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ABSTRACT A photovoltaic array including several modules in series may show mismatching due to
discrepancies among the module conditions, mainly due to partial shadowing. Therefore, the shape of the
current–voltage curve deeply changes with respect to the one corresponding to uniform operation. This
article shows that a small set of points around the maximum power allows us to detect the occurrence of
the mismatching. This approach exploits such a limited information to detect if the module is subjected to
mismatching, so that the adoption of a GMPPT algorithm can be avoided. The curvature change is identified
by using different machine learning techniques: decision trees, multilayer perceptrons, radial basis functions,
and support vector machines. To reduce the classification error, before the fitting of the models, we implement
a novel process of selection of the training samples based on a self-organizing map. This procedure makes
easier the optimization of the number of hidden neurons. The support vector classifier and the multilayer
perceptron with one hidden layer outperform the other approaches, being the former better than the last for
extreme mismatching. However, the prediction time of this multilayer perceptron is significantly smaller than
the required by the support vector machine.

INDEX TERMS Decision tree, multilayer perceptron (MLP), photovoltaic mismatch diagnosis, radial basis
function (RBF), self-organizing map (SOM), support vector machine (SVM).

NOMENCLATURE
ANN Artificial neural network.
C Kernel constraint parameter of an SVM.
Ci Coefficient of the interpolating polynomial.
CNN Convolutional neural network.
γ Scaling value of the kernel function on an SVM.
η Diode ideality/quality factor (−).
�φ Kernel transformation on an SVM.
Gi, j Each group created by the Kohonen SOM.

GMPPT Global maximum power point tracking.
HMLP Hybrid multilayer perceptron.
HMLP1 HMLP using radbas in the first hidden layer and

tansig in the second hidden layer.
HMLP2 HMLP using tansig in the first hidden layer and

radbas in the second hidden layer.

I Current (A).
Iph Photo-generated current (A).
Is Diode dark-saturation current (A).
Isb Dark-saturation current of the bypass diode (A).
I–V Current–voltage.
k Boltzmann constant 1.381e–23 J/K.

KNN k-nearest neighbor.
MLP Multilayer perceptron.
MLP1 Multilayer perceptron with one hidden layer.
MLP2 Multilayer perceptron with two hidden layers.
MPP Maximum power point of the I–V curve.
MPPT Classical MPP tracking.
Ns Number of cells in series of a PV module.
Pmax Maximum power of the PV device (W).

PV Photovoltaic.
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FIGURE 1. I–V curves of a PV array composed of several modules in different scenarios. (a) under uniform condition. (b) under mismatched condition.

q Elementary charge 1.602e–19 C.
RBF Radial basis function.
radbas Gaussian transfer function.
Rh Shunt/parallel resistance (�).
Rs Series resistance (�).
SOM Self-organizing map.
SVM Support vector machine.
V Voltage (V).
VT Thermal voltage of a PV device (V).
T PV device temperature in Kelvin (K).
Tc PV device temperature in Celsius degree (◦C).
tansig Hyperbolic-tangent transfer function.

I. INTRODUCTION
Photovoltaic (PV) modules and arrays are composed of solar
cells connected in series. Failures, degradation, dirt, or shad-
ows can make the irradiance not to be uniform among all the
elements, leading to energy drops. Under some conditions,
this fact results in the dissipation of power by the shaded
cells, even leading to damage and risk of fire. Commercial PV
modules are equipped with bypass diodes in parallel to every
string of cells in series, so that the current difference between
the shaded and the unshaded strings passes through the bypass
diode of the shaded one [1]. Therefore, the shaded parts of
the string are protected from damage, but the power drop is
unavoidable. The detection of these anomalous conditions has
to be prompt in order to take the best control action in order
to maximize the power production for the current operating
conditions.

The activation of one or more bypass diodes affects the
current–voltage (I–V) curve that should exhibit several maxi-
mum power points (MPPs) [2]. During partial shadowing, the
MPP tracking system drives the PV array toward one of the
MPPs. If the string is not operating at the MPP occurring at the
highest voltage, i.e., the rightmost one in the current–voltage
plane, it is quite simple to recognize the occurrence of a
shading condition. Indeed, in this case, the operating voltage
is abnormally low with respect to the one corresponding to
the unique MPP in uniform operating conditions; thus, it is

very far from the open-circuit voltage. Unfortunately, this is
not true if the MPP tracking system leads the PV array to
work at the rightmost MPP, having an operating voltage a bit
lower than the expected open-circuit voltage. It is true that
the current at this case is abnormally low, but it is hard to
distinguish this case from the one due to a uniform drop in the
irradiance level over the whole array. Therefore, a mechanism
allowing to distinguish between normal and mismatched or
fault conditions would be welcome in this case.

A uniform decrease of the irradiance affecting all the mod-
ules of the array leads the inverter to drive all the cells in
series to work in a similar operating point; it is almost the
MPP of each cell, where the shape of the I–V curve is regu-
larly rounded. Thus, the resulting total I–V curve is also quite
rounded [see Fig. 1(a)]. Instead, if a partial shadow decreases
the current output of one substring connected in series and
the tracking system leads the array to the rightmost MPP,
only the shaded substring works close to its MPP, whereas
the operating point of all the nonshaded substrings belongs to
a low-current region of a high irradiance curve; hence, it is
a point very close to the open-circuit voltage and where the
I–V curve slope is very high. As there are many substrings of
the array operating at that point, this significantly affects the
shape of the total I–V curve, thus making it not mildly rounded
as in the uniform case, but rather squared [see Fig. 1(b)].

The objective of this article is to show the performance of
some algorithms allowing to detect the absence or the occur-
rence of a mismatching event by using only a little portion
of the I–V curve, specifically those points around the MPP.
The goal is the detection of the change of the curve shape
by using only those few I–V samples around the MPP at the
highest voltage. Each tool should be able to classify an input
I–V curve into two categories, i.e., unshaded (NORMAL) or
mismatched (FAULTY). The supervised learning is performed
through a training process involving a huge set of previously
classified curves. Once the proposed method detects a possi-
ble mismatching condition for the module, the global MPP
tracking (GMPPT) algorithm should be activated. In another
case, the inverter will remain using the classical MPPT. This
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GMPPT algorithm is beyond the scope of this work. Indeed, in
this article, no new global MPPT method is proposed, but an
analysis that precedes the application of a GMPPT algorithm
is introduced.

Next, Section II is aimed at giving an overview of the
approaches presented in the recent literature, with an emphasis
to those employing machine learning tools, dedicated to the
detection and classification of partial shadowing and, more in
general, faults affecting PV systems through the analysis of
the I–V curves. Afterward, a number of typical paradigms in
the field of machine learning are reviewed and applied to the
same problem.

In order to test and compare the performance of the ma-
chine learning techniques under study, several experimental
test sets have been built. On the one hand, TEST#0 has been
performed by using only one polycrystalline silicon module.
On the other hand, TEST#1, TEST#2, and TEST#3 are based
on measurements from two modules in series, by applying a
different shadowing level in each case.

The first contribution of this work is the application of
a novel procedure for selecting the best training samples,
which is based on a Kohonen self-organizing map, as de-
scribed in Section III-D. This procedure replaces a random
selection and it is aimed at reducing the classification error.
This neural network performs an unsupervised classification
of the available samples in different groups, so that all the
samples classified in the same group are very similar. Hence,
a nonfrequent sample could not have similar cases, probably
requiring its own group. Therefore, if only one sample is
selected from each group, the special cases are ensured to
be selected, whereas from a group with many similar cases,
only one should represent all of them. As a consequence, the
importance of the nonfrequent cases in the training process is
increased significantly.

A further contribution of the work presented in this article
consists in the way to extract the most relevant information
of each I–V curve, described in Section III-C. Instead of
feeding the models by using the raw dataset of measured
I–V pairs, a third-degree polynomial has been used to fit the
measured points, so that the obtained coefficients of the poly-
nomial have been used as input of the approaches presented
in the article. Therefore, each curve is represented by the
four coefficients of the polynomial, so that all the methods
compared in this work receive an input data structure of a fixed
length.

As a first model to analyze, the behavior of the decision
trees to deal with the classification of the I–V curves is stud-
ied (see Section III-E). Then, a support vector classifier is
proposed to solve the same problem (Section III-F). Finally,
several types of artificial neural networks (ANNs) are tested: a
multilayer perceptron (MLP) in Section III-G, equipped with
one or two hidden layers, and a radial basis function (RBF) in
Section III-H, and some hybrid approaches in Section III-I. In
Section IV, the results achieved through the proposed methods
are discussed. The main conclusions of the work can be found
in Section V.

Once the best machine learning approach is known, it can
be merged with the MPPT algorithm and tested on-field in a
number of cases, in order to show that the proposed detection
of the partial shadowing occurrence allows us to reduce the
power losses related with a repeated scan of the I–V curve to
track the absolute MPP.

II. STATE OF THE ART
In the recent literature, a number of techniques aimed at de-
tecting faults and mismatching conditions in PV arrays have
been proposed. Many of them rely on the feature extraction
from PV array photographs [3], [4], [5], [6], [7], [8]. In a
few cases, e.g., in [9], image processing allows us to perform
a classification of different possible faults through convolu-
tional neural networks (CNNs). Such image-based approaches
require expensive sensors and means to take images in the
infrared, visible, or ultraviolet range.

Other approaches are based on the continuous measure
of the electrical output of the PV array, which allows us to
perform some inferences [10], [11], [12]. In some cases, the
main electrical parameters are used to perform the identifi-
cation, whereas in other cases, the input of the classification
algorithm is a set of suitably identified model parameters.
For instance, the single diode model is adopted and its series
and shunt resistance values are identified. Unfortunately, such
approaches require the measurement of the whole I–V curve,
from the open circuit to the short-circuit condition, with a
consequent power loss due to the temporary suspension of the
MPP tracking operation.

In [13], partial shading and mismatching conditions are
duly detected and not confused with a dynamic variation of the
actual irradiance level due to the meteorological conditions.
The proposed approach is based on the evaluation of a set of
assets defined by different thresholds, so that the measured
values are compared with the expected ones. Contrary to other
approaches, the algorithm runs in parallel with the MPP track-
ing algorithm, so that the PV power production is preserved.

A high accuracy in fault detection and classification based
on electrical data acquired at the PV array terminals is
achieved by using some artificial intelligence approaches:
In [14], a comprehensive review is proposed. The ANNs
emerge as effective tools to diagnose and classify faults and
degradation of PV sources.

Different neural network architectures have been proposed
in the recent literature. The MLP is widely adopted: In [15], it
allows us to make a categorization of the possible fault in PV
arrays from different technologies. Once the I–V curves have
been measured, the main electrical parameters are extracted
and provided, together with the current irradiance and the cell
temperature, to the neural network input. The measurement
of the operating conditions is thus required again, as well
as the need of the whole I–V curve to be provided at the
neural network input. A similar approach is presented in [16],
and [17], where MLPs are adopted to achieve a similar goal.
The same objective is pursued in [18] and in [19]: In the
former study, the estimation of the indicators required as MLP
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input is performed by a wavelet transform. In the latter paper,
instead, a CNN is adopted. An example of applications to
the same problem of a probabilistic neural network is given
in [20]. In [21], the k-nearest neighbor (KNN) is applied to
PV modules diagnosis.

A comparative study of different machine learning tools is
carried out in [22]. Faults are identified and classified into
several categories by using decision trees, KNN, and SVMs.
The proposed approach requires irradiance and temperature
measurements and also a preliminary effort of characteriza-
tion of the system in normal conditions. SVMs have been
used for fault classification in PV arrays also in [23] and [24].
In the latter one, the principal component analysis is used
to estimate the required indicators. Two SVMs have been
combined in [25] to obtain a more accurate classifier.

Some recent approaches are based on a hybridization of
different techniques. In [26], a recurrent gated unit is com-
bined with a CNN to identify different types of faults, without
extracting any indicator, by working directly with the infor-
mation captured from the I–V curves. The system does not
need any meteorological data.

In [27], it is shown that RBFs are a further powerful method
to develop a PV fault classifier. A complementary stage based
on a wavelet tool allows us to extract the indicators feeding
the neural network. An extensive tree to classify the different
types of faults is also proposed.

In conclusion, some recent approaches require a limited
portion of the I–V curve, restricted around the MPP, which
allows us to preserve the PV power production. Unfortunately,
many of them are based on a preliminary characterization of
the PV array operating in normal conditions, which represents
the reference for the values of the indicators used by the
technique. This initial step is mandatory to fix the boundaries
between the normal and the faulty condition for the specific
PV plant under study. It is worth to say that the reference
conditions depend on the season of the year and on the level
of degradation, so that reference values should be updated pe-
riodically. Furthermore, all the approaches require at least the
values of the incident irradiance and the module temperature,
not always available, especially for small installations.

The problem GMPPT is widely treated in the literature. The
trapping of classical MPPT algorithms, which are local opti-
mizers, in local MPPs is avoided by using global optimizers,
which are often based on heuristic algorithms. In almost all
the papers in the literature, the problem is afforded by starting
from a power versus voltage curve showing multiple MPPs
and the smartness in detecting the global maximum through
the proposed algorithm is duly documented. Unfortunately,
in all the papers that are focused on presenting new GMPPT
algorithms, the analysis of the event that triggers the GMPPT
algorithm to start the search is always neglected. It is some-
times said that the GMPPT starts when an abnormal PV power
variation is detected. Unfortunately, this is not always due
to the occurrence of a mismatching, e.g., partial shadowing,
event, but it might be due to a uniform variation of the irra-
diance level the PV array is receiving. In such a condition,

the GMPPT procedure is needlessly run, with a consequent
power loss and a useless computational burden. The algo-
rithm proposed in this article is just aimed at detecting the
event that really requires a GMPPT approach or evidencing a
fault condition. A number of different numerical procedures
are compared to assess what is the best method to solve the
problem thereof.

Consequently, the approach presented in this article is
aimed at filling the research gap with respect to the current
literature thanks to the following features.

1) The proposed approach does not require any initial
evaluation of the PV array operating under standard
conditions to settle suitable threshold values to use for
fault detection and classification. Thus, it does not need
any periodic update of the same thresholds.

2) The proposed approach does not need any irradiance
and temperature measurement, which is a great advan-
tage for small PV installations.

3) The proposed approach adopts an identification process
running in the current–voltage plane, without working
in any further space dedicated to fault indicators. This
feature allows the proposed method to be independent
of any PV array model and, thus, of its accuracy. This
strategy has been also recently addressed in [26].

4) The training set is smartly chosen by exploiting an un-
supervised neural network known as the self-organizing
map.

III. METHODOLOGY
A. GENERATION OF SIMULATED I–V CURVES
In order to design a universal tool that is independent from the
specific length of the PV string, from the specific electrical
parameters of the PV modules and of the number of bypass
diodes, the training set has been generated by means of a sim-
ulation model, which describes the PV string at a suitable level
of granularity. This makes the study more general than the
one that should be done by using measurements concerning a
specific PV string.

The I–V curve of a PV string working under normal con-
ditions has been simulated by (1), where V and I are voltage
and current at the whole PV string terminals, Iph is the photo-
induced current, Is is the saturation current, η is the ideality
factor, Ns is the total number of cells of the string, Rs and Rh

are the series and shunt resistances of the string, respectively,
VT = kT/q is the thermal voltage (with k = 1.381e-23 J/K,
q = 1.602e-19 C, and T in Kelvin is the cell temperature)

I = Iph − Is

[
exp

(
V + IRs

NsηVT

)
− 1

]
− V + IRs

Rh
. (1)

As for the partially shadowed PV string, each string of cells
protected by a bypass diode is simulated through a nonlinear
equation; the equations of all these elements in the PV array
are combined according to the Kirchhoff laws to consider
the series connection of all the strings. The synthetic curves
generated in this way use two levels of irradiance, since the
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interest is in the MPP at the highest voltage only. Thus, it is ir-
relevant to the problem treated in this article if the mismatched
I–V curve includes two MPPs or more. The two levels of
irradiance considered are the normal and shaded ones, which
refer to Iph,1 and Iph,2 as photo-induced currents, respectively.
The most interesting case occurs when few groups of cells in
the string are shadowed. In conclusion, each group with its
bypass diode is modeled through (2) using Iph = Iph,1 if it is
working at a high irradiance level or Iph = Iph,2 if it is working
at a low irradiance level

Ii = Iph − Is

[
exp

(
Vi + IiRs,str

Ns,strηVt

)
− 1

]

− Vi + IiRs,str

Rh,str
+ Isb

[
exp

(
Vi

Vt

)
− 1

]
(2)

where Isb is dark saturation current of the bypass diode, and
the subscript str (in Rs,str, Rh,str, and Ns,str) refers to each
parameters scaled up to the string from the value of the same
parameter referring to a single cell. As all the groups have
been connected in series, all the unknown currents of all the
groups must be equal and the sum of all the unknown voltages
must be equal to the total voltage of the PV string.

The values of the five required parameters of the single-
diode model, of the module temperature, and of the dark
saturation current of the bypass diode have been randomly
chosen within a feasible range

Iph ∈ [1, 12] A
Is ∈ [1e − 12, 1e − 5] A
η ∈ [1, 2]
Rs,cell ∈ [0.001, 0.01] �

Rh,cell ∈ [1, 50] �

Isb ∈ [1e − 9, 1e − 6] A
Tc ∈ [0, 70] ◦C.

The model has been simulated by taking into account that
the number of cells protected by a bypass diode can vary
between 1 and 30 and the total number of cells also varies
between 6 and 900. These wide ranges have been set in order
to ensure the applicability of the achieved methods to a full
range of possible photovoltaic arrays.

By following the procedure described above, two subsets
of 5000 curves per class, thus a total of 10 000 curves, have
been simulated: 1) a first subset following (1) and referring
to PV strings operating under uniform conditions; 2) a sec-
ond subset following (2) representing mismatched PV strings.
When partial shadowing occurs, although the I–V curve has
more than one MPP, the attention is focused on the rightmost
one because an MPP tracking any other MPP should drive
the operating point at a voltage value that is lower than the
open-circuit voltage.

B. GENERATION OF THE DIFFERENT TEST SETS
Except for the decision tree, all the proposed approaches re-
quire a parameter tuning stage, consisting in repeating the
training process by trimming the approach’s specific param-
eters. For instance, MLP and RBF with a different number of

FIGURE 2. Experimental I–V curves measured under different conditions.
(a) Under uniform conditions. (b) Under mismatched conditions.

neurons in the hidden layer are trained, so that their optimal
architecture is determined. Thus, the training set of simulated
curves is used as input each time the model is fitted; another
independent set of curves is used as test set in order to deter-
mine the best architecture, e.g., the number of hidden neurons,
namely the one resulting in the minimum error over that test
set. This first test is named TEST#0.

The test set used in this article to tune each approach
includes 2000 experimental I–V curves not related to the
training set: 1000 of them corresponding to normal operating
conditions and other 1000 to mismatched conditions. In order
to obtain this test set, an experimental campaign of measure-
ments has been performed, referring to a real commercial
PV module composed corresponding to model PCB-195-
A15 from the manufacturer YOCASOL [28]. Some examples
of experimental curves corresponding to normal conditions
are shown in Fig. 2(a), whereas Fig. 2(b) includes other
cases of curves measured under mismatching conditions. The
measurement system, in both its hardware and software com-
ponents, used to acquire these I–V curves is described in [29],
[30], and [31]. At the beginning of its lifetime, the module
shows normal I–V curves; a few months after its first use, its
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FIGURE 3. PV modules in series using a screen onto one of them to
simulate partial shadowing conditions.

behavior progressively worsens resulting in stepped curves,
up to a moment when it went out of order due to an electrical
internal fault.

Once the best structure of each method has been identified
by means of the TEST#0, the performance and generalization
capabilities of the methods have been analyzed by using two
additional test sets, which refer to an array of two PV modules
FLEX SP50-L from SOLBIAN [32] connected in series. The
following additional test sets are defined.

1) TEST#1: 500 I–V curves corresponding to normal op-
erating conditions and other 500 curves obtained by
shadowing one of the two modules by a screen reducing
the incident irradiance until 30% of the actual irradiance
(see Fig. 3).

2) TEST#2: 500 I–V curves under normal operating condi-
tions and other 500 curves obtained by shadowing one
of the two modules with a layer screen reducing the
incident irradiance by 55%.

3) TEST#3: 500 I–V curves under normal operating con-
ditions and other 500 curves obtained by shadowing the
second module to reduce its irradiance by 88%.

C. EXTRACTING THE RELEVANT INFORMATION OF EACH
I–V CURVE
In this work, not all the samples of the I–V curve are used in
order to decide if the PV string or module is working under

FIGURE 4. Selection of points around the MPP and estimation of the
polynomial.

normal or fault operating conditions. Only the set of points
close to the MPP is considered to detect a fault condition
because they are almost the ones available without losing the
tracking of the MPP during the usual operation of the PV
array.

After simulating a set of full I–V curves, a procedure to
select the points around the MPP has been executed to extract
the useful part of the curve. Assuming that Pmax = max{Ii ×
Vi} is the power value of the discrete point with the highest
power, all the points having a power value greater than 95%
of Pmax, have been chosen. In Fig. 4, these selected points are
the highlighted ones enclosed inside the dotted box.

The number of samples selected in this way might be dif-
ferent from curve to curve. Unfortunately, all the machine
learning tools used in this article require input samples of
a fixed length. Therefore, each set of I–V points must be
converted into a vector with fixed length. According to the
current literature [33], [34], [35], a polynomial allows us to
fit the set of selected points and calculating an accurate value
of Pmax. Inspired by that idea, in this article, a third-degree
interpolating polynomial (3) interpolating the samples around
the MPP, as it is exemplified in Fig. 4 by a continuous blue
line, has been used. A regression procedure has allowed to
compute the coefficients {C0,C1,C2,C3}

C3 V 3 + C2 V 2 + C1 V + C0 =⇒ (C0,C1,C2,C3) . (3)

The degree of the interpolating polynomial has been chosen
according to the results that are described in the sequel, at the
end of Section IV-C.

D. SELECTION OF THE TRAINING SAMPLES USING A
SELF-ORGANIZING MAP
The initial set of simulated I–V curves has a total number of
10 000 samples: 5000 curves simulating normal conditions
and other 5000 simulating mismatched conditions. Whereas
most of the shapes of the normal curves appear to be similar,
there is more discrepancy among the shapes of the faulty
curves. In other words, in the faulty group, a lot of differently
shaped curves fall. Some of those shapes are more frequent
than other shapes in the initial training set. In general, the
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FIGURE 5. Self-organizing map to select the most representative curves.

machine learning models try to minimize a global function,
in such a way the nonfrequent samples use to have very small
influence on the final model. Therefore, the results when the
model is applied to those cases have very high error. A way to
solve this problem is to increase the weight of those nonfre-
quent samples in the training process.

Instead of using all the samples of the simulated set of
I–V curves, a suitable selection of the most representative
samples from this initial training set could be very useful to
improve the accuracy of neural network models. We propose
to perform this selection by means of a SOM, self-organizing
map [36], a type of ANN discovers similarities among the
input samples and it classifies the samples into a number of
groups defined by the user. If there are many very similar
samples, all of them are assigned to the same group. A special
nonfrequent case is assigned to a new specific group. Finally,
as from each group only one sample is selected, more im-
portance to the nonfrequent cases in the selected set is given.
From the initial set of 10 000 simulated I–V curves, the SOM
classifies them into 2500 groups (see Fig. 5), by taking into
account the features of each curve that are summarized in
the vector (C0,C1,C2,C3). Then, the I–V curve closest to the
mass-center of each group has been selected as the represen-
tative of that group. Therefore, 2500 I–V curves have been
used to train the models, which is more representative than
the whole initial set of 10 000 curves.

The SOM distributes the groups on a map so that the closer
two groups, the more similar the elements that belong to both
groups. The user only has to define the type of map (1-D, 2-
D, 3-D,...) and the dimensions (for example, a 2-D map of
3 × 4 implies 12 groups), and the SOM network determines
to which group each of the input samples belongs. For the
case under study, a 2-D map of 50 × 50 (this implies the 2500
groups specified before) has been used.

Finally, some implementations of the SOM routine, such as
newsom/train in Matlab [37], are run into two phases: the first
group of iterations, which are characterized for having a high
learning rate allowing great changes, and the second group of

FIGURE 6. SVM maximal margin hyperplane to separate two categories.

iterations, with a low learning rate for a small tuning of the
results.

One of our main objectives in this article is to show the
improvement introduced in the training process of the differ-
ent techniques by means of using a Kohonen self-organizing
map to perform a smart selection of the training samples.
Therefore, for all the studied methodologies, we will perform
a comparative analysis between the results using the proposed
approach versus using 2500 samples that have been randomly
selected from the initial 10 000 samples.

E. DECISION TREES
The most widely used classifiers are the decision trees, which
have been successfully applied to detect faults in PV arrays
and PV systems [38], [39]. Basically, a decision tree is a
recursive splitting of the sample space by the application of
a sequence of questions about the values of the attributes
(or components) of the samples to be classified. Each ques-
tion depends on the answer provided for the previous one, in
such a way, they can be considered as the nodes of a tree
where the leaves (nodes without children) must be one of
the possible categories (in our case normal operation or fault
operation). Each node divides the sample space into several
groups depending on a decision about the attributes of the
sample to be classified). Therefore, by descending from the
root to the leaves through the internal nodes (decision nodes),
it is possible to assign one of the possible categories to each
input sample.

The Statistics and Machine Learning Toolbox of Mat-
lab [37] includes the function fitctree that is able to generate a
classification tree from a set of labeled samples (each sample
has been previously classified into one of the possible cate-
gories). The implementation of this function is based on the
CART algorithm described in [40]. The main advantage of
this approach is that the obtained model (the decision tree
itself) is very easy to be interpreted and applied by a human.
In addition, the generation of the decision tree consumes very
low computational resources in terms of time and memory, in
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FIGURE 7. Kernel transformation to achieve a linearly separable set.

such a way, we can obtain an operational model in very few
seconds.

F. SUPPORT VECTOR MACHINES
An alternative to the use of decision trees is the support vec-
tor machine (SVM), a supervised learning approach that is
mathematically based on the statistical theory and that was
initially proposed by [41]. The simplest SVM tries to define
a hyperplane (an n-dimensional plane) to classify samples
(�xi ∈ Rp) into two different categories (yi = +1 or yi = −1)
that are linearly separable. For each hyperplane defined by
�w • �x + b = 0 (see Fig. 6), it is possible to calculate its margin
as min{d+, d−}, where d+ is the distance to the hyperplane of
the nearest sample (or samples) of the class yi = +1 and d− is
the distance of the nearest sample of the class yi = −1 (these
samples are known as the support vectors). The hyperplane
identified by an SVM is the one that maximizes its margin,
and this fact only happens if d+ = d−.

This basic SVM cannot deal with the outliers, which are
samples that actually belong to one class but that are very
close to the samples of the other class (perhaps due to the
presence of noise). In Fig. 6, the addition of the outlier sam-
ple implies a significant change in the estimated hyperplane.
Instead, it is possible to let the previous hyperplane but allow
some degree of misclassification among the samples of the
training set. Each sample that is misclassified implies a penal-
ization that is weighted by a user parameter C (also known a
kernel constraint) that must be set before the training of the
SVM. Depending on the value of C, the outliers have more
or less influence on the fitting of the hyperplane. In fact, the
performance of the SVM is very dependent on this value.

SVMs may also deal with datasets for which it is impos-
sible to find a way to separate them linearly without a high
number of misclassifications, as it can be seen with a 2-D
example in Fig. 7(a). By applying a function �φ(·), the sam-
ples �x from the input space are mapped into �φ(�x) inside an
alternative space with a high number of dimensions, where
the transformed set of points can be linearly separated into
two different categories by a hyperplane. Fig. 7(b) shows the
transformations of the previous samples in a 3-D space where
it is possible to find a plane that divides linearly the space

and allows us to distinguish both categories. In any case, for
applying the SVM, it is not necessary to use the function �φ(·)
itself. For a pair of samples �x1 and �x2, the scalar product of
their transformations is needed. This is known as the kernel
function, being the Gaussian kernel (provide by the following
equation) the most popular for SVM and the one used in this
article:

K (�x1, �x2) = �φ (�x1) • �φ (�x2) = exp
(
γ · ‖�x1 − �x2‖2

)
(4)

where the parameter γ is a scaling value that should be set
beforehand. Finally, it is known that SVMs work better if each
component of the vector representing the input samples has
been previously normalized taking into account the mean and
the typical deviation of each component.

G. MULTILAYER PERCEPTRON
An ANN is a computing paradigm based on a biological
model made up of several elementary units (known as neu-
rons) organized in levels or layers, defining a relationship
between their inputs and their outputs. Each individual neu-
ron performs a very simple calculus getting a fixed number
of input values, multiplying each one by a weight and then
adding all the results. Finally, the transfer function of each
neuron is applied to the obtained result. There are several
available transfer functions, but the most typical is the hy-
perbolic tangent [42]. The main idea is to combine several
of these simple units or neurons connecting several of them
creating a network with a specific architecture able to capture
the underlying function that rules the relationship between
dependent and independent variables in a dataset where very
complicated dynamic phenomena are involved.

In this article, the MLP ANN is used: It is a feedforward
network (the information goes only in one direction without
loops) formed by several layers of neurons between the in-
put and the output. In a training phase, the inputs and their
desired outputs are presented to the network and the weights
(connection between neurons) are adjusted until reaching a
mean-square error between the actual output and the desired
output is low enough to consider that the MLP has been
trained. Then, once the network has been trained, it is pos-
sible to calculate the estimated output just by entering the
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FIGURE 8. Different architectures for a multilayer perceptron. (a) With a
unique hidden layer. (b) With two hidden layers.

inputs. During the training phase, the weights between neu-
rons should be adjusted, taking into account the classification
error of the training samples at the output layer. This error
can be propagated from the last layer to the initial layer,
modifying all the weights and bias; this process is repeated
until the classification error reaches a minimum threshold.
Instead of using the classical error back-propagation algo-
rithm [43], based on the steepest descent optimization and
with a very slow convergence, in this work, a variation based
on the Levenberg–Marquardt method [44] is preferred.

Initially, to classify the samples into normal or fault, an
MLP with only a single layer of hidden neurons is proposed
[it can be seen in Fig. 8(a)]. Therefore, this MLP will be
composed of an input layer, one hidden layer, and an output
layer. There is one neuron for each input quantity; therefore,
we have four neurons in the input layer. As we want to classify
the samples into two categories, it is enough with only one
neuron in the output layer that can be −1 or +1. The number
i of hidden neurons must be set before the training phase. The
determination of this number is not an easy task and there is
not a generic rule widely accepted [45].

The optimal architecture of the MLP models (with ref-
erence to the number of neurons in each layer) has been
found by implementing a grid search approach. It is based
on a repeated run of the training routine with the number of
hidden units changed between a minimum and a maximum,
so that the outperforming configuration is found as the best

one. In this work, we have tested the different options from
i = 2 until i = 20). Another problem to take into account is
that even using the same architecture and the same training
set, the obtained result could be different because the initial
values of the weight between neurons are randomly set at the
beginning of the training algorithm. Hence, the same config-
uration should be tested several times (10 times in this work)
obtaining different results.

With respect to the number of layers, it is accepted by the
community only to test one hidden layer or two hidden layers,
but the latter approach is reserved only for special cases with a
very complicated underlying function [46], [47], [48]. There-
fore, in this work, the MLPs with only one and two hidden
layers have been tested. In fact, in the literature, there are
cases where an MLP with two hidden layers [see Fig. 8(b)] is
required to achieve better results than with only one layer [49].
This requires to determine the optimal combination of units
for the first hidden layer (i = 2, . . . , 15) and units for the sec-
ond hidden layer ( j = 2, . . . , 15), repeating also the training
10 times for each combination. An approach very similar to
this one has been described in a previous work [50].

H. RADIAL BASIS FUNCTIONS
There is another type of classifier known as RBF, in which
the activation function of the neurons of the hidden layer is
Gaussian [51]. The weights of each of the hidden neurons
represent a point in an n-dimensional space, where n is the
number of neurons in the input layer. For each input sample,
each hidden neuron estimates the distance between said sam-
ple and the point that it represents, and to this distance, the
Gaussian transfer function is applied. Finally, all the outputs
of the hidden neurons are multiplied by some weights and
summed up in an output layer neuron that determines the class
to which the input sample belongs.

The underlying idea behind RBFs is that each neuron in the
hidden layer represents a set of input samples that are similar,
and therefore must be classified in the same way. The measure
of such similarity is precisely the distance between the point
represented by the hidden neuron and each input sample. The
goal is to be able to classify a large number of input samples
using a small set of hidden neurons. In this work, the number
of units in the hidden layer is tested repeating the training
procedure for values of i from 2 to 20. As in the case of the
MLP, the initialization of the weights is made randomly, so the
same value of i is again tested with the experimental curves
(not seen during the training), a significant number of times
(10 repetitions in our case), and the best RBF is considered
for each value of i.

I. HYBRID APPROACHES WITH TWO HIDDEN LAYERS
To improve the performance, some authors have proposed
the hybridization of MLP and RBF networks [52], [53].
Following this line, it would be possible to train an MLP
with two layers of hidden neurons, but having in the first one
all neurons with Gaussian transfer function radbas, and in
the second layer, all neurons with hyperbolic tangent tansig
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FIGURE 9. Different architectures for a hybrid multilayer perceptron.
(a) First layer with radbas and second one with tansig. (b) First layer with
tansig and second one with radbas.

[referred in this article as HMLP1 and depicted in Fig. 9(a)].
Another option is the use of tansig for the first hidden layer
and with radbas in the second hidden layer [noted as HMLP2
and shown in Fig. 9(b)]. In both cases, and as with the classic
MLP of two hidden layers, in order to determine the optimal
number of neurons for each layer it will be necessary to study
the different possible combinations: for the first layer from
i = 2, . . . , 15, and for the second layer from j = 2, . . . , 15.
Again, each combination will be tested 10 times with a differ-
ent random initialization.

IV. RESULTS
Once the best model has been identified and trained, it can be
used to classify an I–V curve: The flowchart shown in Fig. 10
exemplifies the steps of the procedure proposed in this article.

The computer used for fitting the models is a laptop MSI
Creator 17 A10SE with a CPU Intel i7-10875H with 8 cores
and 32 GB RAM. As a first step, before fitting the models
described in Section III, the SOM network is used to perform a
selection of the most representative I–V curves from the initial
set of 10 000 simulated ones. As it is explained in Section III-
D, a 2-D self-organizing map with 50 × 50 neurons has been
used. For each of the 2500 groups, the curve closest to its mass
center is chosen as its representative, so that a total of 2500 I–
V curves are selected to train the models. For the first phase of
the routine newsom/train [37], 5000 iterations with a learning

FIGURE 10. Flowchart summarizing the identification of mismatched
conditions.

TABLE 1. Classification Errors (%), Total Training Time, and Predicting Time
for Each Technique Using Kohonen SOM to Select the Training Set

rate of 0.1 have been settled, whereas for the second phase,
other 5000 iterations have been set with a learning rate of 0.01.
The time required for this previous step has been a bit more
than of 218 min, exactly 13 083 s.

By running newsom/train, over the total of 2500 I–V curves,
670 curves correspond to normal operating conditions and
the remaining 1830 curves are associated with mismatched
conditions. This confirms the greater variability of the curves
representing the mismatched conditions.

The first row of Table 1 shows, for every proposed deep
learning technique, the total time to execute the training
routine for all the repetitions varying the parameters to be
optimized. For example, in the SVM, the same training rou-
tine should be executed 240 × 90 times to cover a feasible
range for C and γ . The same fact can be stated for the other
paradigms, except for the decision tree whose fitting process
is executed only once. More important than the training time
is the prediction time for the best performing model of each
proposed method (selecting the training model that optimizes
the error over TEST#0). These times, in nanosecond, have
been determined by running every technique on the same
personal computer mentioned above (disabling previously the
multicore feature because the models are intended to be run in
a single-core embedded system). As these prediction times are
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FIGURE 11. Decision tree obtained for the training set.

very small to be measured accurately, each best trained model
has been executed over a massive set of curves, and the mean
execution times have been reported. The MLP with a single
hidden layer of neurons results in the shorter computation
time. On the other hand, the prediction time required by the
best trained SVM is of one order of magnitude greater than
the time required by all the other approaches.

At a first glance, all the proposed approaches obtain very
low classification errors when they are applied to TEST#1, but
for the other test sets, especially TEST#3, the results are very
deceptive, except for the SVM and for the MLP with a unique
hidden layer. The main difference is the level of shadow ap-
plied in each case. It seems that when the level of irradiance
of the shadowed module in the series is below a threshold, it
will not operate around the rounded part of the curve but also
operates in a different point not learned during the training
process. In fact, as some authors claim [54], the most relevant
feature of the SVMs is their generalization power, i.e., their
capacity to manage cases not seen during the training of the
model. Now let us see the behavior of each model with more
detail.

A. DECISION TREE RESULTS
As first, the classification of the I–V curves into NORMAL or
FAULTY classes has been performed by using decision trees.
The performance is summarized in the column headed by the
label TREE of Table 1 that collects the classification errors
over the different sets of experimental curves. The obtained
result when fitting the tree, shown in Fig. 11, can be eas-
ily interpreted by a human. As it can be seen, for TEST#0
and TEST#1, the errors are not too high (7.1% and 2.3%,
respectively). However, if the other test sets are used, very
disappointing results are achieved. This is due to the tendency
of this technique to overfit the training set [55]: It is able to
capture with high level the irregularities of the samples used
for training, but it sometimes cannot generalize for another
cases that have not been analyzed during the fitting procedure.

B. SVM RESULTS
The SVM approach has been tested over the same training
set of curves. It is worth to note that the implementation of

FIGURE 12. Evolution of the classification error in the SVM as a function
of C.

the support vector classificator in Matlab, by fitcsvm [37],
allows us to use different types of kernels, but the only one
giving moderately acceptable results is the Gaussian kernel.
Different values of γ and C within a range, from a minimum to
a maximum repeating the training algorithm for each possible
combination, have been tested. Finally, the best SVM is that
one that achieves the smallest classification error over a test
set, which is different from the training set. All the combina-
tions for γ and C have been tested, considering 90 different
values of γ ∈ [0.1, 1.0] (linearly spaced) and 240 values of
C ∈ [10−1, 105] (logarithmically spaced). The total execution
time for the training of all the combinations was 5.74 h. This
time is required to optimize the two parameters γ and C simul-
taneously because all the possible combinations of them have
to be tested, repeating the training procedure for every case
(a lower total execution time could be possible reducing the
range and interval step for γ and C but a worse solution could
have been achieved). The best result over the experimental set
of curves has been achieved with γ = 0.69 and C = 103.895.
The resulting classification error over TEST#0 is only 0.3%.
The results over the other test sets have been summarized in
Table 1 under the column headed by the label SVM. As it
can be seen, this best trained SVM ensures the optimal results
over TEST#1, TEST#2, and TEST#3, outperforming all other
methods. This means that obtained SVM has a great power of
generalization.

In Section III-F, it was stated that the performance of an
SVM classifier depends on the value of the parameter C. This
dependence is shown in Fig. 12, which gives the classifica-
tion error of different trained SVMs, by fixing the value of
γ = 0.69 and by varying C from 10−1 to 105. Initially, as
C increases, the classification error also increases. However,
once a local maximum error around 3% is achieved, there is a
decrement until the global minimum of 0.3% is reached.

C. ONE HIDDEN LAYER PERCEPTRON RESULTS
The MLP-based approach with only 1 hidden layer has been
also tested, by increasing the number of neurons i from 2 until
20. For each number of hidden neurons, the training process
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FIGURE 13. Classification error as a function of the number of hidden
neurons for MLP1.

has been executed 10 times and the results have been com-
pared. For a fixed number of neurons in the hidden layer, the
best trained network is the MLP with the minimum classifica-
tion error over the experimental set of curves TEST#0, which
are not used for the training. Finally, the optimal number of
neurons has been fixed by taking into account the evolution of
the error from 2 until 20. Fig. 13 shows the error as a function
of the number i of neurons in the hidden layer (solid blue line).
It is only necessary to use four neurons in the hidden layer to
reach a minimum classification error of 0.3%, in such a way,
since this point, increasing the number of hidden units does
not improve the obtained results.

As it can be seen in the column titled MLP1 of Table 1,
the results over TEST#1 and TEST#2 are identical to the ones
obtained in the SVM case, highlighting also the generalization
capabilities of the MLP. However, for TEST#3, which seems
to be more challenging, the MLP1 is significantly worse than
the SVM. In Fig. 13, it is shown the evolution of the error
but in case of training the MLP not using the proposed smart
selection of the samples, but using a random selection. This
subplot is analyzed in Section IV-F.

The total training time is 6.22 h, required to perform the
search to optimize the number of hidden neurons. Again, this
time is required because the training procedure provided by
Matlab has been repeated 10 times for every different value
of i from 2 till 20, i.e., it has been run 190 times over the
same training set. With the smallest prediction time of all the
models (117 ns), the MLP with a single hidden layer achieves
good results in terms of error for all the testing sets, only
outperformed by the SVM model in the TEST#3 case.

The adoption of a third degree polynomial for interpolating
the curve samples across the MPP is justified on the basis of
different repetitions of the complete training process over the
same training set, only varying the degree of that interpolat-
ing polynomial, from the second to the sixth. For the sake
of brevity, in Fig. 14, only the results referring to the MLP

FIGURE 14. Classification error as a function of the number of hidden
neurons for different interpolating polynomials.

with one hidden layer are shown. On the one hand, when
using a low degree interpolating polynomial (second, third,
and fourth), the classification error decreases as the number
of neurons in the hidden layer increases, until it reaches a
minimum, and then remains stable. On the other hand, for
the fifth and sixth cases, the classification errors do not fol-
low a clearly trend as a function of the number of hidden
neurons. This comparative reveals that the third degree en-
sure the best classification errors in the considered range of
hidden neurons.

D. RBF RESULTS
As it is explained in Section III-H, the training procedure of
the RBF is also performed by changing the number of neurons
in the hidden layer from i = 2 to i = 20. In addition, fixing
the value of i, the training is also repeated 10 times, giving
different trained RBFs due to the random initialization of the
weights. In order to determine the optimal number of hidden
neurons, we will take into account the best RBF among the
10 repetitions for the same value of i, i.e., the RBF with the
smallest error over the experimental test set.

As it can be seen in Fig. 15 (solid blue line), the error
of the best RBF over TEST#0 does not show a very clear
tendency as a function of the number of hidden neurons, but it
seems to reach a minimum value of 0.3% when i = 8 (the red
line is referred RBFs without using the smart selection of the
samples to be trained). In addition, the classification error over
TEST#1 equals the results obtained by the SVM and MLP1.
However, for TEST#2 and TEST#3, the achieved results are
significantly worse.

E. TWO HIDDEN LAYER PERCEPTRON RESULTS
A further test has been done by adding to the MLP a second
layer of hidden neurons (referred as MLP2). In order to de-
termine the optimal architecture, all the possibilities between
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FIGURE 15. Classification error as a function of the number of hidden
neurons for RBF.

2 and 15 neurons for the first and the second hidden layers
(14 × 14 = 196 different architectures) have been analyzed,
by executing the training algorithm 10 times for each archi-
tecture. By using an architecture with two hidden layers, the
best trained neural network (taking into account TEST#0) is
achieved with 10 neurons in the first layer and 14 neurons
in the second layer, with a classification error over of 0.25%.
Using as test set TEST#1, as in the SVM and MLP1 cases,
the error is again 0.1%. Unfortunately, the results obtained for
TEST#2 and TEST#3 are quite bad.

The hybrid approach referred in Section III-I as HMLP1
achieves a minimum error over TEST#0 of 0.25% with 6
neurons in the first hidden layer (radbas) and 2 units in the
second layer (tansig). This hybrid architecture, with a first
hidden layer using a Gaussian transfer function, allows us to
achieve good results for all the test sets except for TEST#3.

The neural network HMLP2, configured with 4 tansig units
in the first layer and 4 radbas units in the second layer, is
able also to reach an error of 0.25% over TEST#0. However,
the results for the other test sets are worse than the obtained
ones with HMLP1. In general, having more layers implies
that the training set is overfitted. Moreover, as there are two
parameters to optimize (the number of neurons of both layers),
the total execution time is very high for the three cases with
two hidden layers, as it can be seen in Table 1.

F. IMPROVEMENT DUE TO SOM
In order to quantify the improvement achieved by the smart
selection of the samples based on the Kohonen SOM network,
the obtained results when using a random selection of the
samples are summarized in Table 2, and they can be compared
with those ones shown in Table 1.

In general, the error values are smaller when using the
approach proposed in this article, being the difference being
very significant for the SVM and the MLP1. In both cases,
the selection of the training samples using SOM appears to

TABLE 2. Classification Errors (%), Total Training Time, and Predicting Time
for Each Technique Using a Random Selection of the Training Set

be crucial in order to have an operative model for both neu-
ral networks. Therefore, the implementation of the approach
proposed in this work to select the training samples has a sig-
nificant beneficial effect in terms of classification error, since
the generalization power is improved significantly, except in
the case of the decision trees.

In addition to the aforementioned, as it can be seen in
Figs. 13 and 15, when using the Kohonen SOM to select the
training samples, the tendency of the classification error as a
function of the number i of hidden neurons is very clear, being
very easy to determine the optimal value of i. However, with
the random selection of the training samples, it is very compli-
cated to optimize the number of hidden neurons because the
classification error seems to affect by a random oscillation.

V. CONCLUSION
A comparison of several paradigms belonging to the data
mining field has been presented. They have been used to detect
the occurrence of mismatched conditions in a photovoltaic
array by using only a reduced set of points very close to
the MPP of its characteristic curve. It has been demonstrated
that mismatched conditions are detected without measuring
the whole curve, thus without stopping the MPP tracking
operation. The need of a fixed-length array of I–V samples
as input for all the approaches compared in this article has
suggested the adoption of a polynomial of a fixed degree that
interpolates the points around the MPP. The four coefficients
of this polynomial are collected in the input array for all the
data mining approaches used in this article. The models have
been fitted by using simulated curves covering a wide range
of the array operating conditions. This guarantees that the
proposed models can be applied to very different situations.

It is shown that the performance of the approaches is im-
proved by selecting the most representative curves by using
a Kohonen self-organizing map. This procedure allows us to
give more importance in the training process to those curves
that are less frequent, by minimizing the error for those cases.
In addition, this smart selection of the training samples makes
easier the optimization of the number of hidden neurons.

It has been shown that the decision tree is the only approach
needing a short computation time to generate a result that can
be easily understood by a human. Unfortunately, it gives the
worst classification results.

The SVM and MLP with one hidden layer achieve the best
results, being the former even better than the second one for
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some extreme cases of mismatching. However, the main dis-
advantage of the support vector classifier is the high prediction
time required for its execution. It has been also shown that
adding a second layer of hidden neurons to the multilayer
perceptron does not lead to improved results, due to overfitting
problems and a very high training time.
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