
Received 15 September 2022; revised 13 October 2022; accepted 26 October 2022. Date of publication 7 November 2022;
date of current version 23 November 2022. The review of this article was arranged by Associate Editor C.-M. Chituc.

Digital Object Identifier 10.1109/OJIES.2022.3220048

High Performance Implementation of
Next Generation Aeronautical

Communication Systems
S. KURZ 1, E. GRINGINGER 1, C. RIHACEK 1, AND T. SAUTER 2,3 (Fellow, IEEE)

1Frequentis AG, 1100 Vienna, Austria
2Institute of Computer Technology, TU Wien, 1040 Vienna, Austria

3Department for Integrated Sensor Systems, University of Continuing Education, 3500 Krems, Austria

CORRESPONDING AUTHOR: S. KURZ (E-mail: stefan.kurz@frequentis.com).

ABSTRACT Current air traffic communication systems are mainly based on voice communication, with a
newer digital communication technology called L-band digital aeronautical communication system (LDACS)
being investigated in the single European sky air traffic management research project. An essential feature
of this communication infrastructure is the encoding of data that guarantees reliable transport. While the
encoding in the transmission path is straightforward, the decoding is computationally expensive due to the
peculiarities of the convolutional codes used. As the target platform for the communication equipment is an
embedded system, a proper system design is essential for the receiving path to ensure real-time processing.
This article therefore focuses on the hardware/software codesign of the functional system parts needed for
decoding in the LDACS radio receiver. We describe the fundamental design considerations, followed by
the actual implementation in form of software and field-programmable gate array based hardware modules.
Subsequently, the decoding solution was verified to prove a standard-compliant system. In an experimental
validation, the actual system was fed with test data from a reference system. This allows conclusions to be
drawn about system characteristics like data throughput, latency, and error correction. The resulting system
demonstrates high-performance decoding that can exceed the desired requirements for quality and speed for
use in the LDACS communication system.

INDEX TERMS Aeronautical communication, embedded systems, hardware acceleration, hardware-based
decoding, hardware-software codesign, L-band digital aeronautical communication system (LDACS).

I. INTRODUCTION
Today’s air traffic communication systems are mainly based
on voice communication. This is surprising at first sight,
but understandable when considering that the foundation of
these systems was formulated as early as 1949 in Annex 10
of the convention on international civil aviation organization
(ICAO) [1]. Inevitably, this means that existing solutions have
deficiencies that are either challenging or even impossible to
resolve. The most striking characteristic is that still today,
transmission of information such as flight data from air traffic
control to an aircraft is mainly voice based. Therefore, the
exchange of even the simplest data such as flight altitude or
speed by means of spoken language take an enormous amount
of time compared to what could be possible with digital-based

systems common in our daily lives. Considering the increas-
ing number of flights in the future, the currently used systems
will therefore rather sooner than later reach their capacity
limits [2].

In the future, aircrafts will be able to connect to high-
bandwidth communications when at the airport terminal. But
as of today, once they get into the air, they must continue to
rely on narrow-band radio channels that are limited to a data
throughput capacity measured in the low kilo-bits per sec-
ond range. For voice communications, both air-to-ground and
air-to-air links are via broadcast channels without any authen-
tication, encryption, or other embedded protective measures
that are common in modern systems. Both voice and data
communications equipment are mostly ground-based using

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

700 VOLUME 3, 2022

https://orcid.org/0000-0002-3701-3388
https://orcid.org/0000-0003-3897-3003
https://orcid.org/0000-0001-7900-6365
https://orcid.org/0000-0003-1559-8394

FIG. 1. Aeronautical communication infrastructure [6].

the high frequency (HF) or very high frequency (VHF) fre-
quency band. Due to the lack of available spectrum, existing
HF and VHF data links (VHF digital link (VDL) Mode 2) [3]
are incapable of supporting broadband services now or in the
future. Technology vendors are developing enhanced capa-
bilities for satellite-based communications. However, satellite
technologies are not able to cover the high bandwidth de-
mands of heavily congested flight routes and airports. They
are also dependent on weather conditions and introduce
transmission delays that would be problematic for some ap-
plications.

For all of these reasons, modernization of air traffic man-
agement and its communications is necessary, and possible
candidates for future air traffic management (ATM) commu-
nication systems have been studied to provide the basis for
the development of future aviation communications infras-
tructure [4]. In the course of this, the SESAR (single European
sky air traffic management research) program on behalf of
the European commission addresses the modernization of
European air traffic management [2]. Within this context,
research projects have been awarded in the areas of communi-
cations, navigation, productivity enhancement, optimization,
and more. It is agreed within the regulatory and research
communities that a single communications infrastructure will
not be sufficient for all phases of a flight. Therefore, as shown
in Fig. 1, the future communications infrastructure will con-
sist of several digital connectivity technologies integrated into
a communication network. To ensure future communication
between air traffic controllers and pilots, the digital communi-
cation technology called L-band digital aeronautical commu-
nication system (LDACS) is being investigated [5]. In addition
to LDACS, which serves as a continental communications
path for air-to-ground and air-to-air communications, other
technologies are planned for noncontinental operations using
satellites and a data link for large ground airport scenarios [6].

The difficulties in the development and implementation of
aeronautical communication systems are mainly related to the
conditions of the operating environment in combination with

the long range of the systems [7], [8]. When a ground station
communicates with an aircraft, the high speed of the aircraft
results in a nonnegligible frequency shift due to the Doppler
effect. In addition, communication must be ensured both in
flight and on the ground, e.g., near the airport. This means
that such a communication system must be able to handle high
speeds with direct line-of-sight between the ground station
and the aircraft, but must also function in very diffuse and
wave-reflective environments on the ground.

To meet these very demanding requirements, special at-
tention must be paid to the coding used in the system. The
transmitted data must be encoded such that as many errors
as possible that occur at the receiver can be corrected, while
still achieving the highest possible effective data through-
put [9]. This requires an elaborate encoding procedure which
has been foreseen in the LDACS standard. The downside is
that the associated decoding tasks are typically computation-
ally intense and require an effective implementation strategy.
The particular problem in LDACS is that the protocol leaves
very little time for completing the decoding task because an
immediate response is required in the next communication
frame. The question therefore is how to ensure such stringent
real-time processing, especially when LDACS is implemented
on an embedded platform, which is the typical case for com-
munication equipment. A pure and straightforward software
implementation likely does not meet the performance require-
ments. Implementing the decoder in hardware to accelerate
data processing is an obvious solution, but may not be efficient
in terms of resource usage and implementation effort. This ar-
ticle proposes a mixed implementation of the decoding branch
of LDACS on an embedded platform, where some decoder
blocks are implemented in hardware, while others are kept
in software. To that end, we investigate a hardware/software
codesign approach in the sense of optimal design partitioning.
We evaluate the pros and cons of hardware versus software
implementation for each block of the decoding chain indi-
vidually and also with respect to the overall system design.
Besides the fundamental concepts, this article also presents
the first functional decoder implementation of the upcoming
standard, together with performance results related to the real-
time implementability of the overall system.

The rest of this article is organized as follows. Section II
discusses the LDACS system overview, Section III presents
related work on decoding blocks and hardware/software par-
titioning. Section IV develops the essential design considera-
tions, whereas Section V describes the actual implementation
and test environment. Section VI presents the performance
results. Finally, Section VII concludes this article with an
outlook to future work.

II. LDACS SYSTEM OVERVIEW
The reference for the technical details of the system were
obtained from the current version of the LDACS system
specification [10]. Given the long innovation cycles in aero-
nautical technologies, the development goal of LDACS was
to devise a future-proof system [11]. To that end, LDACS

VOLUME 3, 2022 701

KURZ ET AL.: HIGH PERFORMANCE IMPLEMENTATION OF NEXT GENERATION AERONAUTICAL COMMUNICATION SYSTEMS

FIG. 2. LDACS super-frame structure [10].

was designed as a bidirectional digital communication system
organized in cells with a cell radius of up to 200 nauti-
cal miles or 370 km [8]. In addition to regular digital data
communications, LDACS was also designed for digital voice
communications to support the current standard voice-based
communications method used by air traffic control.

A. PHYSICAL LAYER AND FRAME STRUCTURE
The physical layer specification of LDACS utilizes the so-
called L-band, which is the frequency range between 1 and
2 GHz [12]. An LDACS channel enabling a connection be-
tween a ground station and all airplanes in its associated cell
uses a bandwidth of 500 kHz. The data to be transmitted is
therefore packed into frames with a duration of 240 ms, called
super-frames, with one channel used to transmit information
from the ground to the aircraft, called forward link, and an-
other for the opposite direction, called reverse link [7]. Each
super-frame in turn can be split into the starting broadcast or
random-access section followed by four multiframes consist-
ing of control information (DC, CC) and actual data, depicted
in Fig. 2.

Depending on the current environmental situation, the ra-
dio channel in which the actual transmission takes place can
be fundamentally different, and the technical implementation
must be able to handle those different situations. It is therefore
based on adaptive coding mechanisms agreed between the
LDACS ground station and each air station. A data stream
to be sent is modulated using either quadrature phase-shift
keying (QPSK) or quadrature amplitude modulation (QAM)
at 16 or 64 b per symbol. This defines how data are con-
verted into complex wave forms leading to the frequency
components in an orthogonal frequency-division multiplex
(OFDM) symbol [9]. These considerations determine the es-
sential throughput requirement, with the combination of a
64QAM modulation and a coding rate of 3/4 requiring the
highest overall decoder throughput of 2.22 Mb/s, which is the
minimum required to meet real-time processing capabilities.

In addition to the minimum throughput, another point re-
garding the LDACS framing structure shown in Fig. 2 must
be considered. Since all airplanes share one link to the ground,
there is a resource allocation mechanism in the control chan-
nel of the forward link holding the information which frame
part in the reverse link can be utilized by a specific airplane.

FIG. 3. LDACS decoding chain architecture.

Since transmit and receive frame start are aligned in time, the
information packed in one receive multiframe ideally leads to
a response in the next transmit multiframe. This creates an ad-
ditional processing speed requirement leading to a throughput
of 2.26 up to 6.87 Mb/s, depending on the selected modulation
scheme. In the event that this timing requirement cannot be
met, it would be possible to apply this information in the sub-
sequent multiframe, so that this requirement can be considered
optional. Since digital voice should be transmitted via LDACS
as well, latency is also a critical factor of the system. This total
latency should not exceed 200 ms on the end-to-end link to
guarantee audio quality that is subjectively perceived as good.

B. ERROR CORRECTION
Another system aspect in coping with varying transmission
channel quality is error correction. In LDACS, this is real-
ized by combining convolutional coding and Reed–Solomon
coding together with interleaving in order to correct occurring
errors most effectively. Fig. 3 illustrates the decoding system
as a block diagram with all the necessary individual tasks. In
the transmission system, data are encoded in packets, followed
by processing at the physical layer, where OFDM symbols
are generated from these data frames. After the addition of
synchronization symbols, the symbols are converted into their
associated analog signal and then modulated to a preselected
LDACS frequency.

The receiving system part detects LDACS OFDM frames
by searching for synchronization symbols that define the be-
ginning of each frame. The symbols thus reconstructed are
then converted into binary data by interpreting the received
carrier signal within a symbol containing 2–6 b, depend-
ing on the modulation technique chosen. Since errors may
have occurred on the transmission channel, i.e., on the trans-
port medium on which the radio waves propagate from the
transmitter to the receiver, decoding mechanisms are used to
restore the originally transmitted data stream [10].

C. SYSTEM REQUIREMENTS AND IMPLEMENTATION
OPTIONS
In summary, the desired system must satisfy two essential,
firm requirements: 1) it must be able to handle a throughput
of at least 2.22 Mb/s and optionally up to 6.87 Mb/s; 2) an
end-to-end latency of 200 ms must not be exceeded to achieve
the desired performance metric for digital voice.

Owing to the structure of the LDACS coding and decoding
system, a software implementation is an obvious option. This
was done as a baseline implementation in the form of a Sys-
temC simulation model to assess performance and feasibility
of the system specification. The SystemC implementation of-
fers the basic possibility to use the code of the simulation

702 VOLUME 3, 2022

model with slight modifications also as actual coding soft-
ware. However, as will be shown in later sections, it was
found that high processing times, especially for decoding,
are a problem for real-time implementation in pure software,
creating the need for a more powerful system realization.

The performance problem can be avoided by moving the
decoding tasks to hardware-based processing, such as by
using a field-programmable gate array (FPGA). FPGAs are
integrated circuits based on configurable logic blocks whose
behavior is defined by their interconnection. This allows a
circuit design that enables the implementation of tasks with
very low processing times, exploiting possibilities for paral-
lelization of algorithms or optimized computing structures. To
meet the aforementioned system requirements, shifting com-
putationally intensive decoding blocks and parts from pure
software to hardware-based implementation appeared to be
the most promising solution. This hardware/software codesign
approach is discussed in more detail in the following sections.

III. RELATED WORK
Mixed hardware/software-based implementations of coding
and decoding chains are widely used in modern commu-
nication systems because of the demanding requirements.
Although indepth studies exist for LDACS, analyzing the
concept of use together with system performance and require-
ments in general [11], there is no work that discusses the
direct implementability of an LDACS system or parts of it.
Nevertheless, there are parallelisms and analogies in different
other applications of hardware/software codesign, specifically
in the hardware/software partitioning of functional blocks.

As a first approach, implementations of computational in-
tense decoding blocks was analyzed independently, such as
convolutional decoding implementations [13] and the inver-
sion of the Reed–Solomon code [14]. In these and other
comparable articles, an implementation of these system parts
in hardware-based form, e.g., in the form of an application-
specific integrated circuit (ASIC) or FPGA, is very often
proposed. However, the connection of these decoder blocks
with others is not discussed.

Considering a hardware/software codesign approach,
in [15], Abdallah et al. showed the applicability of this de-
sign method for increased efficiency of aerospace systems.
The article explains the usage of codesign in an abstract way
especially for safety and real-time critical applications. Since
the focus is on the methods and not on the actual system
implementation, the application of the concept to other use
cases is difficult.

A research work by Chih-Hung et al. focuses on a low-cost
rate control framework for video encoding. It concentrates on
the control flow, specifically the exchange of control messages
without the need for high data rates [16]. Unfortunately, direct
exchange mechanisms for data streams between hard and soft-
ware are missing, so that a straightforward applicability of the
concept to LDACS is not possible and would require further
investigation.

Considering codesign methods for communication sys-
tems, Bolsens et al. investigated the possible use of a design
environment for heterogeneous systems combined in one
chip [17]. The environment focuses on the encapsulation of
individual tasks that are later implemented in hardware or
software which communicate via dedicated control channels.
The main disadvantage of their approach is that the proposed
model is highly abstract and therefore such methods cannot be
applied directly to dedicated implementations.

A more modern approach to hardware/software codesign
for data-intensive applications is shown by Wiangtong et al.,
who use a special platform called Ultra-SONIC for their de-
sign ideas [18]. The platform allows a partial reconstruction of
a hardware system in form of an FPGA and is therefore very
adaptable. Despite its good applicability to many applications,
this method does not allow hardware and software to exchange
data at high rates, so that the results of the implementation
cannot be applied to a decoding system directly.

Ibraheem et al. investigated an FPGA-based decoding of
advanced audio coding (AAC) focusing on a fast and parallel
processing resulting in an achieved decoding rate of max.
30 Mb/s [19]. Compared with LDACS the findings are only
partially reusable since the pure FPGA-based implementation
does not contain any mechanisms for transferring data be-
tween the software and hardware domains. Moreover, AAC
uses very special but less computationally intense decoding
mechanisms.

An interesting related project by Drozdenko et al. inves-
tigated the implementation of a wireless transceiver imple-
mentation using a hardware/software codesign approach [20].
The focus of this work was a high-level practicability proof
of an 802.11a wireless internet access (WLAN) transceiver
prototype based on reconfigurable hardware and software to
create an adaptable platform for implementing future evolv-
ing standards. Taking into account tradeoffs between possible
implementation variants, the researchers could identify room
for optimization of their resulting system where real-time
performance criteria were not met. The maximum achieved
data throughput of the decoding system turned out to be not
sufficient for their needs.

In summary, there is no system implementation reported
in the literature that could be directly applied to LDACS.
Implementation analyzes of individual blocks of the decoding
chain do exist, but do not consider the overall performance
of the system, while codesign approaches are usually very
specific, or if generalized, underperforming. With a view to
an effective implementation, this work focuses on an analysis
of the individual decoding blocks, taking into account also
the overall system performance. This system view guides the
ultimate design partitioning.

IV. DESIGN CONSIDERATIONS
As mentioned in Section II-C, a pure software implementa-
tion of the LDACS encoding and decoding system, such as a
SystemC model, does not meet the performance and latency
requirements. It is more promising to evaluate if individual

VOLUME 3, 2022 703

KURZ ET AL.: HIGH PERFORMANCE IMPLEMENTATION OF NEXT GENERATION AERONAUTICAL COMMUNICATION SYSTEMS

blocks of the decoding chain in Fig. 3 can be favorably imple-
mented in hardware, specifically in an FPGA module, to speed
up the decoding process. Casting the entire decoding system
in hardware, on the other hand, might have disadvantages
such as a higher implementation and testing effort and inferior
maintainability of the resulting system.

At the beginning of this analysis, the LDACS receiver must
be considered as a whole, which consists not only of pure
decoding. The receiving branch thereby includes an analog-
to-digital converter, which receives a time-domain signal and
forwards it to a FPGA-based signal preprocessing. There, in
addition to filtering, a coarse synchronization of the data takes
place, which are then converted into the frequency domain
using a fast Fourier transformation (FFT). Subsequent fine
synchronization, including channel estimation and OFDM
frame demapping, already takes place in software, utilizing
a direct memory access (DMA) mechanism to transport data
from the FPGA to the software-based processing system. The
following block-by-block analysis therefore assumes that the
data to be decoded is already present in the software domain.

A. HELICAL DEINTERLEAVER
The data processing of the decoding starts with a helical dein-
terleaving, i.e., the incoming stream of data bits is permuted
by writing the data helically bit by bit into an array and then
reading it out line by line. As this step does not require intense
computing effort and is only moderately memory intensive,
the performance of hard and software implementation will
not differ significantly. Implementing such system parts in
an FPGA, however, may lead to increased implementation
effort in terms of costs and time. Therefore, and also because
the SystemC model did not show any problems regarding the
processing time of the helical deinterleaver, it was decided to
prefer the software form of this algorithm.

B. CONVOLUTIONAL DECODER
After deinterleaving, data need to be further processed re-
versing the convolutional encoding process by applying the
Viterbi algorithm to the binary data stream. Based on the so-
called trellis a maximum likelihood search defines the Viterbi
algorithm output. The trellis is a shift register structure in
which previous input bits of the algorithm, together with the
current input bit, form the basis for deciding on the next
output bit. This first error correction mechanism can handle a
short series of errors followed by a longer period of error-free
bits well, but fails for large error bursts [9]. Since the burst
error form is problematic for the Viterbi algorithm, adding an
interleaver in front of this mechanism is important. The helical
deinterleaver used in this case rearranges the incoming data
bits so that bursts are resolved and spread, which ensures a
better error correction capability of the overall system.

In addition to the modulation method described in Sec-
tion II, a convolutional coding rate is agreed between transmit-
ter and receiver where three options are available for LDACS
as 1/2, 2/3, and 3/4 coding. A rate of 1/2 means that a con-
volutional code is applied which converts each input bit into

two output bits. Coding rates 2/3 and 3/4 use a similar output
creation process. The difference here is to discard output bits,
with for example two discarded output bits per 3 input b for
the 3/4 encoding rate.

With respect to implementing this function block, the Sys-
temC simulation and also the time it takes the algorithm to
process a certain amount of data show a high degree of com-
plexity. Since this part of the system, when implemented in
software, causes most of the timing problems for real-time
decoding, it is a clear candidate for an implementation as
an FPGA module, combining the advantages of offloading
it from the software processor and allowing a much shorter
processing time.

C. BLOCK DEINTERLEAVER
One of the drawbacks of the Viterbi algorithm is that it is
probability-based. It may not be able to correct all sorts of
errors, and it is not able to give information on the correctness
of the output data stream as it outputs just the most prob-
able input to the convolutional encoder on the transmitting
side. Therefore, further processing is necessary. The data are
handed over to a block deinterleaver where after Viterbi de-
coding eight output bits are packed to one byte, from now on
called a data symbol. The deinterleaver again performs data
permutation, but on a symbol level, whereby the data symbols
are sorted column by column in a 2-D array and passed to the
following Reed–Solomon decoder row by row. This mecha-
nism is rather memory intensive than characterized by high
computational requirements. Therefore an implementation in
software would be preferred.

D. REED–SOLOMON DECODER
The next step is Reed–Solomon decoding, which again is able
to correct errors based on check symbols that have been added
at the end of each data block in the encoding process. The
block size before adding correction symbols varies from 66
to 206 B, with 8 to 22 correction/check symbols added. The
check symbols are calculated in the transmitter and contain
information of all previous data symbols within their block to
be able to detect up to n erroneous symbols and correct up to
n/2, with n being the number of check symbols.

The main advantage of this algorithm, besides the error cor-
rection capability, is the identification of finally erroneous data
blocks, i.e., the information whether a data block is conclu-
sively valid. Since the reverse computation of Reed–Solomon
coding is known to be computationally expensive, this module
is also a candidate for implementation in hardware. Addition-
ally, the SystemC simulation showed probable problems in
terms of processing time, which makes an implementation as
an FPGA module indispensable.

E. DERANDOMIZER
Finally, data must be derandomized where data bits are fed to
a linear feedback shift register combined with two XOR gates
defining the derandomized and fully decoded data output.
Owing to the short processing time of the function block in

704 VOLUME 3, 2022

FIG. 4. LDACS decoding chain architecture on the platform.

software together with the previously mentioned advantages
of software implementations in general, a software solution
for the derandomizer is preferred.

F. INTERFACING BETWEEN HARD AND SOFTWARE BLOCKS
Analyzing the individual functional blocks alone is not suffi-
cient for an efficient system design. In addition, also the data
transport between the blocks must be considered, especially
if it involves interfacing between software and hardware do-
main. Since LDACS signal processing will be based on an
embedded platform with limited computing power, the impact
on the overall system performance can be significant. This
exchange is usually implemented in form of a direct mem-
ory access, whose processing time cannot be neglected. The
total data transfer time consists of the actual data exchange,
which can be considered very fast, and the setup of the DMA
framework. Here, the largest latency components arise from
allocating memory, setting up signal handlers and initializing
the core transaction in the DMA driver.

The interfacing aspect is especially relevant for the de-
sign choice of the block deinterleaver between the Viterbi
and Reed-S-olomon decoder. Seen from a pure functional
viewpoint, this block would be preferably implemented as
a software module. However, two additional data transfer
blocks would be needed between hardware (Viterbi and Reed–
Solomon decoder) and software (deinterleaver) domains.
These domain changes would introduce additional, nonneg-
ligible latencies. Therefore, the best choice from a system
perspective is to implement the block deinterleaver also as an
FPGA module.

The resulting hardware/software partitioning of the func-
tional decoding blocks therefore starts with a helical dein-
terleaver in form of a software module, followed by the
Viterbi decoder, block deinterleaver and Reed–Solomon de-
coder implemented as FPGA cores (Fig. 4). Finally, the data
are derandomized, which again is implemented as a software
module. This platform-independent analysis was applied to a
specific implementation platform in the following to evaluate
the conceived hardware/software codesign.

Based on this setup, analyzes could also be performed for
the coding chain, since this implementation also influences
the overall performance of the system. However, the coding
scheme chosen in LDACS, such as convolutional and Reed–
Solomon coding, requires much less effort on the encoding
side. The potential advantage of speeding up the encoding
blocks in hardware is therefore very limited and would be
offset by the disadvantages already mentioned, such as low
maintainability.

V. PERFORMANCE EVALUATION
When implementing a real-time decoding system, the main
performance criteria are data throughput achieved and system
latency, which define the usability with respect to the system
requirements. In addition, a decoding system should also be
able to correct errors that occur during the transmission of
data from the transmitter to the receiver. For the implemented
system, these metrics were tested to evaluate the performance
of the system and validate its real-time capability for LDACS.

A. HARDWARE PLATFORM
As a platform for system implementation and evaluation, a
hybrid of software processing unit and FPGA was chosen. The
hardware used is a ZYNQ MpSoC from Xilinx, which is based
on an ARM Cortex A53 quad-core processor system and an
Ultrascale+ FPGA, combined in a single chip. The design
goal for the software decoding part is to run on a single CPU
core and use as few resources as possible, since higher layer
functions will also be operated on this platform. Based on
the previous design decisions, hardware blocks were imple-
mented in the hardware description language VHDL, software
parts were programmed in C/C++ running in a Linux based
operating system. Theoretically, a bare-metal implementation
of the software decoding blocks without an underlying op-
erating system would be a possible variant. However, such
implementations are also associated with many limitations.
In a Linux environment, e.g., drivers for DMA mechanisms
are available to ensure secure data transport. In addition, after
decoding, the data from the decoding system are passed to

VOLUME 3, 2022 705

KURZ ET AL.: HIGH PERFORMANCE IMPLEMENTATION OF NEXT GENERATION AERONAUTICAL COMMUNICATION SYSTEMS

TABLE 1. FPGA Resource Utilization With the Occupied Resources on the
Used FPGA in Percent

higher level applications that rely on an operating system en-
vironment, so the bare-metal variant would require additional
cross-domain data transport and effort. These limitations com-
bined with the low probability of speeding up the decoding
tasks by doing so provided the basis to design the software
parts of the system for a Linux-based environment.

The mentioned system-on-chip with necessary peripherals,
such as power supply, network connection, etc., is included
in the Xilinx ZYNQ Ultrascale+ MpSoC ZCU102 evaluation
board. The ARM Cortex A53 processor thus runs an operating
system based on an embedded version of Linux called Petal-
inux. The decoder blocks assigned to the hardware domain
in Section IV were synthesized together with DMA blocks in
the FPGA and form one of the two implementation domains
together with their associated software drivers. The software
decoding parts were built around this FPGA framework. Fig. 4
shows the final data flow including an overview of the system
where each decoding block is shown in its associated system
domain.

In detail, a clock rate of 200 MHz was used for the decoding
blocks in the FPGA, with internal data transmission based on
an AXI4-Lite IP interface [21]. This handshake-based data
transfer was implemented with a maximum bit width of 64
b, with which, e.g., data are passed from the DMA to the
decoding blocks. This results in a minimal latency of one
clock cycle per data packet, allowing data to be transported
internally at a rate of 1.6 GB/s. Between the decoding blocks,
the data width is adapted to the internals of the coding blocks,
i.e., the Viterbi decoder generates one output bit per two input
bits at 1/2 coding rate, so that the bit width of the AXI4 inter-
face also transmits only one bit per clock cycle at this point.
This ensures the decoding with minimum internal delay. In
terms of FPGA resources, Table 1 gives an overview of FPGA
configurable logic block usage for each hardware decoder part
comparing different lookup-table (LUT) forms and flip-flops.
The FPGA resource consumption of the LUTs of the overall
system including data preprocessing, coarse synchronization,
etc., for the chosen FPGA currently amounts to 63%.

B. TEST SETUP
In order to test the implemented system design, a reference
system is needed to verify the data correctness after the decod-
ing process and the error correction capability of the system.
For this purpose, a MATLAB system model was created, de-
signed to export encoded data in form of raw data files, which
then directly serve as input for the real system under test. As
a first step, the layer 2 source, which in reality would be the

data input to the layer 1 encoding system, was simulated in
MATLAB in the form of a random data generator. These data
packets were then encoded using built-in MATLAB functions
according to the LDACS standard, with a raw data file saved
before and after each encoding block. These files in turn serve
as input to the system under test, which runs on the before
mentioned ZYNQ Ultrascale+ MpSoC hardware platform. All
decoding parts, for which a software-based implementation is
more suitable, run on the ARM Cortex A53 processing system
and all hardware-based parts were synthesized in the FPGA
section of the system-on-chip, as shown in Fig. 4. This raw
data-based test setup allows an encrypted data set to be passed
to a specific decoding block and then its output file to be
compared with the MATLAB data to verify correctness. Fig. 5
shows a schematic representation of the setup used for testing.

In a next step, intentional deviations were applied to the
input data prior to decoding to simulate errors in various
forms. The type of errors that occur is defined by the expected
transmission channel. Commonly, an additive white Gaussian
noise channel is considered, which can be characterized as a
number of independent noise sources. The probability den-
sity function of the occurring errors can be described by a
Gaussian curve. The resulting errors are randomly distributed
over the input bit stream, with their probability depending on
the signal-to-noise ratio [22]. Furthermore, other fault cases
must be considered, where sources are assumed to block the
channel or at least parts of the channel for a certain period of
time. This leads to a larger section in the input bit stream of
the decoding system where no bit was correctly transmitted
due to the signal interference, represented in the form of burst
errors.

With regard to the actual error correction, the Viterbi de-
coder and the Reed–Solomon decoder were examined more
closely, as these two blocks are the only ones that have error
correction capabilities. Other parts of the decoding system
basically only reorder data, such that other decoding blocks
can handle errors more effectively. The system under test for
these two decoding modules was an adapted FPGA design
with direct access to the individual coding blocks to get to
know their decoding performance. As a first error correction
block, the Viterbi decoder typically has different performance
depending on the type of error [9]. Long burst errors are
rather difficult for this algorithm to handle, whereas randomly
distributed single errors at different positions are easier to
detect and correct. The Reed–Solomon code, on the other
hand, is more independent of the type of error, with its ability
to correct generally depending on the number of errors within
a Reed–Solomon codeword, not on their position or type.

Since the individual decoding blocks are combined to form
a complete decoding system with interleaving and randomiza-
tion mechanisms, the errors, which at first sight seem difficult
to correct, turn out to be less critical. With burst errors at the
input of the decoding system being reordered by the helical
deinterleaver before passing the data to the Viterbi decoder,
large bursts of erroneous data bits are broken up and evenly
distributed over large interleaving blocks. The design of the

706 VOLUME 3, 2022

FIG. 5. LDACS test setup system under test— MATLAB reference system.

TABLE 2. Error Correction Ability of the Decoding System

helical deinterleaver was chosen to allow the Viterbi decoder
to operate optimally, resulting in higher overall decoding qual-
ity. In case of randomly distributed errors at the system input,
there is a low probability that these errors will be rearranged
in the helical deinterleaver to form datasets with high er-
ror density. This would lead to an increase in error density
at the output of the Viterbi decoder as well. The following
block deinterleaver distributes potential Viterbi output data
blocks with high error density to multiple Reed–Solomon data
blocks. This prevents individual Reed–Solomon codewords
from being loaded with many errors, while there are com-
pletely error-free codewords before and after this section.

VI. RESULTS
A. ERROR CORRECTION
The results derived from the independent block analysis for
the Viterbi decoder show a high dependency of the error cor-
rection performance on the error form as expected. An initial
analysis examined burst errors of varying lengths, which may
occur under the assumption that system input data were re-
arranged in the helix deinterleaver, creating contiguous error
chains. As a first result, long error vectors of up to 40 b at
the input enclosed by an otherwise error-free data stream led
to a relatively small number of up to 7 consecutive residual
errors at the output. These errors would in turn finally end up
in a Reed–Solomon data block, where they could be easily
corrected.

TABLE 3. Comparison of Processing Times of a Standard LDACS Data Block
(QPSK 1/2) and One Super-Frame [in µs]

To further stress the Viterbi decoder, it was fed with recur-
rent error bursts with error-free sections of a specific length
in between. This revealed a large dependency of the error
correction potential on the length of the error-free section
surrounding it, i.e., whether the Viterbi decoding block has
time to return to a stable, error-free inner state. Already with
burst errors of 5 b length an error-free section of 43 b is nec-
essary to tolerate errors again without generating any errors
at the output. Since this error form, as mentioned before, is
extremely unlikely in the overall system due to the reordering
in the helical deinterleaver, this stress test represents a worst-
case scenario. For single randomly distributed errors, a similar
overall picture emerged, i.e., for single errors, besides their
rate, mainly the length of the error-free sections in between
counts to ensure error-free decoding. In general, a single error
enclosed by 10 error-free bits can be completely corrected,
whereas even a slight reduction of the error-free section at the
decoder output leads to significant output error density.

Conversely, the Reed–Solomon decoding algorithm has a
fixed error correction capability by definition. This means that
the decoder is able to detect up to n errors and correct up to
n/2, where n is the number of check characters per Reed–
Solomon block. Examining the implemented algorithm, these
properties were confirmed by adding errors to data blocks,
varying not only just in the number of errors but also in
their position within a Reed–Solomon data block. Another
advantage of this decoder is the additional information pro-
vided. The Reed–Solomon algorithm can be used to determine

VOLUME 3, 2022 707

KURZ ET AL.: HIGH PERFORMANCE IMPLEMENTATION OF NEXT GENERATION AERONAUTICAL COMMUNICATION SYSTEMS

TABLE 4. Data Throughput of the LDACS Decoding System

whether the errors in the input data can be corrected, which
makes it clear at the output of the Reed–Solomon decoder
whether a dataset contains further errors or not. This infor-
mation is especially important for further processing, as the
reliability of the data can be rated.

For the overall decoding performance, the tests showed
different outcomes for each possible combination of modu-
lation and coding rate, with results summarized in Table 2.
In a realistic worst-case scenario where the radio channel is
disrupted during a certain time interval, burst errors occur at
the input of the decoding system. These are picked apart by
the helical deinterleaver and forwarded to the Viterbi decoder.
This in turn generates at its output the most likely transmitted
data sequence for the given input sequence, which is packed
into blocks and passed on to the block deinterleaver. For data
sections at the Viterbi decoder input that have a high error
density and therefore also generate a high error density at its
output, the block deinterleaver distributes erroneous data over
multiple Reed–Solomon data blocks, thus increasing the re-
sulting correction performance. Finally, the data are reordered
via the derandomizer, which reconstructs the final decoded
data stream in the best possible way. For a data block of 9768
b (standard length in LDACS with QPSK), Table 2 gives a
error correction capability of 6.65 % error bits per block, with
the higher coding rate in each case having a lower error toler-
ance in relation to the data throughput. This fact highlights
the tradeoff between coding efficiency and error correction
capability, since for a coding rate of 1/2, two bits must be
transported for each actual bit of data, while for a coding rate
of 3/4, this overhead decreases with 4 b transported for 3 bs
of data.

Furthermore, Table 2 seems to suggest that the results for
identical coding rates and different modulation methods are
approximately the same. However, this impression is mislead-
ing, since with higher modulation rate the possibility for errors
on the transmission channel also increases. With 64QAM,
each frequency carrier within a symbol carries 6 b, while
with QPSK it carries only 2 b. Considering each carrier as
a complex value represented as a point in a 2-D complex
plane, an error means that a point in this plane deviates from
its position as a result of the transmission. While 64QAM
modulation allows 64 points arranged in a regular grid in this
2-D space, there are only four possible points in the same
2-D area with QPSK. The received signal is then assigned

to one of the possible transmitted points of the modulation
used, simply choosing the closest point. In view of this fact,
a received signal or its complex representation, respectively,
can be interpreted correctly more easily for QPSK, since there
is a greater error tolerance from the very beginning. With
64QAM, even small deviations cause the transmitted data to
be misinterpreted as an erroneous value, since the respective
data points in the complex plane have a very small distance.
This leads to a generally higher error probability.

B. REAL-TIME PERFORMANCE
Considering the latency of the chosen implementation ap-
proach, it can be seen, as shown in Table 3, that the test
system meets the requirements without any problems. The
tested system has a decoding time of well below 1 ms per
standard LDACS data block or less than 12 ms for a complete
Super-Frame, so that the specification of 200 ms end-to-end
latency is not affected. The chosen implementation therefore
leaves enough flexibility for all other system parts contribut-
ing to the system latency to stay below the required maximum
latency, so that LDACS can be used for digital speech. On
the other hand, the SystemC implementation, which serves as
a reference, would cause problems since the Viterbi decoder
already requires more than 76 ms for a standard LDACS data
block and thus the overall latency of 200 ms would not be met.

With respect to the real-time processing performance, the
achieved data throughput represents the most important pa-
rameter, since it gives an indication about the usability of this
implementation for real-time operation. Since standard frames
in LDACS, so-called super-frames, have a fixed length of
240 ms a minimum required data rate can be specified depend-
ing on the selected modulation and coding rate. Table 4 shows
a comparison of the required data rates for different LDACS
coding parameters together with the size of the correspond-
ing super-frames in bits. In addition, the achieved decoding
data rates were analyzed together with the overall processing
times and the time spent on data transport. The throughput
of the SystemC simulation, as a potential representation for
a software-only implementation, was compared to the chosen
combined hardware/software solution.

The real-time factor presented in the table is calculated
by dividing the achieved data rate by the required one, with
values greater than 1 indicating faster decoding than needed.

708 VOLUME 3, 2022

The results show that a pure software implementation is by no
means sufficient to meet the performance requirements.

In summary, the platform used has a high degree of over-
performance, so that the use of a less powerful system for a
pure decoding system would be obvious. Since the basic idea
for the selected test platform was to use it not only for layer 1
processing but also for higher layer receiver parts, the selected
system on chip (SoC) platform still appears to be a suitable
choice.

A comparison with other LDACS implementations is diffi-
cult, as only a few prototypes are currently being developed.
The associated implementation details, in particular those of
the decoding chain, are not publicly available, which means
that the performance of the system mentioned here cannot be
compared with any other system as there is no reference.

VII. CONCLUSION AND FUTURE STEPS
In this article, we have reported about the first, to the
best of our knowledge, working decoder implementation of
the upcoming aeronautical communication standard LDACS.
Specifically, we investigated design choices regarding the
hardware/software partitioning that are crucial to achieve the
performance goals. Our efforts were focused on the decod-
ing chain because this is significantly more complex and
resource consuming than encoding. Encoding can fully and
conveniently be done in software, whereas especially the real-
time trellis decoding is impossible without hardware support.
Comparing the achieved and required data rate in Table 4,
we see that 64QAM 3/4 shows 22.06 Mb/s achieved and
2.22 Mb/s required throughput, which is an over-achievement
by a factor of about 10. In a detailed analysis, the software
Viterbi decoder takes up to 99% of the processing time of the
entire decoding process, which can be significantly reduced to
about 10% by implementing this algorithm in an FPGA. An
additional benefit of the FPGA implementation of the Viterbi
decoder, block deinterleaver, and Reed–Solomon decoder is
that it allows for parallelization and pipelining between these
three blocks so that the output of one decoder is immediately
passed to the next without waiting for the previous one to
finish a block of data.

Together with the processing times of the individual decod-
ing blocks, the analysis revealed that also the time required
for data transfer between the blocks has a significant im-
pact on the overall system performance. The initialization
of the DMA mechanism and the time for data transport be-
tween hardware and software domains therefore cannot be
neglected. Since the DMA setup takes a few hundred mi-
croseconds per transaction regardless of the size of the data
block to be transported, the impact is higher for small data
blocks than for larger ones. The decoding block analysis and
resulting implementation show that LDACS can be imple-
mented such that real-time requirements of the standard can be
met.

In the future, the data transfer mechanisms between hard-
ware and software domain should be improved in particular.
This part of the system was not initially seen as a potential

limiting factor, but it has shown a high impact on the overall
performance. In particular, the number and size of individual
DMA transactions could be further optimized to achieve even
higher throughput, which would also lead to better scalability
for future systems.

REFERENCES
[1] ICAO, Annex 10 to the Convention on International Civil Aviation:

Aeronautical Telecommunications, Volume I - Radio Navigation Aids,
7th ed. Jul. 2018.

[2] Eur. Commission-Directorate Gen. for Mobility and Transp., “SESAR
2020: Developing the next generation of European air traffic manage-
ment,” 2014. [Online]. Available: https://www.sesarju.eu/sites/default/
files/-factsheet_SESAR-final-web.pdf

[3] ICAO, Manual on VHF Digital Link (VDL) Mode, Doc 9776, AN/970,
2nd ed., 2015.

[4] N. Neji, R. de Lacerda, A. Azoulay, T. Letertre, and O. Outtier, “Survey
on the future aeronautical communication system and its development
for continental communications,” IEEE Trans. Veh. Technol., vol. 62,
no. 1, pp. 182–191, Jan. 2013.

[5] C. Rihacek et al., “L-band digital aeronautical communications sys-
tem (LDACS) activities in SESAR2020,” in Proc. Integr. Com-
mun. Navigation, Surveill. Conf, 2018, pp. 1–8, doi: 10.1109/ICN-
SURV.2018.8384880.

[6] M. Schnell, U. Epple, D. Shutin, and N. Schneckenburger, “LDACS:
Future aeronautical communications for air-traffic management,” IEEE
Commun. Mag., vol. 52, no. 5, pp. 104–110, May 2014.

[7] S. Brandes, U. Epple, S. Gligorevic, M. Schnell, B. Haindl, and M.
Sajatovic, “Physical layer specification of the L-band digital aeronauti-
cal communications system (L-DACS1),” in Proc. Integrated Commun.
Navigation Surveill. Conf., 2009, pp. 1–12.

[8] M. Mostafa, M. Bellido-Manganell, and T. Gräupl, “Feasibility of
cell planning for the L-band digital aeronautical communications
system under the constraint of secondary spectrum usage,” IEEE
Trans. Veh. Technol., vol. 67, no. 10, pp. 9721–9733, Oct. 2018,
doi: 10.1109/TVT.2018.2862829.

[9] I. Glover and P. Grant, Digital Communications. London, U.K.: Pearson
Education, 2010.

[10] T. Gräupl, C. Rihacek, and B. Haindl, “LDACS A/G Specification
SESAR2020 – PJ14-W2-60, European Union Horizon 2020 research
and innovation programme,” Edition 00.01.00, Dec. 2020.

[11] N. Zelkin and S. Henriksen, L-band Digital Aeronautical Communi-
cations System Engineering–Concepts of Use, Systems Performance,
Requirements, and Architectures. Herndon, VA, USA, 2010.

[12] N. Schneckenburger, N. Franzen, S. Gligorevic, and M. Schnell, “L-
band compatibility of LDACS1,” in Proc. 30th Digit. Avionics Syst.
Conf., 2011, pp. 1–4.

[13] I. Swathi and S. Rajaram, “FPGA implementation of viterbi decoder for
software defined radio applications,” in Proc. Int. Conf. Wireless Com-
mun. Signal Process. Netw., 2017, pp. 2070–2073, doi: 10.1109/WiSP-
NET.2017.8300126.

[14] S. M. Dilek, B. Oers, and M. Kartal, “Reed–Solomon decoder hardware
implementation for DVB-S receiver,” in Proc. 21st Signal Process.
Commun. Appl. Conf., 2013, pp. 1–4, doi: 10.1109/SIU.2013.6531372.

[15] A. Abdallah, E. M. Feron, G. Hellestrand, P. Koopman, and M. Wolf,
“Hardware/Software codesign of aerospace and automotive systems,”
Proc. IEEE, vol. 98, no. 4, pp. 584–602, 2010.

[16] K. Chih-Hung, C. Li-Chuan, F. Kuan-Wei, and L. Bin-Da, “Hard-
ware/Software codesign of a low-cost rate control scheme for
H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 2,
pp. 250–261, Feb. 2010.

[17] I. Bolsens, H. J. De Man, B. Lin, K. Van Rompaey, S. Vercauteren, and
D. Verkest, “Hardware/software co-design of digital telecommunication
systems,” Proc. IEEE, vol. 85, no. 3, pp. 391–418, 1997.

[18] T. Wiangtong, P. Y. K. Cheung, and W. Luk, “Hardware/software
codesign: A systematic approach targeting data-intensive applications,”
IEEE Signal Process. Mag., vol. 22, no. 3, pp. 14–22, May 2005.

[19] M. S. Ibraheem, K. Hachicha, and O. Romain, “Fast and parallel AAC
decoder architecture for a digital radio mondiale 30 receiver,” IEEE
Access, vol. 5, pp. 14638–14646, 2017.

VOLUME 3, 2022 709

https://www.sesarju.eu/sites/default/files/-factsheet_SESAR-final-web.pdf
https://www.sesarju.eu/sites/default/files/-factsheet_SESAR-final-web.pdf
https://dx.doi.org/10.1109/ICNSURV.2018.8384880
https://dx.doi.org/10.1109/ICNSURV.2018.8384880
https://dx.doi.org/10.1109/TVT.2018.2862829
https://dx.doi.org/10.1109/WiSPNET.2017.8300126
https://dx.doi.org/10.1109/WiSPNET.2017.8300126
https://dx.doi.org/10.1109/SIU.2013.6531372

KURZ ET AL.: HIGH PERFORMANCE IMPLEMENTATION OF NEXT GENERATION AERONAUTICAL COMMUNICATION SYSTEMS

[20] B. Drozdenko, M. Zimmermann, T. Dao, K. Chowdhury, and M. Leeser,
“Hardware-software codesign of wireless transceivers on zynq hetero-
geneous systems,” IEEE Trans. Emerg. Topics Comput., vol. 6, no. 4,
pp. 566–578, Oct.-Dec. 2018.

[21] ARM, “Amba axi and ace protocol specification.” [Online]. Available:
https://developer.arm.com/documentation/ihi0022/e/

[22] M. C. Liberatori, L. Coppolillo, L. J. Arnone, D. M. Petruzzi, J.
C. Moreira, and P. G. Farrell, “Channel characteristics dependence
of the performance of decoding algorithms for efficient error-control
codes,” in Proc. XVII Workshop Inf. Process. Control, 2017, pp. 1–6,
doi: 10.23919/RPIC.2017.8211635.

S. KURZ received the B.Sc. degree in electrical
engineering and the M.Sc. degree in embedded
systems, from TU Wien, Vienna, Austria, in 2016
and 2019, respectively.

He is a hardware/software engineer in the field
of aeronautical communications with a focus on
the implementation of systems currently under
standardization and research.

E. GRINGINGER received the MSc, MSocEcSc,
and Ph.D. degrees with distinctions in computer
science from TU Wien, Vienna, Austria.

He is Senior Lead Scientist with Frequentis
with more than 10 years of experience in safety
critical domains. He is an experienced research
Project Manager. His research focuses on informa-
tion management and data science.

Dr. Gringinger is a Member of EUROCAE
working group an AI and works as technical re-
viewer for the EU.

C. RIHACEK received the M.Sc. degree in electri-
cal engineering from TU Wien, Vienna Austria, in
1998.

He is a Senior Project Manager with Frequentis
AG and has work experience as a Research Project
Manager in several research projects.

Mr. Rihacek is a Member of the working group
with ICAO, which works on the LDACS standard-
ization.

T. SAUTER (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from TU Wien,
Vienna, Austria, in 1999.

He is a Professor of automation technology with
TU Wien and was the Founding Director of the
center for integrated sensor systems, Danube Uni-
versity Krems, Wiener Neustadt, Austria.

Dr. Sauter is a Senior Administrative Commit-
tee Member of the IEEE Industrial Electronics
Society.

710 VOLUME 3, 2022

https://developer.arm.com/documentation/ihi0022/e/
https://dx.doi.org/10.23919/RPIC.2017.8211635

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

