Crss

dVod

dt
− CB

dVds

dt

(10)

dEsw

dt
= βohm

1 + βohm
gsat

Vds

(
Vod − k

2
Vds

)
V 2

ds (11)

The switching transient is modeled according to the gate
driver loop equation, the commutation loop voltage and cur-
rent equations, and the switching loss equation. The flowchart
for the switching model is summarized in Fig. 5. The simula-
tion time step 0.1 ns and the AGD time step 3 ns are example
values used for this work and can be changed.

C. QUASI-RANDOM AGD SEQUENCE
On the data generation platform, Ig sequences are randomly
generated and concurrently applied to the turn-on transient.
In this work, the Ig sequences are generated by randsample()
function that accepts a probability distribution input. For the
turn-on transient, the quasi-random Ig sequences during the
current rising interval are generated with probability distri-
bution P(di/dt ), and that for the voltage falling interval is
P(dv/dt ). The proposed switching model makes the turn-ON

transient a white box, and hence, it is convenient to assign
unique Ig sequences for the current rising and voltage falling
intervals individually.

It should be noted that the quasi-random AGD sequences
are generated in parallel with the switching transient sim-
ulation rather than being predefined. When the switching
transient finishes, the AGD sequence generation also termi-
nates. Therefore, the sequence length is dynamically matched
with the duration of the transient.

D. TRAINING SET RESULTS
The switching model is implemented with MATLAB. m
script, where the optimized ODE solver, ode45(), gener-
ates the numerical solutions. An efficient search algorithm
is developed for the nonlinear capacitance C − V LUT to
run the switching model. The circuit ODEs presented be-
fore are transformed to state space form for the ode45()
solver. The simulation runs and updates the coefficients of
the ODEs (such as the nonlinear capacitance values) at every
0.1 ns. The small time step guarantees the high accuracy of
the switching model. The proposed switching model gener-
ates approximately 15 000 training data, which takes about
4–5 h.
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FIGURE 5. Data generation algorithm flowchart.

FIGURE 6. Obtained training data from the switching model (3D and 2D
views).

Three switching results are presented here as an example:
Esw− the switching loss, di/dt− the average current slope
on the rising edge, and dv/dt− the average voltage slope on
the falling edge. The normalized switching results distribution
with di/dt , dv/dt and Esw as x, y, and z axes is visualized in
Fig. 6. It is clear that on the x − y plane, the switching results
appear over the entire plane. In other words, most of the pos-
sible di/dt , dv/dt , and Esw combinations have been included
in the training data, making the training more reliable. Here,
the key enabler is the quasi-random Ig generation method with
variable di/dt and dv/dt . It should also be mentioned that
AGD sequences generate the switching results denoted by the
same color with the same probability distribution. The base
values used for the normalization are E− the switching loss
under constant Ig = 0.1 A; Ki, Kv− the average current and
voltage slopes when constant Ig = 2.0 A is applied.

In summary, the SiC MOSFET model is developed based
on the device I − V characteristic, and the capacitance C − V
characteristic is implemented by LUT from measured data
instead of fitting equations. The switching model is based
on ODEs, which are more accurate than behavioral models
based on analytical equations. The variables di/dt and dv/dt
are state variables in the switching model and can be easily

solved. The AGD sequences can be generated individually for
di/dt and dv/dt stages using the white-box switching model.
The probability distributions assigned to the sequences can be
manually optimized, which is a unique and helpful feature for
high-quality training data generation.

IV. GRU-BASED ENCODER-DECODER RECURRENT
NEURAL NETWORK
The gated recurrent unit (GRU) network is one of the two
main variants of classical RNN that can process time se-
ries with long time dependencies [22]. For this reason,
GRU is adopted here to construct the active gate driving
sequence predictor. The sequence predictor also takes advan-
tage of the encoder–decoder network structure successfully
applied to machine translation [23] and image autocaption-
ing [24] problems. Fig. 7 demonstrates the overall structure
of the GRU-based encoder–Decoder recurrent neural network
(GRU-EDRNN).

A. ENCODER AND DECODER STRUCTURE
The encoder takes the switching results as input and generates
a context vector C for the decoder. The encoder consists of
two components: 1) batch normalization; and 2) linear layer.

The batch normalization (BN) algorithm [25], [26] is to
whiten the training data within a minibatch input. It helps the
neural network learn the optimal distribution of the training
data, making the training faster and smoother. This work uses
a BN layer as the front end to normalize input data properly.

The linear layer is defined as follows:

C(x) = A(W x + b) (12)

where x is the vector of switching results, C is the context
vector, and W and b are the learnable weight matrix and bias
vector. The A is a linear activation function in this work.

The decoder takes the context vector and decodes it as the
AGD sequence. The decoder consists of five parts as follows.

1) embedding layer;
2) GRU;
3) dropout;
4) BN and linear layer;
5) softmax layer.
As mentioned above, at each time step, the active Ig can

be chosen from 0.1 to 2.0 A with 20 levels. Two unique
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FIGURE 7. GRU9based encoder–decoder neural network.

tokens, < start > and < end >, are manually added to the
first and last positions to mark the starting and completing of
an AGD sequence. There are 22 selections for each time step
of an AGD sequence. In this work, an embedding layer [28] is
adopted to encode the AGD sequence.

The context vector C is then used as the input h0 to the first
GRU cell in the decoder. GRU is capable of “forgetting” irrel-
evant information and “memorizing” long-time dependencies
in a sequence due to the reset and update gate mechanism.
Three GRU layers are cascaded as shown in Fig. 7; in this way,
the long-time dependency modeling capability is enhanced.

Dropout is an effective method to overcome the overfitting
problem in a neural network [29], hence, it helps the neural
network generalize better.

The AGD sequence prediction is a classification problem,
in essence, where for each time step, there are 22 classes. The
neural network treats its output as a probability distribution,
which indicates the probability of Ig equaling any of the 22
classes as follows:

∼
PI = [P〈start〉, P0.1, P0.2, . . ., P2.0, P〈end〉] (13)

With the probability distribution, the class with the highest
probability is chosen as the prediction result. The Softmax
layer converts the linear layer output λt to the probability

distribution
∼
PI .

B. NEURAL NETWORK TRAINING
Consider a specific data set containing AGD sequence l
of length ml : {Ig,k|k = 1, . . ., ml } and the corresponding
switching results vector x. Assuming Ig,0 =< start > and
Ig,ml+1 =< end >, the goal of training is for the neural
network to learn the prediction: Ig,0,...,k−1 → Ig,k , where
Ig,0,...,k−1 means sequentially inputting Ig,0, Ig,1, . . ., Ig,k−1 to
the GRU-EDRNN.

In practice, at step k where C(x), Ig,0,...,k−1 are the inputs to
the neural network, the GRU-EDRNN makes a prediction for

Ig,k denoted as
∼

Ig,k . At each step, the neural network output is

a probability distribution
∼
PI as in (13), the

∼
Ig,k is obtained by

∼
Ig,k = np.argmax(

∼
PI ) (14)

where np.argmax() is a Python function to return the index of
the maximum element.

In the same way, Ig,k can be regarded as a probability dis-
tribution PI = [0.0, . . ., 0.0, 1.0, 0.0, . . ., 0.0] where the 1.0
appears at the kth position. Therefore, to make the correct

prediction
∼

Ig,k = Ig,k ,
∼
PI should be as close to PI as possible.

Mathematically, the distance between two probability distri-
butions is measured by cross-entropy and is formulated as
follows:

H(PI ,
∼
PI ) = −

22∑
i=1

PI (i) log
∼

PI (i)

= − log[P(
∼

Ig,k = Ig,k )]. (15)

Therefore, the following optimization problem over the entire
training set explains the training process. The W , U , and b
are the learnable parameters of the neural network, N is the
total number of training sets, and ml is the length of AGD
sequence l .

(W̃ , Ũ , b̃) = argminW,U,b − 1

N

N∑
l=1

1

ml + 1

ml+1∑
k=1

log[P(
∼

I (l )
g,k = I (l )

g,k]. (16)

To summarize, for a sequence l : {< start >, Ig,1, Ig,2,

. . ., Ig,ml } along with its switching results x, the expected pre-
diction is q : {Ig,1, Ig,2, . . ., Ig,ml ,< end >}, the actual predic-

tion is
∼
q : { ∼

Ig,1,
∼

Ig,2, . . .,
∼

Ig,ml ,
∼

Ig,ml+1}. The training algorithm
calculates the cross-entropy losses between the elements in q

and
∼
q. After training, the weights W , U , and b are optimized,

and the sequence predictor model is obtained.

C. NEURAL NETWORK INFERRING
Inferring refers to the operation when the neural network has
been trained and is then used to make the AGD sequence
prediction. The inferring process is demonstrated in Fig. 8.
The input to the neural network is the switching targets of
interest. In practice, the <start> token is one additional input
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FIGURE 8. Inferring process.

FIGURE 9. Buck circuit implemented in LTspice with current source AGD,
where the Ig sequence is predicted by the GRU-EDRNN.

to the neural network to start the prediction. Once the first
step prediction is made, it will be used as the input to the
decoder and generates the second step prediction. The process
is repeated until the neural network predicts the <end> token,
indicating that a complete AGD sequence has been found. The
neural network infers the sequence length and is dynamically
changed for different switching targets.

It should be mentioned that the duration of the training and
inferring processes relies on the hardware used. This work
utilizes Paperspace (https://www.paperspace.com/), a cloud
infrastructure for machine learning applications. Due to the
neural network’s complexity, the training data’s size, and the
GPU infrastructure in use, a single training process typically
takes around 30 min (with multiple runs required to obtain the
final model). Conversely, inferring usually takes only a couple
of seconds.

V. AGD PREDICTOR PERFORMANCE VERIFICATION
The verification of the AGD predictor is based on a Buck
converter with an active current source gate driver. The GRU-
EDRNN predicts AGD sequences to improve the switching
transients. Fig. 9 shows the verification circuit in LTspice with

TABLE 2. Switching Transient Improvement Results by AGD

the ideal current source as the AGD. The dc bus is 800 V,
and the turn-ON current is 40 A. Total commutation loop in-
ductance is 20 nH. The circuit parameters for the verification
is the same as the switching model where the training data
are generated. An example total base plate to ground coupling
capacitance of 200 pF is adopted [30], which is the source
of common mode noise. Two line impedance stabilization
networks (LISN) are added to DC+ and DC–. By comput-
ing VCM = 1

2 (V1 + V2) as labeled on the LISNs, the common
mode noise voltage is evaluated. The CGD with a constant
gate resistor is used as the benchmark. The circuit configura-
tions are the same as in Fig. 9, except that voltage source CGD
with a constant gate resistor Rg replaces the current AGD in
the dashed box.

A. SWITCHING WAVEFORM MODIFICATION BY AGD
This section discusses how AGD modifies the switching tran-
sient, focusing on the tradeoff between switching loss Esw

and common mode noise VCM . The switching targets for the
optimization contain Esw− the switching loss during turn-ON

transient; di/dt− the average current rising slope; dv/dt−
the maximum voltage falling slope. The AGD will adjust the
maximum voltage slope to prevent high common mode noise.
Three cases are verified as listed in Table 2.

1) CASE 1
The current source AGD reduces Esw and VCM simultane-
ously, but di/dt increases as a tradeoff. Table 2 lists the
normalized switching results (Esw, di/dt, dv/dt ) that the
CGD-1 achieves with Rg of 25 �. In Case 1, the switching
targets for Esw and dv/dt are decreased compared to the
CGD-1 case, while that for di/dt increases.

2) CASE 2
For applications emphasizing VCM reduction while having
higher tolerance on Esw, the AGD reduces the maximum
dv/dt . In this case, the di/dt remains unchanged, and the VCM

is remarkably reduced at the cost of enlarged switching loss.
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FIGURE 10. (a) Switching transient modification by AGD; (b) VCM reduction by AGD and CGD; (c) IOV reduction by AGD and CGD.

3) CASE 3
For applications with Esw minimization of the dominant
target, the AGD optimizes the switching loss without deteri-
orating the common mode noise. This target is achieved by
minimizing the Esw, raising the di/dt , and keeping dv/dt
unchanged.

The Target shown in Table 2 are the intended switching
results to achieve and are normalized values to the Base Value.
They serve as the inputs to the GRU-EDRNN (Fig. 8). The
AGD sequence is applied to the Buck circuit (Fig. 9) once it is
predicted. The Achieved denotes the Esw, di/dt , dv/dt results
by active gate driving. It is observed that the Achieved are
accurate approximations to the Target. The prediction process
is a translation from switching targets to AGD sequence, and
the results thus confirm the validity of GRU-EDRNN.

The switching waveforms obtained from LTspice are com-
pared in Fig. 10(a) In the Ig comparison waveforms, the
CGD-1 gate current starts from 0 ns. For the AGD results,
the active gate current sequence all start from 31 ns, indicated
by the Start-of-Sequence (SOS) mark. The End-of-Sequence
(EOS) marks for the three AGD sequences are also labeled in

the figure. Here, the AGD sequences are only generated for the
primary switching transient corresponding to the Sat-On and
Sat-off modes of the switching model. The turn-on process
between 0 ns to SOS corresponds to the OFF–ON mode, where
no switching dynamics are involved. A constant Ig = 0.8 A is
adopted for this interval, and it takes 31 ns to finish OFF–ON

mode. After the EOS, the circuit is in Ohm-Off mode, where
the primary switching transient has finished. A constant Ig =
0.8 A is also adopted for this interval. It can be inferred from
the EOS that the predicted sequence length is changing for
different cases, and the lengths of the three AGD sequences
match the duration of the individual switching transients. The
results demonstrate that the GRU-EDRNN can predict correct
AGD sequences according to the switching targets.

In Cases 1 and 2, AGD reduces the maximum dv/dt to
improve the common mode noise. The declines on the VCM are
evident. As quantified in Table 2, when the maximum dv/dt
in Case 1 and 2 are decreased by 14.2% and 20.5%, the VCM

drops from −138 V to −123 V and −116 V, respectively. In
Case 3, the focus is not dv/dt reduction, and the VCM is
unchanged compared to the CGD-1 case.

234 VOLUME 4, 2023



TABLE 3. Switching Transient Improvement by CGD and AGD

The average di/dt for Case 1 and 3 are increased by 11.0%
and 37.4%, respectively, while for Case 2, it is kept the same
as the CGD-1 case. The result is verified by the Ids waveforms
in Fig. 10(a). In Case 3, the VCM is not improved, but the Esw is
minimized by significantly accelerating the di/dt interval. In
Case 2, the VCM is minimized at the cost of higher Esw. Case
1 is when the optimum solution is found to improve both Esw

and VCM .
It is worth noting that di/dt and dv/dt are controlled indi-

vidually by the AGD, but for CGD-1, it is impracticable. Due
to a high time resolution of 3 ns, the sequence predicted for the
current rising and voltage falling intervals can fine-tune the
switching transient. The AGD is thus an efficacious tool for
switching transient improvement with the sequence predictor
as a critical enabler.

B. SWITCHING TRANSIENT IMPROVEMENT: AGD VERSUS
CGD
This study optimizes VCM and turn-ON current overshoot IOV .
The AGD and CGD are applied to fulfill the targets, and
the Esw are compared. It shows that the AGD with the pre-
dicted driving sequence generates a lower loss in both cases
to achieve the same improvement. The switching targets input
to the GRU-EDRNN are the same as Section V-A since the
maximum dv/dt affects VCM and the average di/dt changes
the IOV . Table 3 summarizes the verification results.

For VCM reduction, CGD-1(Slow) with higher Rg of 29 �

is utilized to slow down the maximum dv/dt . It is discern-
able from the VCM waveforms in Fig. 10(b) and Table 3 that
CGD-1(Slow) and AGD-1 achieve similar VCM values, but
the AGD-1 achieves lower Esw due to faster current tran-
sient speed, as shown in Esw and Ids waveforms. In the IOV

reduction case, CGD-2 with Rg of 12 � accomplishes low
switching loss but introduces serious current overshoot, which
can be seen from Ids waveforms in Fig. 10(c). CGD-2(Slow)
with higher Rg of 24 �, as a remedy, slows down the di/dt .
The AGD-4 achieves the same overshoot reduction, but the
switching loss is kept low due to acceleration on voltage
transient speed, as inferred from Esw and Vds waveforms in
Fig. 10(c). AGD outperforms CGD due to the augmented
freedom on controlling di/dt and dv/dt . The GRU-EDRNN

accurately generates AGD sequences for switching transient
improvement based on the switching targets.

C. OPTIMALITY OF THE PREDICTION
The global optimality of the predicted sequence cannot be
guaranteed since the problem of minimizing the loss and train-
ing a deep neural network is nonconvex [31], [32]. Therefore,
the local optimality is investigated in this section. As an anal-
ogy to do partial derivatives for proving local optimality, a
sequence perturbation method is adopted for the investigation.

The Case 3 discussed in Section V-A is taken as an exam-
ple to explain the AGD sequence perturbation method. The
predicted sequence is changed manually with small perturba-
tions, and the modified sequence is applied to the verification
circuit. The new switching results are then extracted and the
average error is compared, which is defined as follows:

Err = 1

3

( |Esw − E∗
sw|

E∗
sw

+ |di/dt − di/dt∗|
di/dt∗

+ |dv/dt − dv/dt∗|
dv/dt∗

)
.

Table 4 tabulates the Case 3 AGD sequence and three per-
turbations.

1) PERTURBATION 1
The position for Ig(3) = 1.6 A is swapped with its adjacent el-
ements, which changes the order of the gate driving sequence.
The average error increases remarkably when the modified
gate driving sequences are applied.

2) PERTURBATION 2
The strength of Ig(3) is perturbed. The average error increases
when the driving current is deviated from the prediction. As
the deviation gets larger, the average error becomes higher.

3) PERTURBATION 3
The value of Ig(2) to Ig(4) are modified so that the new se-
quence injects the same total charge Qc = ∑4

i=2 Ig(i) × 3 ns.
In this variation, the average error is considerably reduced
compared to Variation 1 and 2. Nevertheless, the original
predicted sequence still outperforms the two gate driving se-
quences in Perturbation 3.

The above results demonstrate that the GRU-EDRNN pre-
diction achieves the lowest average error, while all the other
variations underperform this neural network prediction. The
discussion above is not exhaustive to prove the local opti-
mality of the entire AGD sequence. Similar perturbations can
be applied to other Ig predictions. Nevertheless, the predicted
AGD sequence by the GRU-EDRNN best achieves the switch-
ing target among all the perturbed sequences; and hence, the
local optimality of the prediction is partially validated.
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TABLE 4. Perturbations to Case 3 AGD Sequence and the Corresponding Switching Results

VI. CONCLUSION
The GRU-EDRNN proposed in this article provides one
superior solution to address the AGD sequence prediction
challenges. The superiorities are: 1) No search process is
involved, and the sequence is predicted for given switching
targets; and 2) the sequence length and individual driving
strength are both generated by the GRU-EDRNN and are dy-
namically matched, which is a unique feature not seen in other
approaches. The AGD sequence generation is the critical step
of active gate driver development. With the proposed solution,
the device switching transient parameters are optimized for
switching loss (Esw) reduction or EMI profile (related to di/dt
and dv/dt) improvement.
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