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ABSTRACT In this article, we investigate the problem of electricity theft attacks on smart meters when
malicious customers (i.e., adversaries) claim injecting more generated energy into the grid to get more profits
from utility companies. These attacks can be applied by accessing the smart meters monitoring renewable-
based distributed generation (DG), and manipulating the reading. In this article, we propose approaches
that rely on data sources with only a single generator (i.e., solar only) and multifuel type; and address the
crucial effects of slight perturbations that the attacker can add, which can deceive the detector. In particular,
this article introduces an efficient multitask deep-learning-based detector that offers a higher detection rate,
copes with different fuel types, and uses only single data sources. The proposed detector incorporates months
and days as two additional features to boost the performance and properly guide the model to successful
detection. The proposed method is then extended to consider small perturbations that attackers may use to
launch successful attacks. We conduct extensive simulations for two different detectors, one for solar DG
and the other for multiple fuel types (i.e., solar and wind). Using a realistic dataset, the results reveal that
the proposed recurrent neural network-based detectors identify adversaries at a higher rate than the existing
solutions, even with minimal perturbations and different fuel types.

INDEX TERMS Cyberattacks on smart grid, electricity theft, generation domain, deep-learning (DL)-based
detector, small perturbations.

I. INTRODUCTION
Traditional electricity grid (TEG) is based on one-way trans-
mission within a hierarchical communication network. Elec-
tricity utilities have to realize the need to address the critical
challenges faced, including the ever-increasing electricity de-
mand, the low efficacy, rising electricity costs, and the bad
environmental impact of existing grids [1]. With current
power network requirements, the TEG may not be able to
meet those needs, which necessitates the development of the
smart grid (SG). An SG uses bidirectional power transmission

and information flow, making it the next generation of the
power grid.

The SG is conceptually divided into seven domains: genera-
tion, transmission, distribution, customers, operation, market,
and service provider. The first four domains are involved in
power flow, while the rest are related to control and com-
munication in the SG system. These domains are enabled
by new technologies, such as the Internet of Things (IoT),
Supervisory Control and Data Acquisition (SCADA), and
Advanced Metering Infrastructure (AMI), especially smart
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meters. Smart meters are digital meters with microprocessors
and onboard memory, which enable them to monitor and
collect power usage on the consumer side. In particular, IoT
enables bidirectional communication and data transformation
between all smart devices in the network via the internet,
including sensors, actuators, and smart meters, which allows
energy monitoring and remote control of the SG system. Pol-
icymakers, developers, and researchers are motivated to use
the SG system because of the increasing electricity demand,
the aging of current electrical infrastructure, increasing en-
ergy charges, electricity reliability concerns, renewable power
generation unit development, and electric vehicles, to name a
few [2].

The SG brings valuable societal benefits, such as enhanced
immeasurable utilization of current resources and ubiquitous
control [3]. However, the emergence of smart technologies
poses major cybersecurity risks due to the following:

1) legacy systems, such as industrial control systems (ICS)
and SCADA, which are insecure [4];

2) the existing vulnerabilities in transmission control pro-
tocol/internet protocol [5];

3) novel attacks (e.g., false data injection and electricity
theft) caused by new emerging smart technologies (i.e.,
smart meters) [6].

The first known cyberattack on a power grid was launched
against the Ukrainian power infrastructure on December 23,
2015. The attack targeted three Ukrainian operators (providers
to the Kyiv, Ivano-Frankivsk, and Chernivtsi regions). It used
the BlackEnergy Trojan to infect ICSs, mainly SCADA, for
power distribution. This attack caused power outages for
nearly 230 000 customers that lasted several (one to six)
hours; the damage to the grid took months to repair. A year
after this initial successful hack, in December 2016, another
one took place that disrupted power service for an hour in
portions of Kyiv by deploying the Industroyer virus targeting
ICSs [7]. A common attack vector against the SG includes
denial of service (DoS), unauthorized access (UA), and false
data injection (FDI) [8]. DoS attacks target the availability
of the relevant systems, one common type of DoS attack is
the jamming attack, where the attacker aims to increase the
packet dropout rate of the channel [9]. At the same time, UA
and FDI exploit vulnerabilities in the industry protocols to
compromise the authenticity, confidentiality, and integrity of
the data exchanged. FDI stealthy attack is a type of attack
that considers bad data detection system functionality in the
SG utility to increase the chances of the attack bypassing
the detector [10]. Although these cyberattacks significantly
impact smart grid functions, this article focuses on FDI
attacks.

Meters and sensors lack tamper-resistance hardware, which
increases the risk of the SG being compromised, as SGs may
operate in hostile environments. For example, a malicious
adversary might inject false measurements to disrupt SG op-
erations by compromising the meters and sensors, disrupting
the grid system state estimation and energy distribution. An
example of a common threat is electricity theft (ET), which

leads to major financial losses for electricity providers world-
wide [11]. The SG has resulted in new forms of energy theft
wherein malicious customers endeavor to execute cyberat-
tacks rather than tap on the line or tamper with meters like
in the case of the TEG. [12].

Malicious consumers or customers can generally cause ET
attacks. The malicious consumer has no distributed generation
(DG) unit and intends to manipulate the reported energy data
to claim lower consumption, and consequently, reduce bills.
In the case of a malicious customer attack, they manipulate
the amount of energy they generate to be fed back to the
grid. Some electric utility companies encourage customers
to participate in energy generation and feed the generated
energy back into the grid. Customers can generate their own
energy by installing DG units, such as solar cells, photovoltaic
(PV), and wind turbines. In this article, we focus on DG unit
malicious customer attacks where the goal is to claim injecting
more energy into the grid to earn more profits.

Electricity companies use feed-in tariffs (FITs) and net
metering policies to encourage customers to use renewable en-
ergy sources. In FITs, customers who send all their generated
energy to the grid receive a cashback from the utility com-
pany [13]. In the net metering policy, customers inject only the
generated energy into the grid and receive a credit as a reduc-
tion on their next bill [14]. In an adversarial FITs scenario, the
malicious customer attempts to manipulate the smart meter’s
reported energy data (ET attack), claiming a higher injected
energy into the grid, and consequently, attaining more profit.
Customers who have access to the firmware via the ANSI
optical port of these smart meters can conceivably execute
this attack by exploiting the weak authentication software
installed in most of these meters [15]. The existing defense
technique of the SCADA system against FDI is called bad
data detection. It usually uses hypothesis testing by observing
the largest normalized residual to detect the bad measurement
data [16]. Liu et al. proved that attackers could initiate FDI
attacks in electric grids against the existing state estimation
and bad data detection techniques, assuming that attackers can
compromise some meter devices and have some knowledge
of electric grid connections and configurations [17]. Due to
the simplicity of the bad data detection of SCADA, some ET
cyberattacks may not be detected, causing the exact impact of
FDI on the grid. This eventually leads to economic loss for
the electricity utility. Thus, there is an emerging need to use
more complex algorithms to efficiently detect such attacks.
Machine learning (ML) technology has advanced rapidly in
recent years, and detection-based defense against ET attacks
is gradually shifting to adopt ML. Many ML techniques have
been proposed in the literature [18], [19], [20], [21], [22] to
detect ET attacks, either in the consumption domain, where
the goal is to reduce the consumption bill or in the generation
domain, where the goal is to inject more energy into the
grid and gain more profit (i.e., FITs). Referring to the hourly
ontario energy price (HOEP) [23] in 2020, and considering
4% additional energy, the adversary will earn $609.696 addi-
tional profit. However, most of these works only focused on
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the consumption domain, necessitating more efforts for the
generation domain. ML-based approaches can be divided into
classification problems and anomaly detection. In the classifi-
cation approach, the algorithm utilizes benign and malicious
data in the training and testing stages. On the other hand,
anomaly detection uses only benign data in the training stage;
then, malicious data can be used in the testing stage.

The classification approach [24], [25], [26], [27], [28],
[29] provides a high attack detection rate when a complex
learning algorithm, such as deep learning (DL), is utilized
to learn data patterns. However, a key bottleneck of this ap-
proach is the limited benign and malicious labeled dataset,
which limits the ability to test how well the developed models
generalize in larger or diverse malicious datasets. Moreover,
this approach fails to detect unseen attacks, such as zero-day
attacks. Similarly, building an ET detector (ETD) based on
anomaly detection has received similar attention from the
research community [11], [18], [30], [31], [32], [33], [34],
[35]. Although anomaly detection methods can detect zero-
day attacks, they usually provide a lower detection rate than
the classification approach [36].

Despite the significant efforts focused on detecting ET at-
tacks in the literature, most of these works focused mainly
on the consumption domain, and attacks on the generation
domain have received less attention. The authors in [19]
recorded a high detection rate by integrating three data sources
to detect a scenario where attackers claimed 20% additional
power. However, they did not report the system’s perfor-
mance against small perturbation attacks. The data sources
used in [19] are related to SCADA and generator capa-
bility, which are not instantly available to the electricity
utility. Furthermore, all the work in the literature considered
only a single generator type (i.e., solar) as in our previous
work [37].

A. CONTRIBUTION
Motivated by the above remarks, this article investigates the
aforementioned issues in more depth and proposes DL-based
detectors to fill these gaps, considering model complexity,
data availability integrated into the solution, and system per-
formance against malicious behavior of small perturbations.
We propose a DL-based detector that employs a single data
source (i.e., energy generation profile per hour) for a single
renewable energy fuel type (i.e., solar) and multiple renewable
energy fuel types (i.e., solar and wind). To the best of our
knowledge, this is the first work considering smaller pertur-
bation impacts on the DG SG system and multiple fuel types.
The contribution of our work can be summarized as follows.

1) We investigate the adoption of generation power profiles
for solar and wind renewable energy, utilizing public
datasets to detect ET in the generation domain. We
prove that ET cyberattacks can be detected with a higher
detection rate and accuracy using a single data source.
This can be done by adopting month and day features
to enhance the system performance and reduce model
complexity.

2) We propose two ETDs, one unique for solar DG units
and another unique hybrid for solar and wind DG units.
Using the gated recurrent neural networks (GRU-RNN)
model, we develop DL-based ETDs that capture the
temporal features in the solar energy time-series dataset.
We utilized the bidirectional long short term memory
(BLSTM) model for the unique hybrid ETD. The pro-
posed detection scheme achieves a detection rate of
96.68% and 88.58% for solar and hybrid ETD, re-
spectively, when detecting malicious behavior of 20%
claimed additional power.

3) We investigate how well ETDs behave against small
perturbation attacks and propose training models using
small perturbations to make them more robust. The
proposed small perturbation-trained models achieve a
detection rate of 91.61% in solar and 86.79% in hybrid
environments, even if attackers only slightly change the
reported energy by 8%.

B. ARTICLE ORGANIZATION
The rest of this article is organized as follows. Section II
briefly summarizes the existing literature. In Section III, we
present our methodology, including data generation, feature
selection, data cleansing, and ETD model training and infer-
ence. In Section IV, we present the experimental setup and the
utilized evaluation metrics. The development of the detection
model is introduced in Section V. The results are discussed
in Section V, in which we evaluate the performance of the
proposed models. Finally, Section VII concludes this article.

II. RELATED WORK
Researchers introduced different detection techniques for ET
attacks, focusing on either the consumption or generation
domains. Recent research has primarily used ML and DL al-
gorithms to construct an ETD. ETD approaches based on ML
may be divided into two categories: Anomaly detection based
on supervised learning (i.e., classification problem) [38], [39],
[40], [41], [42] and anomaly detection based on unsuper-
vised learning [36]. Anomaly detection based on supervised
learning employs both benign (truthful) and malicious (ma-
nipulated) electricity data samples to train and validate the
detector. While anomaly detection is based on unsupervised
learning, anomaly detection systems use only benign data to
learn the true client consumption behavior. Malicious data are
discovered during testing based on deviation from the learned
honest pattern.

A. ELECTRICITY THEFT IN CONSUMPTION DOMAIN
Data-driven methods for detecting ET in the consumption
domain became popular due to large volumes of data col-
lected from smart meters installed at customers’ premises.
A few existing studies are based on data-driven ML algo-
rithms, which classify consumers as honest or bad based
on their load profile, [19] where the characteristics of cus-
tomers’ benign and malicious energy usage were used to
create supervised classifiers. In [24], the authors employed
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a gradient-boosting theft detector with feature engineering-
based preprocessing. The authors in [27] developed the andhra
pradesh central power distribution corporation limited (AP-
SPDCL) naive bayes (NB) classifier for detecting unexpected
customer consumption trends in power distribution networks.
Random forests [28] and AdaBoost [29] were utilized as ETD.
On the other hand, the authors in [43] used an extreme gradi-
ent boosting classifier. The researchers chose DL algorithms
for ET detection to capture the energy datasets’ intricate pat-
terns. In [22], a DL-based detector was added, primarily to
detect malicious customers on the consumption side, where
synthetics attacks were generated, presuming suspicious con-
sumers may lower consumption by a fixed or random amount.
The authors in [44] created a sequential ensemble algorithm
based on a deep autoencoder with attention (AEA) for detect-
ing various cyberattacks. The research published in [45] used
an RNN classifier based on GRU that captures the temporal
correlation in the customer’s load profile. DL-based classifiers
including feed-forward neural networks [46], RNNs [45], and
vector embedding [47] were utilized as ETD.

Several studies investigated the anomaly detection ap-
proach because the classification-supervised approach does
not account for zero-day attacks. When only benign data are
used, for instance, outlier detection [31] was used to design an
anomaly detection based ETD. Xiao et al. [32] developed an
ETD based on the random matrix theory.

Anomalies in meter readings were also detected using the
integrated convolutional neural networks technique as in [18]
where Xue et al. created a powerful learning machine, which
localizes the FDI-attacked buses in a power system. To deal
with the identified false data, a recovery procedure was also
implemented.

B. ELECTRICITY THEFT IN GENERATION DOMAIN
Some research focused on classification-supervised ML data-
driven systems to detect energy generation theft from PV
panels. The authors in [19] concentrated on creating a super-
vised learning classifier based on deep (stacked) autoencoders
with an LSTM-based sequence-to-sequence (seq2seq) struc-
ture. Furthermore, the authors in [19] created a malicious
database synthetically to train the detector. The main advan-
tage of this work is the high detection rate. However, this
rate only depends on the proposed attack functions used in
the study. Thus, zero-day attacks may not be detected. As
a result, the authors in [20] developed an unsupervised de-
tector based on anomaly detection that is trained solely on
benign data collected by the operator during regular system
operation. Similarly, in [26], the authors utilized a detector
based on the least-square error and a sliding temporal window.
The main advantage of the unsupervised detector is that it
can detect zero-day attacks. However, it has a low detection
rate compared to supervised learning models. Furthermore,
the authors in [15] suggested optimal cyberattack functions
on the DG units (assuming that attackers know the detection
method). Moreover, the authors in [15] built a detector using
autoregressive integrated moving average (ARIMA) models,

kullback-leibler divergence (KLD), and principle component
analysis (PCA). Table 1 summarizes related work advantages
and drawbacks.

Although considerable studies have been devoted to ad-
dressing the ET in the SG, there are some common limitations.
We present our reflection on the designs of the proposed
ETDs based on the summary shown in Table 2. We argue the
following.

1) Most of the existing research addresses ET detection in
the energy consumption domain rather than generation.

2) Because there is an insufficient dataset with benign
and malicious ground-truth samples, the researcher’s
approaches are hampered. More specifically, due to the
scarcity of real datasets containing both benign and
malicious data, researchers had to artificially introduce
some malicious data, which could lead to bias.

3) Some research efforts focused on an anomaly detection
approach to detect ET due to dataset restrictions. While
this approach does not usually yield a high detection
rate, it can detect zero-day attacks.

4) To improve the detection rate, supervised ML tech-
niques were used. However, the scarcity of datasets,
including malicious records, limits the applicability of
this approach.

5) Some studies employ shallow ML algorithms, which are
incapable of accurately capturing multiple consumption
patterns seen in the complex structure of power meter-
ing data.

6) Despite prior research on ET attacks on the SG, no
studies have been conducted to investigate the effects
of small malicious perturbations on ET.

III. METHODOLOGY
Currently, SCADA’s bad data detection system in AMI is the
only defender against ETA [43]. According to HOEP [23],
a malicious customer who could add 20% energy could
steal approximately 18290$ in the year 2020, with an hourly
weighted average of 1.74$ per kW·h. Researchers use DL
models to learn the complex nature of energy generation data
and better detect the ETA. However, this approach cannot
effectively detect the variations of ET attacks, such as smaller
perturbations.

Hence, this article designs an efficient and robust DL-based
detector for ETA against malicious behavior variation, par-
ticularly smaller perturbations. We utilize renewable energy
generator profiles, used in [19], to create a synthetic benign
and malicious dataset. Moreover, we utilize wind turbines’
energy generation dataset considering ETA detection in a
mixed DG unit environment, including solar panels and wind
turbine DG units. In particular, we train an RNN-based model
capable of learning temporal features in time-series data. We
also include small perturbations of malicious behavior within
the data to make the system more robust against such attack
types. This will support SCADA’s bad data detection function
to detect ET attacks in solar and wind DG units, as it is more
complex.
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TABLE 1. Existing ETD-Based ML Approaches in Generation Domain

TABLE 2. Literature ETD Summary Based on SG Domain and Adapted ML Approach

FIGURE 1. DG unit in a smart grid with an FIT payment system where a
malicious customer manipulates power generation reports to increase
their profit.

A. SYSTEM OVERVIEW
In DG units, most energy utilities’ cashback is based on the
generated energy, similar to FITs. When malicious customers
have access to smart meters installed in their homes, they
can manipulate the generation report to maximize their profit.
Fig. 1 depicts this scenario. We assume the following.

1) Malicious customers can access the smart meter port.
2) Each generation unit has its own energy report.
3) Electricity utility has information about the fuel type

used in the generator.
4) Different percentages can be applied to create an attack

during the day.

5) Malicious customers apply one type of attack per day
and do not mix between them.

B. DATA GENERATION
In this article, we use two investigation schemes: one with a
single fuel type (i.e., solar only) and another with multiple
fuel types (i.e., solar and wind). The data generation steps are
depicted in Fig. 2.

1) RAW DATASET DESCRIPTION
This article uses a real smart meter dataset from Ontario,
Canada [54]. Specifically, a public report by the Indepen-
dent Electricity System Operator (IESO) considers hourly
energy measurements in Ontario, Canada, as a 5-min average
per hour [54]. The generator energy reports create realistic
load profiles for residential households. The measurements
for each generator unit are reported daily under the delivery
date feature. The IESO provides features for each generator,
including the generator type, fuel type, measurements, and
generated energy per hour (24 features). There are several
generator types for each fuel type: wind, solar, gas, hydro,
biofuel, and nuclear. For each DG, the measurement feature
has four categories: capability, output, available capacity, and
forecasting. It is worth noting that the measurement feature
depends on the fuel type. Each measurement category has an
energy report entry, where capability represents the maximum
energy per hour that the generator can produce if it depends
on biofuel, gas, hydro, and nuclear fuel type. Similarly, the
available capacity measurement category represents the max-
imum energy per hour a generator can produce, depending
on wind or solar fuel type. In addition, forecast measurement
indicates the maximum energy wind or solar generators can
produce depending on the weather that day. For all fuel types,
output measurement reports the actual unit-generated energy
per hour that day. In this article, we use the raw datasets of the
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FIGURE 2. Data generation flowchart.

FIGURE 3. Raw dataset summary for the years 2019, 2020, and 2021
combined based on fuel type, with each type figure displaying sample
number as a bar chart and number of different generators as a scatter
chart.

past three years (i.e., 2019, 2020, and 2021). Fig. 3 depicts the
data summary based on the fuel type.

2) FEATURE SELECTION
To cope with data availability challenges, we only consider the
output measurement from the existing readings, representing
the actual generated energy. We aim to design a detector that
works for wind and solar DG unit environments. Therefore,
we select a subset of the data where the fuel type is based
on wind and solar. Then, we encode the fuel type feature
because each fuel has a different data pattern. As solar and
wind renewable energies generation capability depends on
the weather, as proved in [54] for solar energy, we consider
seasons representative features. In practice, month and day
can represent the weather yet are instantly available in the raw
dataset. Fig. 4 shows the solar energy generation variation per
month as an example. Without loss of generality, we consider

FIGURE 4. Hourly solar generated energy averaged by month.

both generator types (i.e., solar and wind) and create a feature
space containing 27 features, including the 24 actual gener-
ated energy sequences (i.e., the hourly based reported injected
energy during the day), and the three added features (i.e., the
month, day, and fuel type).

3) DATA CLEANSING
The data are grouped by fuel type (solar or wind), and the
following preprocessing steps are applied. First, all faulty
samples are removed from the data. This includes data sam-
ples with empty entries (NAN) or data samples showing zero
generation. Next, the missing data (NAN) are imputed by
considering the median value across the day. Finally, outliers
in the benign data, identified using the interquartile range
method, are imputed with the mean across each feature.
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TABLE 3. On Renewable-Based DG Units, Cyberattack Functions for Electricity Theft, [19]

4) MALICIOUS DATASET
There is no malicious and benign ground-truth data in the
power system field. Therefore, a group of cyberattack func-
tions is applied to a subset of the benign dataset to construct
the malicious dataset (i.e., 2019). Several articles investigated
possible cyberattack functions [19], [20]. In [19], the authors
derived mathematical models from mimicking ET attack, as-
suming the adversary accessed the smart meter. In such a
scenario, the adversary aims to increase its profit by increasing
the reported generated energy. Table 3 summarizes the math-
ematical formulation of the attack functions [19]. For 2019,
four attack samples are generated for each benign sample in
the dataset.

There are four attacks type, partial increment attack (fixed
α), partial increment attack (random α), minimum generation
attack, and peak generation attack, where α is a fractional
number that represents the malicious behavior that is the
additional energy. A partial increment attack (fixed α) is an
attack where the malicious customer adds a fixed percentage
α of the generated energy to the daily reported energy, aiming
to increase the injected reported energy. A partial increment
attack (random α) is similar to attack type 1. However, the ma-
licious customer adds a random percentage α of the generated
energy to the daily reported energy. A minimum generation
attack is when the malicious customer replaces the minimum
generation reported energy during the day with partial α of the
maximum generated energy. A peak generation attack is an
attack where the malicious customer track the maximum gen-
erated energy during the day, then replaces all the following
reported energy with the maximum generation. The severity
of the attacks depends on α where there is a tradeoff between
increasing the reported energy to get more profit and deviating
severely from the normal pattern and being detectable by the
bad data detection function on the utility company side.

Training a balanced dataset is mandatory to avoid model
biases; thus, we apply the attack function only on a subset
of the dataset where we capture the attack effect in different
seasons. At this stage, the preprocessed samples are consid-
ered benign and labeled as 0 (negative class), and the attack
functions’ output samples are considered malicious and la-
beled as 1 (positive class). Finally, we apply the Min–Max

scalar to normalize the dataset and perform a 90% ran-
dom split for training and 10% testing samples, as we need
more training samples. Algorithm 1 illustrates the steps we
followed to generate a synthetic benign/malicious dataset. It
is worth noting that the main complexity of Algorithm 1 lies
in the training part, where the complexity of generating the
malicious samples is O(4N ) with four types of attacks and N
samples. On the other hand, feeding the inputs into the trained
model is straightforward for testing and practical deployment,
making it a better fit for resource-constrained devices.

C. ELECTRICITY THEFT DETECTOR
In this section, two detectors are designed where the first is de-
signed to detect ET in solar distributed generation unit (DGU),
and the other is utilized in solar and wind DGU. The proposed
detectors are expected to identify complex patterns in data.
Thus, we employ four structures for the detector based on DL
models that can capture temporal features in the time-series
dataset, namely, RNN, BLSTM, GRU, and bidirectional GRU
(BGRU). The listed DL models are known to perform well in
time-series data problems [55], [56].

1) TRAINING STAGE
Even though the feed-forward neural networks require low
computational cost, it does not learn temporal features [19].
Hence, RNN models are the best candidate to handle the
time-series data effectively (e.g., energy generation profiles),
improving the detector’s performance. However, the RNN
suffers from a vanishing gradient problem, which occurs when
learning from long sequences. Hence, LSTM and GRU are
improved versions of the RNN, which use gates and memory
blocks to solve gradient vanishing problems, making them
more capable models.

Initially, we adopt a simple model structure consisting of
input, hidden, and output layers. The input layer consists of
N neurons equal to the number of passed sequences or fea-
tures. In our study, the first layer consists of 26 neurons, the
generated energy reported per hour (24 features), the day of
the month, and the month for a single fuel type investigation.
Similarly, we only add the fuel type feature in the hybrid
environment investigation and have 27 neurons in the input
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Algorithm 1: Synthesis Dataset Generation.
1: Input: Prepossessed energy generation profile as

Benign Dataset B, Subset B as benign sample Bt,d ,
additional energy percent as α, lower random
variable boundary as l , upper random variable
boundary as h

2: Output: Benign/Malicious datasets as X for
features, Y for labels

3: Attack Synthesis dataset Generation(Bt,d [:,
0 : 23], α, l , h):

4: for each b ∈ Bt,d do
5: A1(Bt,d ) = (1 + α)Bt,d

6: A2(Bt,d ) = (1 + α)Bt,d , α ∈ random(l, h)
7: A3(min(Bt,d )) = (1 + α)max(Bt,d )
8: A4(Bt,d ) = max(Bt,d , Bt+1,d )
9: end for

10: Attack = concatenate([A1, A2, A3, A4])
(Synthesis Malicious dataset including only 24
hours energy generation features)

11: M = Bt,d [:, : −2] (additional proposed feature,
month, and day of the week)

12: Attack f eature = concatenate([M, M, M, M])
13: Attack =concatenate([Attack, Attack f eature],

axis = 1) (Synthesis Malicious dataset including
all features)

14: [Labeling]
15: Benignlabel = zeros(length(B))
16: Attacklabel = ones(length(Attack))
17: X = concatenate(B, Attack)
18: Y = concatenate(Benignlabel, Attacklabel )

layer. The hidden layers are based on the basic GRU or LSTM
layer based on the selected model for the experiment. Finally,
the output layer has a single neuron to decide the sample class.
Generally, we perform the same experimental setups for each
model, and then, select the best-performing model.

2) HYPERPARAMETER
The hyperparameters define the characteristic of deep learning
models in the training and validation stage (e.g., learning rate,
number of layers, hidden size, activation functions, and loss
functions). It is worth noting that these hyperparameters can
be automated using tuning algorithms such as random search
or grid search. We use the state-of-the-art ET detector model
as in [19], and consider similar parameters as our starting
point; then, we fine tune the hyperparameter through a trial-
and-error process. In each trial, we try different combinations
of the grid values till we cover all possible combinations
listed in Table 4, then we consider the hyperparameters set
that gives the best results. It is worth noting that we fol-
low this process for all possible models (e.g., RNN, BRNN,
LSTM, BLSTM, GRU, and BGRU). For all four experimen-
tal settings, we investigate in our study the solar DG units
environment with 20% ET attack variation, solar and wind

TABLE 4. ETD Models Grid Search Hyperparameters Tuning

DG units environment with 20% ET attack variation, solar
DG units environment with 8% ET attack variation, and solar
and wind DG units environment with 8% ET attack variation.
Some hyperparameters are fixed for all models in all investi-
gations. Those are the hidden size of 128, the optimizer Adam,
and cross-entropy as loss function. The final hyperparameters
for each model are reported in the results section.

D. TRAINING AGAINST SMALL PERTURBATION
The adversary may reduce the added power percentage to
make it even harder for the electricity utility companies to
detect malicious behavior.

To generate smaller perturbation attack samples, we set α

to 0.08 instead of 0.2 as in [19], then test the trained model
with these samples to study its robustness. Furthermore, we
build a smaller perturbation malicious dataset as described
in Section III-B, train the model with this new dataset, and
study the model robustness. The performance is compared to
the previous training approaches.

E. DETECTION SCHEME WORKFLOW
The flowchart in Fig. 5 depicts the whole system flow. The
ETD workflow shows three main stages referring to the ML
project pipelines: data processing, model training, and model
inferences. In the first stage, the data generation algorithm
uses realistic power generation profiles assumed as benign
data, applies attack functions to a portion of the data, and
yields a benign/ malicious dataset suitable for classification
problems. To prepare our data, we extract all proposed fea-
tures at the top of 24 h of reported energy as the month, day
of the week, and fuel type. Considering our investigation set-
tings, we select a subset dataset to contain solar fuel type for
a single fuel type investigation. While for a hybrid fuel type
environment, both the solar and wind fuel types are included
in the dataset. To prepare the dataset for the next stage, ML
model training, we apply the Min–Max scalar and split the
dataset into 10% disjoint training and testing datasets; due
to the small data size, we considered a larger split for the
training 90% to avoid the overfitting problem. Second, we
split our dataset into batches, defining the batch size parameter
(bs). We select one DL model from the list before (i.e., RNN,
BRNN, LSTM, BLSTM, GRU, and BGRU). For each selected
model, we initialize the same hyperparameters, such as learn-
ing rate (LR), number of hidden layers (L), and number of
training epochs (ep), which are fine tuned in the next stages
to enhance the model performance. Optimization parameters
are fixed, where we use the Adam optimizer and cross-entropy
loss function in all experiments. Finally, we perform detection

740 VOLUME 3, 2022



FIGURE 5. Overall workflow meant for ETA-based DL detector design.

evaluation and iterate to do hyperparameter tuning. Once we
get satisfactory performance, we select the best-performing
model and continue with further experiments to evaluate the
model under different scenarios.

IV. EXPERIMENTAL SETUP AND EVALUATION METRICS
This section evaluates the proposed models’ performances
based on field evaluation matrices, as detailed in the following
sections.

A. EXPERIMENTAL STEPS
Our experiments can be divided into two categories based on
adversary behavior. In the first, we consider the reasonable ad-
versary behavior training (summarized in the first two points),
and in the second, we consider the smaller perturbation train-
ing, as discussed in Section III-D

For training the model with reasonable adversary behavior,
we prepare the data as stated in Section III-B by setting α to
20%, then we add or subtract 5% to set the randomness bound-
ary. We train different models with the same data settings,
then test their performance from the same data distribution.
Next, we create testing dataset, each is designed to mimic
different variation of ETA, where we set α to smaller perturba-
tion, i.e., 0.02 ≤ α ≤ 0.16. Thus, we can measure the model’s
effectiveness based on the adversary’s behavior. We follow
the same approach for training the model with smaller per-
turbations. We propose smaller perturbation training, where
we initially set α to 8% to prepare the dataset for this inves-
tigation. Then, we test the model with different variations of
ETA, i.e., 0.02 ≤ α ≤ 0.16, to have a fair comparison with the
reasonable alpha trained model.

B. EVALUATION METRICS
Quantifying the model performance is mandatory for eval-
uation and comparison. Since we deal with a classification
problem, we use common evaluation metrics such as F1-score
and accuracy. We further use the metrics in [19] and [20] to
benchmark their model performance. We use detection rate
(DR), false alarm (FA), and the highest difference (HD) as
evaluation metrics. In particular, these metrics have been used
in [19] and [20] where DR measures the ratio of correctly
detected attack samples, FA estimates the ratio of miss labeled
benign samples, and HD represents the difference between the
DR and FA. Considering attacks as a positive class, we can
define the evaluation criteria as follow [20]:

DR = TP

TP + FN
(1)

FA = FP

FP + TN
(2)

HD = DR − FA (3)

Precision = TP

TP + FP
(4)

F1 = 2 × Precision.DR

Precision + DR
(5)

Accuracy = TP + TN

TP + TN + FP + FN
. (6)

Furthermore, we test the robustness of the proposed ap-
proaches against small perturbation attacks. Finally, we com-
pare the performance of the proposed DL-based detector with
the state-of-the-art detectors in [19].
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FIGURE 6. ET attack detector based on the DL model architecture.

FIGURE 7. Confusion matrix of GRU-based ETD to solve the solar DGU ET
issue.

V. ET DETECTION MODEL DEVELOPMENT
To implement ETD for multiple fuel types, we start by imple-
menting the system based on a single fuel type: solar. Then,

we follow the same approach after adding wind energy pro-
files. We investigate the detector’s performance with a single
source of training data, energy generation profiles [12]. We
aim to determine which DL models presented with different
training settings offer the best detection performance.

Time-series-like datasets need a model that learns from
time features. Thus, we use RNN and its variations models
and select the best-performing model based on DR and FA.
We randomly initiate hyperparameters for all models, perform
five tuning cycles based on their performance, and then, report
the best trial. Finally, we select the bestperforming model and
fine tune its hyperparameters further.

As shown in Fig. 6, we follow the same approach for single
and multifuel detectors, fix the hidden size to 128, and split the
random seed of train and test datasets. Then, we investigate
by varying the batch size, the number of layers, the learning
rate, and the number of training epochs. We consider 20%
adversary behavior in this stage.

We further test the best-performing models’ generalization.
We try different random state seeds to split our train/test
datasets to generalize our model performance. We run the
detection scheme with different random state seeds five times
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TABLE 5. ETD Models Hyperparameters

for all conducted scenarios while keeping the same adversary
behavior settings.

1) SINGLE FUEL TYPE SCENARIO
We start by selecting the solar energy profile only and drop-
ping the fuel type feature. In this stage, we train and test the
model with a reasonable α = 0.2. Then, we apply the 10%
train and test the dataset split to increase training samples.
Table 6 presents different model performance. To prove the
concept of our added features (i.e., month and day), we start
our investigation with a classical ML algorithm. According to
the literature, decision trees outperform other algorithms [25].
We first passed 24 h energy generation profile as feature space
to the classifier, then added our proposed two features, month
and day. As reported in Table 6, the added features improve
the classifier’s DR and FA. As the solar energy generation
pattern is simple and relatively simple, GRU-based models
perform better than advanced ones, such as LSTM-based
models. The degraded RNN model performance is expected
due to the gradient vanishing issue. The GRU model outper-
forms other DL models, with DR of 96.68% and FA of 0.43%.
The confusion matrix of GRU against 20% malicious behavior
attack is shown in Fig. 7. Similarly, we investigate a single
fuel type source using the GRU model following the experi-
mental settings as in Section IV, and the hyperparameters as
in Table 5.

As GRU-based ETD provided the best detection rate, so
we report its generalized performance. Table 7 presents our
experimental results. The model detection rate varies between
94.05% and 96.68%, with an average DR of 94.84% and an
interval of confidence (IoC) of ±0.05611%. Thus, we are 95%
confident that the average system performance varies between
[94.78,94.90], which is satisfactory. We also highlight that the
best electricity theft detector would maximize the detection
rate and minimize the false alarm. It is worth mentioning that
all experiments are replicated with different seeds to general-
ize the results and select the best-performing models.

2) HYBRID FUEL TYPE SCENARIO
In the Hybrid ETD scenario, we design the model to detect
ET in solar and wind DGU. We prepare our data as in Sec-
tion III-B while considering the whole dataset, including wind
and solar energy profiles, and we keep the fuel type feature.
We then apply the same process we follow in model selection
for solar DGU ETD. As shown in Table 8, generally, the
models’ performance is degraded compared to the case where
we used only solar DGU. At the same time, adding wind
energy generation profiles increased the dataset complexity.

FIGURE 8. Confusion matrix of BLSTM-based ETD to solve the hybrid DGU
ET issue.

This stems from the fact that we cannot define a common
pattern in wind energy profiles, while solar energy generation
profiles have a unique pattern that is easier to learn. Although
GRU and BGRU have slightly better DR than the BLSTM
model, BLSTM has much better FA. The confusion matrix of
BLSTM against 20% malicious behavior attack is shown in
Fig. 8. Using the settings as in Section IV, we continue our
experiments and investigation for a unique hybrid detector us-
ing the BLSTM model with DR of 88.58% and FA of 3.49%.
(please refer to Table 5 for hyperparameters)

As the BLSTM model outperforms other models for hybrid
ETD, we report its generalized performance. Table 9 presents
the experimental results. The model detection rate varies be-
tween 86.04% and 88.58%, with an average DR of 87.20%
and IoC of ±0.02%. Thus, we are 95% confident that the
average system performance varies between [87.18.,87.22].
As the best ETD should maximize the detection rate and
minimize the false alarm, the grid search algorithm is applied
to select the best-performing hyperparameters, including the
seed of model initialization.

VI. ET DETECTION PERFORMANCE EVALUATION
Using the best performing models from Section V, trained
with α = 0.2, we perform extensive testing to evaluate the
designed ET detectors’ robustness against smaller perturba-
tions. We prepare the testing dataset with smaller perturbation
(e.g., α = [0.16, 0.12, 0.08, 0.04, 0.02]), and report the ETD
performance for each investigation (i.e., solar, solar and wind
DGU ETDs) as in Section VI-A. Furthermore, we carry out
our proposed smaller perturbation training, where we train
GRU and BLSTM-based model with dataset prepared accord-
ing to Section III-B; however, we set the adversary behavior
variable to α = 0.08. Then, we follow the same testing ap-
proach used with reasonable α trained models to check ETD
robustness against smaller perturbations. We report small
perturbation-trained model performance in Section VI-B.
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TABLE 6. Solar DGU ETD Different Model Performance, Where We Set α = 0.2 and Test With Same Data Distribution

TABLE 7. Best Performing Model Generalization Evaluation With Five Different Random State Seeds, With α = 0.2

TABLE 8. Hybrid DGU ETD Different Model Performance, Where We Set
α = 0.2 and Test With Same Data Distribution

A. TRAINED MODEL PERFORMANCE
The model is trained on the generated data as described in
Section III-B while setting the minimum perturbation that the
adversary can add to 0.2 (i.e., α = 0.2). We apply the same
setting for solar DGU ETD and hybrid DGU ETD, then tests
the robustness of each as follows.

1) SINGLE FUEL TYPE SCENARIO
The GRU-based detector shows a better detection rate of
96.68% when malicious customers claim 20% additional
power, given that the model is trained on 20% malicious
behavior. However, the GRU-based ETD acts differently with
smaller perturbations. Table 10 shows the model perfor-
mance in the inference stage while we vary the severity of
malicious behavior samples in the testing dataset. The model’s
performance drops when a smaller perturbation is present in
the testing set. As model detection rate goes from 96.6%
to 66.04%, when varying α between 20% and 2%. We use
smaller perturbation training to enhance the system robustness
against such malicious behavior. We train the model for 500
epochs, with a learning rate of 0.0007, while passing a batch
size of 32 to our four layers GRU model. We fixed the hidden
size to 128 and used the Adam optimizer and cross-entropy
loss function.

2) HYBRID FUEL TYPE SCENARIO
The Hybrid ETD problem is more complex than Solar ETD,
but BLSTM reached a DR of 88.60% to detect 20% claimed

additional energy. Given that the model trained on 20% mali-
cious behavior, the model performance dropped further with
smaller perturbations. As shown in Table 11, the model’s per-
formance dropped when smaller perturbations were present in
the testing set. As the model detection rate goes from 88.60%
to 83.48%, the model’s accuracy generally drops from 92.39%
to 78.60%. We further investigate the impact of injecting
smaller perturbations on the system during the training phase.
We train the model for 2000 epochs, with a learning rate of
0.0005, while passing a batch size of 64 to our six layers
BLSTM model. We also fixed the hidden size to 128 and used
the Adam optimizer and cross-entropy loss function.

B. SMALL PERTURBATION PERFORMANCE
It is worth emphasizing that the trained model with reasonable
alpha (i.e., α ≥ 0.20) cannot efficiently detect the smaller per-
turbation on the malicious data. As a result, we investigate the
effect of smaller perturbations during training on the detec-
tor’s behavior. This method entails training GRU and BLSTM
models on the generated data, as described in Section III-B
while setting the malicious behavior (i.e., the perturbations)
α = 0.08. We apply the same settings for solar DGU ETD and
hybrid DGU ETD, then test the robustness of each as follows.

1) SINGLE FUEL TYPE SCENARIO
The GRU-trained model with α = 0.2 has an unstable detec-
tion rate against smaller perturbations. On the other hand, the
model trained with small perturbations shows more robustness
against the variation of such malicious behavior. The confu-
sion matrix of GRU against 8% malicious behavior attack is
shown in Fig. 9. As shown in Table 12, the model is trained
using α = 0.08, and then, tested with different variations of
the malicious behavior represented as an additional percent-
age, α. We can see that the model performance is stable
against smaller perturbations, outperforms the reasonable α

trained model, and is still effective for reasonable α values
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TABLE 9. Best Performing Model Generalization Evaluation With Five Different Random State Seeds, With α = 0.2

TABLE 10. Solar Model Trained With α = 0.2 Performance Under Small Perturbation

TABLE 11. Hybrid Model Trained With α = 0.2 Performance Under Small Perturbation

TABLE 12. Solar DGU ETD Model Trained With α = 0.08 Performance Under Small and Reasonable Perturbation

FIGURE 9. Confusion matrix of GRU-based ETD to solve the solar DGU ET
issue, smaller perturbation trained model.

attack. Generally, this model gives more stable results than the
α = 0.2 model for smaller perturbations. That is because the
model accuracy did not drop below 90%, and varied between
91.35% and 95.96%, which supports our hypothesis that the
model should be trained against smaller perturbations. It is
important to highlight that we train the model for 1000 epochs
and use a batch size of 16, for our four layers GRU model,
with the same learning rate and other hyperparameters. Fig. 10
visualizes our findings and proves our hypothesis, where the
proposed training settings model, smaller perturbation ET at-
tack training, shows enhanced and more robust performance
than the typical training setting model, solving the solar DGU
ET issue. The smaller perturbation train detector, in blue,
shows a stable trend compared to the 20% malicious behavior
trained detector, in green, which shows a decaying trend.

2) HYBRID FUEL TYPE SCENARIO
The optimized BLSTM model shows a considerable DR drop
when tested by smaller perturbation. On the other hand,
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FIGURE 10. Detection rate compression between optimized malicious behavior trained model, and proposed small perturbation trained model versus
different percentage, solving the solar DGU ET issue.

TABLE 13. Hybrid DGU ETD With α = 0.08 Performance Under Small and Reasonable Perturbation

FIGURE 11. Confusion matrix of BLSTM-based ETD to solve the hybrid
DGU ET issue, smaller perturbation trained model.

the trained BLSTM with α = 0.08 shows different behavior
against such attacks. The confusion matrix of BLSTM against
8% malicious behavior attack is shown in Fig. 11. Table 13
presents the testing results of the small perturbation α = 0.08
trained model against the different values for α. In contrast

to larger perturbation attacks, the model’s performance is
stable for reasonable α values. Generally, BLSTM trained
with α = 0.08 improved the detection rate against smaller
perturbations compared to the model trained with reasonable
malicious behavior α = 0.2. Fig. 12 visualizes our findings
and proves our hypothesis, where the proposed training setting
shows enhanced and more robust performance than the typical
training setting model, solving the solar and wind DGU ET
issue. The smaller perturbation train detector, in blue, shows a
stable trend compared to the 20% malicious behavior trained
detector, in green, which shows a decaying trend.

C. BENCHMARKING AND DISCUSSION
We benchmark our results with the state-of-the-art model
in [19], where they trained and tested their model on be-
nign and malicious datasets from different sources. The
authors in [19] used only the solar energy generation pro-
files, achieved a DR of 94.6% and a high false alarm of
26%, to detect 20% malicious behavior. Although their best
performing model (i.e., the three data source-based models)
achieved a higher detection rate of 99.3%, its FA reaches
22% and requires a lot of data resources. As shown in Ta-
ble 14, our proposed approaches achieve a 96.67% DR, which
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FIGURE 12. Detection rate compression between optimized malicious behavior trained model, and proposed small perturbation trained model versus
different percentage, solving solar and wind DGU ET issue.

TABLE 14. Model Performance With Balanced Data Compared With State
of Art Study, Testing α = 20% [19]

outperforms the state-of-the-art one-source model. In [18], a
regression classification approach achieved an average accu-
racy of 95.3%, using α = 0.1. The same approach was used
in [20] and achieved a 91.5% accuracy. Both articles had dif-
ferent settings than ours and [19], but they both addressed the
same problem. Overall, the proposed detectors show outstand-
ing performance in identifying the ETA, with a high detection
rate for single or multiple fuel types.

VII. CONCLUSION
This article investigated FIT generation ET attack detection
in renewable energy-based DG units. We proposed efficient
detectors with high detection rates, and we used a realistic en-
ergy profile dataset that includes the reported injected energy
for three years. The main limitation is the lack of a benchmark
dataset, where there are no benign and attack samples for ET
attacks in the generation domain. We have solved this limita-
tion by generating synthetic attack samples. We used a series
of cyberattack functions to compromise smart meter data, thus
attacking the integrity of the injected power readings from
the DG devices. Two features were selected to enhance the
system detection and address the data variation during the
seasons. We use the GRU-RNN and BLSTM-RNN models
as they are more suited for pattern learning when the data
have a temporal relationship. We showed that 20% malicious

behavior attacks are easy to detect, and a model trained with
such a percentage cannot detect smaller perturbation attacks.
Therefore, we proposed small perturbation malicious behavior
attack training. We started our investigation with solar fuel
type data and designed a GRU-RNN DL-based ETD. The
results showed that the model offers outstanding performance
with the highest detection rate, using the energy generation
profile of one data source. Then, we designed a unique model
that is used to solve wind and solar DG units’ electricity
theft issues by utilizing the BLSTM model. Our results from
both investigations proved that smaller perturbation-trained
models have more robust performance than the models trained
with reasonable malicious behavior regarding ETA variation.
The main limitation of the proposed scheme is that the per-
formance of the detector decreases against zero-day attacks
or unseen attacks, which is a common limitation among su-
pervised learning approaches deployed in ETA detection. A
research direction with more generator types and the ensemble
method will be interesting for future extensions.
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