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ABSTRACT A hybrid renewable energy source (HRES) consists of two or more renewable energy sources,
such as wind turbines and photovoltaic systems, utilized together to provide increased system efficiency
and improved stability in energy supply to a certain degree. The objective of this study is to present a
comprehensive review of wind-solar HRES from the perspectives of power architectures, mathematical
modeling, power electronic converter topologies, and design optimization algorithms. Since the uncertainty
of HRES can be reduced further by including an energy storage system, this paper presents several hybrid
energy storage system coupling technologies, highlighting their major advantages and disadvantages. Various
HRES power converters and control strategies from the state-of-the-art have been discussed. Different types
of energy source combinations, modeling, power converter architectures, sizing, and optimization techniques
used in the existing HRES are reviewed in this work, which intends to serve as a comprehensive reference
for researchers, engineers, and policymakers in this field. This article also discusses the technical challenges
associated with HRES as well as the scope of future advances and research on HRES.

INDEX TERMS Hybrid renewable energy sources, hybrid energy storage system, optimization, power
converter, photovoltaic power, wind turbine.

I. INTRODUCTION
An urgent need for alternative sources of energy becomes
imminent due to the rapid depletion of fossil fuels, which have
been extensively utilized to meet the load demand nowadays.
The usage of fossil fuel is also responsible for global warming
phenomena [1]. Renewable Energy (RE) sources are the best
candidate to provide green energy to overcome this global en-
ergy issue. Therefore, it is anticipated that the RE sources will
play a pivotal role in the future power supply [2]. For instance,
from 2017 to 2018, the cumulative global capacity of renew-
able electricity increased from 2,181 GW to 2,355 GW. In
2018, renewable electricity was 20.5% of cumulative electric-
ity capacity and provided 17.6% of the total annual generation
in the United States [3]. The United States’ renewables capac-
ity and generation from 2009 to 2018 are illustrated in Fig. 1.

FIGURE 1. U.S. Capacity and Generation: All Renewables (Data obtained
from [3]).

As reported in [4], RE was the only energy source
which saw increased demand in 2020 despite the pandemic,
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FIGURE 2. Annual PV and wind capacity additions by the USA (Data
obtained from [4]).

while all other fuel consumption declined. Annual renewable
capacity additions increased by 45 percent in 2020 to nearly
280 GW, the highest year-on-year increase since 1999. Specif-
ically, solar PV capacity additions are predicted to reach 162
GW by 2022, representing a nearly 50% increase from the
pre-pandemic level of 2019. In addition, global wind capacity
additions grew by more than 90% in 2020 to 114 GW, a 50%
increase from the 2017-2019 average [4]. The annual PV and
wind capacity additions by the U.S. are also illustrated in
Fig. 2. The U.S. have also provided $280 million in funding
for solar power integration and research and $110 million in
funding for wind power integration in the fiscal year 2021
budget [5].

According to the U.S. Energy Information Administration
(EIA), about 39.7 GW of new electricity generating capacity
will come online in 2021, with PV accounting for 39% of the
new capacity and wind accounting for 31%. In 2021, 15.4
GW of utility-scale PV capacity is expected to be added to
the grid, with four states accounting for more than half of the
new utility-scale solar capacity: Texas (28%), Nevada (9%),
California (9%), and North Carolina (7%). Furthermore, it
is anticipated that approximately 12.2 GW of utility-scale
wind capacity is scheduled to come online in 2021, with
Texas and Oklahoma states accounting for more than half
of the 2021 wind capacity additions, including the 999-MW
Traverse wind farm in Oklahoma, which is the largest wind
project [6].

It is known that the output of the most renewable en-
ergy sources such as photovoltaic (PV) array and wind tur-
bines (WT) substantially depends on ambient environmental
conditions. Subsequently, they are producing unstable out-
put characteristics, which is the fundamental disadvantage of
renewable energy generations [7]. Thus, various power con-
verters and control strategies are developed for controlling
and monitoring active and reactive power, which encounters
challenges due to the intermittent nature of renewable energy
sources. This kind of power fluctuation poses severe problems
for power grid companies such as power quality, load leveling,
generation dispatch control, and electric system reliability [8].
The duck curve shown in Fig. 3 can be used to illustrate
the considerable challenge of accommodating solar and wind
energy, and the potential for overgeneration and curtailment.

FIGURE 3. Duck curve illustration. Load, solar, and wind profiles for
California on March 29, 2013 in a scenario with 11% annual wind and 11%
annual solar [9].

FIGURE 4. Global Electricity Generation by PV and WT (Data obtained
from [3]).

Fig. 3, modified from [9], illustrates a graph of the total system
load of the state of California, the wind and solar PV power
feed-in, and the residual load on March 29, 2013. The scenario
was considered here with the potential to meet 11% of the
annual demand from wind and 11% of the annual demand
from solar.

The hybrid utilization of the PV and WT are one of the most
promising technologies among renewable energy sources for
satisfying the load demand because they have complemen-
tary energy generation profiles. Specifically, hybrid renewable
energy systems (two or more generation units combined to-
gether) can be used to solve such power intermittent issue and
enhance power system reliability [10]. Consequently, the pen-
etration of PV and WT energy in power systems has been con-
tinuously increasing globally, as is demonstrated in Fig. 4 [3].
Due to the weather and climate patterns, the energy produc-
tion by Wind-PV resources offset each other on a seasonal or
day-to-day basis. For instance, Fig. 5 shows the PV and WT
complementary profiles on a day-to-day basis based on actual
meteorological data recorded at the National Renewable En-
ergy Laboratory (NREL) on June 10, 2020 [11]. Moreover, the
monthly average solar irradiance and wind speed of the U.S.
state of Colorado in 2019 are illustrated in Fig. 6 [11]. Note
that MATLAB Tools “Basic Fitting” is utilized to increase the
resolution of the data in Fig. 5 and Fig. 6.

The wind-solar hybrid renewable energy system (HRES)
has the ability to suppress the change of single source out-
put power to some extent. In addition, a properly designed
hybrid wind-solar system shows satisfactory performance in
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TABLE 1 Recent HRES Projects [14]–[16]

FIGURE 5. PV and WT complementary profiles on day to day basis (Actual
meteorological data collected from [11]).

FIGURE 6. PV and WT complementary profiles on seasonal basis (Actual
meteorological data collected from [11]).

handling transients compared to a single wind or PV gener-
ation for both grid-connected and stand-alone systems [12].
Moreover, the aim is to acquire more stable power output
from renewable energy sources, which can be connected with
diesel generators, battery banks, ultra-capacitors, or hydrogen
production systems. Pumped hydro energy storage (PHES)
systems are also employed as an energy storage system (ESS),
particularly for large-scale HRES deployment. As the PHES
primarily depends on the site specifications, i.e., the height
difference, source of water, and the type of land, there is
no fixed initial cost or running cost for a PHES, which
aids in minimizing the ESS expenditure in the HRES frame-
work [13]. Undoubtedly, the HRES has the ability to improve
the reliability and utilization factor of the system. Therefore,
the HRES projects at a single location are emerging as a
major trend in the global transition to renewable energy. Ex-
amples of some practical HRES projects are documented in
Table 1 [14]–[16].

The objective of this study is to present a state-of-the-art
review that concentrates on analyzing significant research

issues about the HRES. The main contribution of this paper
can be summarized as follows:
� Different possible combinations and coupling technolo-

gies of the HRES have been documented.
� Mathematical modeling of the HRES and characteristics

of different energy storage elements have been reported.
� Contemporary power converter configurations for the

HRES have been explained.
� Summary of different types of optimization algorithms

including the optimization constraints utilized in the
HRES has been presented.

The remainder of this paper is structured as follows: the
power architectures of the HRES are presented in Section II.
The characteristics of different energy storage elements is
documented in Section III. The mathematical modeling of
the HRES is elaborated in Section IV. The power converter
topologies utilized in the HRES are covered in Section V.
Commonly used algorithms in the literature for optimizing
the HRES are analyzed and summarized in Section VI. The
benefits and technical challenges associated with HRES and
the scope of future advances and research on HRES are docu-
mented in Section VII and Section VIII, respectively. Finally,
the conclusions of this review are drawn in Section IX.

II. SYSTEM STRUCTURES OF HRES
A. HYBRID RENEWABLE ENERGY SOURCES
Hybridization techniques can be used to increase the effi-
ciency and reliability of renewable energy sources [17]. Fig. 7
shows different possible combinations of the HRES.

1) HYBRID WIND-SOLAR ENERGY SYSTEM
The hybrid wind-solar energy system incorporates wind and
solar energy technologies to produce electrical energy. Due
to the complementary profile of wind and solar energy, the
hybrid system offers several advantages over the solar or wind
energy technology operates alone. It is also noticeable that
the peak operating time for wind and solar systems occurs at
different times of the day and the year. Therefore, the hybrid
wind-solar energy system has the capability to produce more
power than the wind or solar energy system operates individ-
ually [18].
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FIGURE 7. Classification of different types of HRES.

2) HYBRID WIND-SOLAR-DIESEL ENERGY SYSTEM
The hybrid wind-solar-diesel energy system is an attractive
option, especially when a system is not directly connected
to electrical distribution or power grid. The diesel generat-
ing system, which is powered with non-conventional fuels, is
employed as a backup electricity supply source. Basically, a
diesel generating system is deployed to ensure the continuity
of the electricity supply in the HRES scheme. By adding
an engine generator in the HRES framework, the system be-
comes more complicated. However, modern controllers have
the capability to operate these systems automatically. More-
over, the engine generator helps to reduce the size of the power
electronic converter needed for the system [19].

3) HYBRID WIND-SOLAR-BATTERY ENERGY SYSTEM
There are several disadvantages, i.e., expensive, bulky, non-
environmentally friendly, incorporating a diesel engine in the
HRES framework. A battery energy system can be utilized
instead of using a diesel generator as a backup emergency
option. When the power generated by the renewables is higher
than the energy demand, the excess energy can be stored in
the battery. Subsequently, it helps to reduce the hybrid system
expenditure.

4) HYBRID WIND-DIESEL ENERGY SYSTEM
The hybrid wind-diesel energy system is an exciting alterna-
tive to meet the load demand, especially for remote locations.
When the wind conditions are satisfactory, a wind-diesel hy-
brid system can provide enough electricity for such places.
The amount of wind power is the deciding factor for designing
the hybrid wind-diesel energy system. When the wind power
production is always less than the load, other power plants
constantly remain in line to control grid frequency and volt-
age.

5) HYBRID SOLAR-DIESEL ENERGY SYSTEM
Since the PV system hardly has any marginal cost, it is treated
with priority on the grid. In this scheme, the diesel generating
set is responsible for continuously fill the gap between the
load and the actual power generated by the solar energy sys-
tem. As the generation capacity of diesel generators is limited
to a specific range and the solar energy is fluctuating, it is al-
ways advisable to include the battery storage to optimize solar
energy contribution to the generation of the hybrid system.

FIGURE 8. Hybrid PV-Wind-Battery system structure.

FIGURE 9. Hybrid PV-Wind-Diesel system structure.

6) OTHER HYBRID ENERGY SYSTEMS
There are several determining factors, i.e, the cost of hybrid
technology, and the availability of natural resources, which
the operator needs to consider while designing a hybrid energy
system. It is also possible to combine different types of sys-
tems and to work as a hybrid system. Wind-hydropower sys-
tem, solar-hydropower system, solar-wind-geothermal system
are some examples of this type of hybrid energy systems [20].

B. SYSTEM ARCHITECTURES OF HRES
A hybrid wind-solar-battery energy storage system is a com-
bination of a wind turbine, a photovoltaic array, and a battery
energy storage system. A typical hybrid wind-solar-battery
storage system scheme is shown in Fig. 8. In this scheme,
the WT, PV arrays, and battery energy storage are connected
to a common DC bus through appropriate power converters
for the purpose of power conditioning. Another typical hybrid
wind-PV-diesel-battery storage system scheme is shown in
Fig. 9. According to this scheme, the WT and PV array are
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FIGURE 10. DC-Bus connected HRES.

charging the battery while supplying power to the load when
the renewable energy is abundant. The purpose of using a
dump load is to prevent overcharging of the battery. The con-
troller is responsible for starting the diesel generator, which
supplies the load when the state of charge (SOC) of the battery
hits the lower limit [21].

C. COUPLING TOPOLOGIES OF HRES
1) DC BUS CONNECTED WIND-SOLAR HRES
Here, the output from the WT is connected to the DC bus
through an AC/DC converter, while the output from the PV
array is coupled to the DC bus using a DC/DC converter.
The energy storage system is tied-up to the DC bus using
a bi-directional converter to allow its charging-discharging
mechanism. This system framework can serve both AC and
DC loads concurrently. A DC/AC converter is required when
an AC load needs to be served. In this topology, other sources
of RE can also be incorporated using the appropriate power
electronic converters. This framework provides several oper-
ation advantages, such as simplicity and the elimination of
challenges associated with synchronization. The main draw-
backs of this architecture are the losses involved with the
power conversion systems, particularly the losses associated
with converting WT AC power to DC and then back to AC,
which is approximately 10% of the WT power [22]. The
DC bus connected wind-solar HRES topology is illustrated
in Fig. 10.

2) AC BUS CONNECTED WIND-SOLAR HRES
The AC-coupled wind-solar HRES topology is demonstrated
in Fig. 11, where the PV coupled to an AC bus using a
DC/AC converter and the WT tied-up to the AC bus through
an AC/AC converter. The ESS relates to a bi-directional
electronic converter. In this scheme, an AC/DC converter is
required to feed the DC loads. Other RE sources can be incor-
porated through the appropriate power converters interface. In
this configuration, each of the sources is connected to the AC
bus via a separate power converter, allowing them to work
even if one of them is disconnected, which can improve the
system reliability [22]. Synchronization is the primary imped-
iment of this configuration.

FIGURE 11. AC-Bus connected HRES.

FIGURE 12. Dual-Bus connected HRES (type 1).

FIGURE 13. Dual-Bus connected HRES (type 2).

3) DUAL BUS CONNECTED WIND-SOLAR HRES
The dual bus-connected wind-solar HRES framework uses
both the AC and DC bus. Here, RE sources with AC outputs
are directly related to the AC bus, while RE sources with
DC outputs are directly coupled to the DC bus. Therefore,
the dual-bus connected wind-solar HRES improves overall
system efficiency by reducing the number of converters and
limiting power losses due to conversion [23]. This config-
uration is the most widely adopted due to its flexibility to
combine energy sources and load irrespective of features [24].
Fig. 12 and Fig. 13 illustrate the dual bus-connected wind-
solar configurations.
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TABLE 2 Battery and SC Performance Comparison

III. ENERGY STORAGE SYSTEM
By incorporating the ESS in the wind-solar HRES
architectures, the uncertainty of renewable resources can also
be diminished considerably. In particular, the ESS helps to
provide ancillary services; peak regulation, voltage fluctu-
ation and flicker mitigation, harmonic reduction, frequency
stability, load leveling, and transient stability. Batteries and
Supercapacitors (SC) are the most frequently utilized com-
ponents among the several types of the ESS in the market.
Different types of rechargeable batteries have been found in
the market, such as lead-acid, nickel-cadmium, lithium-ion,
and lithium-polymer. The design of the battery depends on
some system requirements such as (a) voltage and current, (b)
charging-discharging rates and duration, (c) operating temper-
ature during charging and discharging, (d) lifetime in terms of
the number of charging and discharging cycles, and (e) cost,
size, and weight constraints [25].

Examples of practical utility-scale ESS include the 5 MW,
1.25 MWh Li-ion battery installed in the Pacific Northwest
smart grid; the 32 MW Li-ion battery installed in a 98 MW
wind farm by AES in Elkins, West Virginia; the 8 MW, and the
32 MWh Li-ion battery installed in Tehachapi energy storage
project in California [26], [27]. Table 2 shows the relative
properties of the lead-acid battery and SC [28]–[30]. The
conventional capacitor also exhibits similar characteristics to
the SC except that its size is much larger and its cycle life is
only half that of the SC [28].

From Table 2, it is noticeable that the battery has the high
energy density property, but the low power ramp rate that
means the charging-discharging rates of the battery are slow to
meet the peak/pulse load demand. On the other hand, the SC
has a high power ramp rate, but low energy density property.
As a consequence, the SC cannot support the load demand
for a long duration. It is evident that none of these two ESS
has both the properties of high power density and high energy
density. Thus, when only one type of ESS is used to meet
both the power and energy capacity requirements, there is a
possibility to incur high installation costs. A hybrid energy
storage system (HESS) consisting of a battery and SC can
be leveraged to develop a more economical energy storage
system, where the SC also helps to mitigate the high frequency

FIGURE 14. Classification of the battery-supercapacitor HESS topologies.

FIGURE 15. Passive HESS topology.

power components passing through the battery, which is ben-
eficial for extending the battery lifetime [31].

A. HESS TOPOLOGIES
The HESS can be coupled to either a common DC or AC
bus. In general, the HESS can be categorized based on their
connection topology as illustrated in Fig. 14 [32], [33].

1) PASSIVE HESS
In the passive HESS framework, the battery and SC are di-
rectly connected to the DC bus, as shown in Fig. 15. They
share the identical terminal voltage that depends on the SOC
and charge-discharge characteristic of the battery. The passive
HESS can effectively suppress transient current under pulse
load conditions, diminish internal losses, and enhance the
peak power. However, as the voltage deviation of the battery
terminal is small, the SC can not be operated at its full SOC
range, which yields poor volumetric efficiency [34], [35].

2) SEMI-ACTIVE HESS
The power electronic converters can be connected between
the ESS and DC bus, which results in the power flow of the
ESS to be actively controlled [36]. Either the battery or SC
is actively controlled in semi-active HESS topology. A semi-
active HESS configuration is illustrated in Fig. 16 (left), where
only the SC is interfaced with the DC bus using a bidirectional
DC-DC converter that isolates the SC from the DC bus and
battery terminal [37]. Here, the SC can be operated within a
wider range of voltages that improves its volumetric efficiency
significantly. However, the battery is exposed to fluctuating
high current in this setting that has an adverse impact on the
battery’s service life [38].
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FIGURE 16. Semi-active HESS topology.

FIGURE 17. Active HESS topology.

The other semi-active HESS framework is demonstrated
in Fig. 16 (right). Here, the battery is isolated by a power
converter, and the SC is directly connected to the DC bus [39],
[40]. In this scheme, the battery’s current can be regulated
at a moderately reasonable manner in any event of the vari-
ation in the power demand. The battery terminal voltage is
not necessary to meet the DC bus voltage, which allows the
adjustable and economical sizing of the battery bank [41].
However, the linear charge-discharge characteristic of the SC
induces substantial fluctuation in the DC bus, which may dete-
riorate system stability and power quality. The capacity of the
SC needs to be comparatively large to maintain a stable DC
bus voltage, which leads to an increase in the energy storage
expenditure.

3) FULL ACTIVE HESS
The power flow of the battery and SC are both actively con-
trolled through the bidirectional power converters in fully ac-
tive HESS architecture, which results in enhancing the overall
system flexibility and cycle life. Two of the most common
full active HESS topologies—(i) parallel active HESS, and (ii)
cascaded active HESS—are illustrated in Fig. 17.

Each of the ESS is connected to the DC bus via a bi-
directional power converter in parallel active HESS frame-
work [30]. Here, the battery lifetime and DC bus stability can
be enhanced through a meticulously designed control strat-
egy [42]. For instance, the frequency management technique
can be deployed to increase the longevity of the batteries
through comprehensively utilizing the high power density
property of SC and the high energy density property of bat-
teries. Besides, the decoupling of battery and SC facilitates
both types of the ESS to operate at a comprehensive range of
SOC that can make the system more efficient.

In the cascaded framework, two bidirectional power con-
verters are cascaded to seclude the battery and SC from the
DC bus [43]. The power converter that separates the battery
is typically current-controlled to provide a smooth power
transfer with the battery. This mechanism helps the battery to
avoid the rapid charging-discharging process corresponding
to increase in the battery service life. The power converter
that segregates the SC from the DC bus is usually voltage-
controlled to inhibit the DC bus voltage while absorbing the
fast-changing power exchanges [44]. It is expected that a
substantial voltage swing between the SC and DC bus due to
the SC has a wide operating voltage. As a consequence, the
power losses in the power converter considerably increase as
it is challenging to regulate efficiency over a wide range of
operating voltages.

The overall efficiency of the HESS substantially decreases
as the number of DC/DC converter increases. Moreover, the
performance of fully active HESS architecture is heavily de-
pendent on the reliability of the power converters and their
control system.

IV. MODELING OF HRES
According to the different parameters and constraints, model-
ing is the first step in designing a renewable energy system.
In this section, the authors attempt to document the PV, WT,
Battery, and SC mathematical modelings, which will be useful
to researchers to understand the characteristics of these com-
ponents.

A. MODELING OF PV SYSTEM
In the literature, there are many mathematical models devel-
oped to describe the behavior of the PV [45], [46]. A PV cell is
a nonlinear device that can be represented as a current source
model. The V-I characteristic equation of a PV cell is shown
in (1) and (2).

I = Isc − Id (1)

I = Isc − Ios

(
e

q.(V +I.Rs )
n.K.T − 1

)
(2)

where Isc is the light generated current, Ios is the diode reverse
saturation current, q is the electronic charge, k is the Boltz-
mann constant, T is the temperature, V is the terminal voltage
of the module, and Rs is the series resistance.

The output of the PV array depends on two weather condi-
tions: solar irradiation (W/m2) and solar cell temperature (◦C).
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FIGURE 18. Power-Voltage characteristics of PV array at various
temperatures.

FIGURE 19. Power-Voltage characteristics of PV array at various irradiance.

The PV array module in Matlab/Simulink provides power-
voltage characteristic curves based on user-input parameters,
such as solar cell type, the number of cells in parallel, and the
number of cells in series, under various weather conditions.
The power-voltage characteristic curves for 1 MW PV array
are shown in Fig. 18 and Fig. 19. At maximum power point
(MPP) operation, the PV arrays’ output power is marked as a
circle of their respective curves. The maximum power point
tracking (MPPT) technique is generally employed to extract
the maximum power from the PV array. The incremental con-
ductance (IC), perturb & observe (P&O), short circuit current
(SCC), and open circuit voltage (OCV) are commonly MPPT
approaches utilized in the PV system [47]. In general espe-
cially for residential PV framework, the PV array provides
power to the unidirectional boost converter, and an MPPT is
utilized to control the duty ratio of the power converter to
extract maximum power from the PV array.

The authors in [48] described a simplified technique to
calculate the PV output power, which can be expressed as:

G(t, θpv ) = Gv (t ) × cos(θpv ) + GH (t ) × sin(θpv ) (3)

Ppv = G

1000
× Ppv,rated × ηMPPT (4)

where G is perpendicular radiation at the arrays’ surface
(W/m2). Ppv,rated is rated power of each PV array at G equal
to 1000 (W/m2) and ηMPPT is the efficiency of PV’s power
converter and MPPT.

Another simple model is contemplated in [49] to predict
the PV output power as a linear function of effective irra-
diance, as shown in (5). This model has the advantage of
being parameterized from the PV panel datasheet and being
simple to use, however it is not precise and does not account
for environmental factors such as wind speed and solar cell
temperature on PV performance.

Pmp,array(ρe) = Ns × Np ×
(

ρe

ρs
Pmp,s

)
(5)

where Pmp,array is the PV power at the maximum point for
PV array, Ns and Np are the number of panels and number of
subarray, respectively, ρe is the effective solar irradiance, ρs is
the solar irradiance under STC (1000 W/m2), and Pmp,s is the
PV power at the maximum point for PV module.

Normally, the PV cell temperature is much higher than
the ambient temperature, and it can decrease the PV output
power as well as its capacity factor. An effective approach for
estimating the PV cell temperature is formulated in [50]:

(T ◦
mC) = a × Ta + b × Ir − c × Vw + d (6)

where, a, b, c, and d are system-specific regression coeffi-
cients, Ta refers to the ambient temperature given in (◦C), Ir

refers to the solar irradiation given in (W/m2), and Vw refers
to the wind speed given in m/s.

The curve fitting tool is utilized to calculate the regression
coefficients a, b, c, and d . Thus, the formula for prediction of
the PV cell temperature can be expressed as:

(T ◦
mC) = 0.943 × Ta + 0.0195 × Ir − 1.528 × Vw + 0.3529

(7)
Sandia National Laboratory proposed another PV cell tem-

perature estimation model known as the Sandia Model [51].
The PV model estimates the impact of PV cell temperature
on PV performance using data from ambient temperature and
wind speed. The public parameter databases as well as addi-
tional information about this model are available in [52]. The
Sandia Model is highly accurate and can be expressed as:

Imp(ρe, Tc) = Imp,re f
(
C0 × ρe + C1 × ρ2

e

)
[1 + α(Tc − Ts)]

(8)

Vmp(ρe, Tc) = Vmp,re f + C2nsδ(Tc) ln(pe)

+ C3ns
[
δTc ln (pe)

]+ βmp (Tc − Ts) (9)

Pmp,array = Ns × Np × Vmp × mp (10)

B. MODELING OF WT SYSTEM
There are several existing models in the literature review
to estimate the wind turbine power including linear, cubic,
quadratic, Weibull parameters, and so on [53]–[55]. Gener-
ally, the output power of the wind turbine is a function of
aerodynamic power efficiency, wind speed distribution of the
selected sites, mechanical transmission and electrical energy
conversion efficiency, and the hub height of the wind tower.

Sami et al. described a wind turbine model in [56] to calcu-
late the WT power generation output.

PW =

⎧⎪⎪⎨
⎪⎪⎩

Pr (V 2−V 2
c

V 2
r −V 2

c
), Vc ≤ V < Vr

Pr, Vr ≤ V < Vf

0, V ≥ Vf

(11)

where PW is the output power of the wind generator, Pr is the
rated power of the wind generator, Vc is the cut in speed of
the WT, Vr is the rated speed of the WT, and Vf is the cut-out
speed at which the WT stops rotating.
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When the meteorological data recorded is found at a differ-
ent height from the WT height, (12) is utilized to calculate the
wind speed:

Vh = Vre f

(
H

Hre f

)α

(12)

where Vh is the wind speed at turbine height (H), Vre f is the
wind speed recorded by a meteorological station at height
(Hre f ) and α is the surface roughness factor which is around
1/7 in an open space surface [57].

The permanent magnet synchronous generator (PMSG)
coupled wind turbine system (WES) has been reported in the
studies [58], [59]. The PMSG based on WES can associate
with the WT without utilizing a gearbox. The energy conver-
sion in PMSG based on WES takes place through two stages.
First, the kinetic energy is captured by the WT blades as me-
chanical energy. Second, the mechanical energy is transferred
through the shaft to PMSG, which converts the mechanical
energy to electrical energy. The mechanical output power of a
PMSG wind turbine can be expressed as:

Pm = 1

2
ρAv3

wCp(λ, β ) (13)

where Pm is mechanical output power of the turbine (W), ρ is
air density (kg/m3), A is turbine swept area (m2), vw is wind
speed (m/s), Cp is the performance coefficient of the turbine,
λ is tip speed ratio of the rotor blade tip speed to wind speed
and β is blade pitch angle (degree).

The mechanical output power Pm depends significantly on
the turbine performance coefficient Cp. In this study, the fol-
lowing generic Cp(λ, β ) model is employed:

Cp(λ, β ) = c1

(
c2

λi
− c3β − c4

)
e

(−c5
λi

)
+ c6λ (14)

1

λi
= 1

λ + 0.08β
− 0.035

β3 + 1
(15)

where, c1 = 0.5176, c2 = 0.116, c3 = 0.4, c4 = 5, c5 = 21,
and c6 = 0.0068. The consequent Cp-λ curve is illustrated in
Fig. 12. The Cp-λ curve shows that the maximum value of Cp

is achieved for β = 0 and λ = 8.1.
The WT model in MATLAB/Simulink provides the WT

power characteristic curve based on user input parameters
such as base wind speed, base rotational speed, blade pitch
angle (β), and maximum power at base wind speed. The WT
power characteristics curve is illustrated in Fig. 20. In this
power curve, β is assumed to be zero and wind speed varies
from 5 m/s to 11 m/s. The maximum power points for each
wind speed are labelled. The generator rotor speed should
track the wind speed changes to extract the maximum power
from the wind. In general, the back to back power converters
are employed to meet the power quality criteria while the
WES generated power is transferred to the utility.

C. MAXIMUM POWER POINT TRACKING
The maximum power generated by the PV generators varies
with solar irradiance and temperature. Since the PV exhibits

FIGURE 20. WT power characteristics curve.

non-linear current-voltage and power-voltage characteristics,
any alteration in solar insolation and temperature causes a
change in terminal voltage, resulting in deviation from maxi-
mum power generation. The MPPT is utilized to adjust the so-
lar operating voltage close to the MPP in response to changing
atmospheric conditions in order to maximize power harvest
from the PV array. As a result, it has become an essential
component in evaluating the design performance of PV power
systems.

In the literature, approximately 40 different methods are
reported to track the maximum power point. This availabil-
ity of multiple options as an MPPT makes its unambiguous
selection a tougher nut to crack. The authors in [60] contem-
plated a summary of 31 different kinds of MPPT techniques,
and a comparative comparison was documented among them
based on 12 factors: category, dependency of PV array, im-
plementation methodology, sensor required, stages of energy
conversion, partial shading enabled, grid integration, analog
or digital, tracking efficiency, tracking speed, cost, and prod-
uct availability on the market. Furthermore, the authors also
classified MPPT techniques into three categories based on
control strategy, such as indirect control methods (mathemat-
ical methods based on empirical data), direct control meth-
ods (modulation-based control strategies), and soft computing
technique-based methods (genetic algorithm, particle swarm
optimization, and artificial neural network).

A comprehensive review of MPPT techniques for PV sys-
tems under normal and partial shading conditions (PSC) was
conducted in [61]. The selected MPPT strategies are classified
further into three categories: artificial intelligence, hybrid, and
other MPPT methods. It is reported that researchers have
concentrated more on PSC in recent years in order to increase
the power output and efficiency of PV systems. Another com-
parative study, which included the detailed classification and
description of MPPT strategies for PV systems available until
2012, is summarized in [62]. The available MPPT strategies
are classified based on the number of control variables in-
volved, types of control strategies, circuitry, and cost of ap-
plications, which is useful for selecting an MPPT approach
for a certain application.

In [63], the existing MPPT techniques are divided into
two main categories: classical MPPT and modern MPPT,
and the tactics of each category are briefly discussed. The
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modern MPPT category includes fuzzy logic, artificial neural
network, and metaheuristic-based MPPT techniques, whereas
the classical MPPT category includes perturb and observe,
hill climbing, fractional open circuit voltage, and fractional
short circuit current. The performance of each MPPT strategy
is compared in both uniform and PSC insolation, and the
mataheuristic-based MPPT technique outperformed the other
MPPT approaches investigated in extracting the maximum
power from the PV array due to several advantages, including
system independence, effective performance in PSC, and the
absence of oscillations around the maximum power point.

The authors in [64] contemplated another survey on MPPT
approaches by categorizing several existing MPPT techniques
into three broad categories: offline, online, and hybrid meth-
ods. Offline MPPT techniques include open circuit voltage
(OCV), short circuit current (SCC), and artificial intelligence
(AI) based MPPT methods, which are referred to as model-
based approaches because the physical values of the PV panel
are utilized to generate control signals. On the other hand,
the online category encompassed perturbation and observation
(P&O), extremum-seeking control (ESC), and incremental
conductance (IncCond) MPPT techniques, which are referred
to as model-free methods where the relationship between the
open circuit voltage and the maximum power point voltage
is used to generate the control signals. Hybrid methods are
a combination of online and offline approaches. The control
signal associated with the hybrid method consists of two parts,
where the first part is generated based on model-based tech-
niques and the latter part is generated based on model-free
approaches. The MPPT strategies are compared in terms of
the dynamic response of the PV system, achievable efficiency,
and implementation considerations, and hybrid methods out-
performed model-based and model-free methods in extracting
the maximum PV power.

Due to the variable nature of the wind, it is desirable in
the wind energy conversion system to determine the optimal
generator speed that assures maximum energy production.
The MPPT approach is used to optimize the generator speed in
relation to the wind velocity intercepted by the WT, ensuring
the maximum energy is harvested from the available wind at
any instance. Many MPPT strategies have been reported in
the literature, and these methods differ in terms of technique
employed, complexity, number of sensors required, conver-
gence speed, memory requirement, range of effectiveness, and
so on. These MPPT techniques can be primarily classified as
tip-speed ratio control (TSR), power-signal feedback (PSF),
and hill climb search (HCS) based [65]. However, so many
variations have been proposed over the last 30 years that it
has become difficult to decide which strategy, newly proposed
or existing, is best suited for a particular wind system.

The TSR control method regulates the rotational speed of
a wind turbine generator to maintain an appropriate TSR,
and this method requires the estimation of both wind speed
and turbine speed, which is typically derived from turbine-
generator characteristics and varies from system to system.
Likewise, the PSF technique requires the knowledge of a wind

turbine’s maximum power curve to estimate the optimum tur-
bine speed for a specific wind velocity to harvest the maxi-
mum available power from a WT [66]. Because both TSR and
PSF control techniques involve substantial turbine knowledge
as well as measurements of generator and wind speed, the
practical implementation of the algorithm becomes highly
complicated as the number of sensors and control complexity
increase significantly. The HCS-based MPPT approaches are
proposed to tackle these challenges, in which the algorithm
continuously searches for a turbine’s peak output power by
altering the generator speed and adjusting the power direction.
However, due to the constraints of deteriorated power quality,
as power ripple constantly persists and the tracking speed is
typically slow, its utilization is confined to small-scale wind
turbine systems [67]. While each of these three strategies has
advantages and disadvantages, a variety of versions of these
methods have been presented over the years, each employing a
different methodology to handle these concerns. The most sig-
nificant aspects to consider while selecting a specific MPPT
strategy are contemplated in Table 3 [68], [69].

D. DEGRADATION MODEL OF ESS
Addoweesh et al. described a simple battery model in [70],
where the SOC of the battery is calculated by a comprehensive
analysis of the battery’s charging-discharging modes, load
profile, and output energy of the renewable energy sources.

SOC(t ) = SOC(t − 1)(1 − σ ) +
(

EGA(t ) − EL (t )

ηinv

)
ηbat

(16)
where SOC(t ) and SOC(t − 1) are the SOC of the battery
bank at time t and t-1; σ is hourly self-discharging rate; EGA(t )
is the total energy generated; EL (t ) is the load demand; ηinv

and ηbat are the efficiencies of inverter and battery.

1) LI-ION BATTERY DEGRADATION MODEL
To consider cycling and calendar aging for battery usage, a
degradation model proposed in [71] is documented in this
study. The expected lifetime of the battery decreases due to
its degradation properties over the period, which can be ex-
pressed as:

1

Tli f e
=
⎡
⎣ N∑

i=1

DOD2
i

2 Nre f
cycles

+ T

T re f
calendar

⎤
⎦× e

(
θc−θ

re f
c

θ0

)
(17)

where Tli f e is the battery’s service life, in years, decreases
due to its degradation properties, N is the total number of
half-cycles over the simulation period T , i is the index of
the half-cycle, DODi is the DOD during the half-cycle i, θc

is the case temperature, and θ0 is the ambient temperature.
T re f

calendar is the lifetime, in years, for a case temperature of

θ
re f
c . A rainflow-counting algorithm is generally employed to

determine all half-cycles. The parameters Nre f
cycles, T re f

calendar , θ0

and θ
re f
c are presented in Table 4 [71].
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TABLE 3 Comparison of Characteristics of Various MPPT Techniques [68], [69]

TABLE 4 Parameters of the Li-Ion Battery Aging Model

In [72], another degradation model is reported for bat-
tery usage where the calendar aging cost of the battery
(CBat,calendar) considering of its depth of discharge (DOD)
usage and the initial cost is calculated as follows:

CBat,calendar = CB

CB,n × 2 × DOD × EB × m2
(18)

where CB,n is the life cycle of the battery provided by the
manufacturers, EB is the battery capacity (kWh), CB is the
battery cost ($/kWh), and m is the efficiency of the battery
that was assumed 92% for a Li-ion battery.

2) SC AGING MODEL
An aging model for the SC is contemplated in this study that
considers both calendar aging and cycling aging [73]. The
expected lifetime of the SC (TSC,li f e) can be expressed as:

1

TSC,li f e
= 1

T re f
li f e

× exp

(
ln (2)

θc − θ
re f
c

θ0

)

×
[

exp

(
ln (2)

V − V re f

V0

)
+ K

]
× exp

(
KRMS

IRMS

C0

)(19)

where TSC,li f e is the SC lifetime in hours, θc is the case
temperature and V is the voltage across the component. V0

and θ0 are the respective decreases in voltage and temperature
necessary to double the SC service life. T re f

li f e is the lifetime,

in hours, for a case temperature of θ
re f
c with a voltage of V ref.

K is a dimensionless constant that replaces the voltage term
whenever the voltage is low. Co is the initial value of the SC
capacitance, and KRMS is an accelerator factor. IRMS is the
RMS current flowing through the component. The parameters
of the SC aging model are given in Table 5 [73].

TABLE 5 Parameters of the SC Aging Model

FIGURE 21. AC shunt coupled HRES.

V. POWER CONVERTER CONFIGURATIONS FOR HRES
Various power converters have been utilized in the HRES to
extract the maximum power from the source, interface the
different energy sources, and regulate the power quality at
the load side. In general, the back-to-back AC-DC-AC power
converter is employed to integrate the WT into the utility,
and the unidirectional boost or buck-boost converter along
with inverter is deployed to integrate the PV into the grid.
In a hybrid PV-Wind configuration, the total cost with the
semiconductor switches can be saved by up to 25% through
the development of multi-port power converters where one
single converter can interface several energy resources [74].
In general, the power converter configurations employed in
the HRES can be classified into three categories, as follows:
(i) AC shunt coupled HRES, (ii) DC shunt coupled HRES,
and (iii) Multi-input coupled HRES.

A. AC SHUNT COUPLED HRES
The AC shunt coupled grid-connected HRES is illustrated in
Fig. 21, where two separated inverters are deployed for the
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FIGURE 22. DC shunt coupled HRES.

HRES grid integration. In this framework, one DC-DC con-
verter (e.g., buck-boost converters) embedded with maximum
power point tracking (MPPT) algorithms is connected with
the PV system, and one AC-DC active rectifier is generally
configured to interface the WT generator. Individual inverters
are employed to convert the PV and WT system’s DC power
into the AC, and eventually incorporated at the AC bus and fed
to the utility grid. The AC shunt coupled solution is straight-
forward and simple in controls, but one potential drawback is
that it requires the synchronization of two energy sources.

B. DC SHUNT COUPLED HRES
In DC shunt coupled HRES architecture, one single common
inverter is utilized for integrating the hybrid PV-Wind system
into the utility grid, which is shown in Fig. 22. Here, the power
converters are utilized for converting the PV and wind power
into DC power. One common central inverter is employed
to convert and manage the DC power into AC power and
integrated for the utility grid. The inverter serves as an in-
terface between the source and utility grid in this framework.
This DC coupled solution yields higher efficiency and higher
power density in many scenarios due to lower number of
cascaded converters. However, one likely shortcoming is that,
when the common inverter fails, the whole system will be
malfunctioned.

C. MULTI-INPUT COUPLED HRES
The AC or DC shunt coupled HRES requires multiple convert-
ers and the associated controllers as well as communication
techniques between individual converters. As a result, the cost
associated with the HRES increased substantially. To address
this challenge, multi-input converter (MIC) have been pro-
posed and developed, which is capable of interfacing different
renewable energy sources and energy storage systems in one
single power stage to achieve individual and simultaneous
power transfer to the utility grid. The MIC offers several
advantages, i.e., simple circuit topology with a reduced num-
ber of semiconductor switches, centralized control, and low
manufacturing expense and size [75]. The MIC can be further
divided into three categories, namely, (i) Non-isolated MIC,
(ii) Isolated MIC, and (iii) Semi-isolated MIC.

Fig. 23 illustrates the non-isolated MIC, which is comprised
of a buck and buck-boost fused multi-input DC-DC converter

FIGURE 23. Non-isolated MIC coupled HRES.

FIGURE 24. Isolated MIC coupled HRES.

FIGURE 25. Semi-isolated MIC coupled HRES.

and an inverter [76]. In this topology, the rectified WT output
and PV output are fed as inputs to the MIC. The maximum
power from renewable energy sources can be extracted in-
dividually and simultaneously by applying the appropriate
switching scheme with a suitable MPPT algorithm in this
framework. Then, the inverter with an appropriate control and
modulation scheme is employed for converting the regulated
DC power into AC power to meet the grid specifications. In
this solution, galvanic isolation is unavailable between the
source and load, which may induce significant common-mode
current and EMI issues.

The isolated MIC is illustrated in Fig. 24, which consists
of a multi-input isolated DC-DC converter and an inverter.
The high-frequency transformer is utilized in the isolated MIC
configuration to provide the galvanic isolation between the
source and load. It can extract the maximum power from both
energy sources individually and simultaneously, and mean-
while can regulate the low-level DC voltage. The required
sinusoidal AC power can be obtained by utilizing the inverter
with appropriate control and modulation strategies in this
framework. The size of the high-frequency transformer can be
reduced by leveraging the emerging wide bandgap switches
and operating at high switching frequency (e.g., tens of kHz).
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A semi-isolated MIC is shown in Fig. 25. It is com-
prised of both non-isolated converters for obtaining the max-
imum power from renewable energy sources and isolated
converters for galvanic isolation. The different types of
power converter configurations employed in the state-of-the-
art wind-solar HRES are summarized in Table 6.

D. INVERTER CONFIGURATIONS FOR HRES
The grid inverters play a critical role in the HRES, not only
converting the DC power into AC power to be integrated grid,
but also may provide ancillary grid service if needed. Grid
inverters can be classified into two broad categories: self-
commutated inverter and line-commutated inverter. The turn-
on and turn-off characteristics of the switching devices depend
on the polarity of the current flow in the line-commutated

inverter. However, the self-commutated inverter can be
employed with full control of the switching devices.

The commutation process in the line-commutated inverter
is initiated by the parameters of the grid, i.e., the reversal
of AC voltage polarity and the flow of negative current. In
general, the semi-controlled power switching devices, such as
thyristors, are utilized in this scheme. Although the turn-on
process of the semiconductor power switches can be con-
trolled by the gate terminal of the device, an external circuitry,
i.e., anti-parallel diode, is required to control the turn-off op-
eration as well. The schematic diagram for a line-commutated
current source inverter (CSI) is shown in Fig. 26 (left) [96].

The self-commutated inverter is the fully controlled power
converter, as shown in Fig. 26 (right) [97]. The power switch-
ing devices, such as IGBTs or SiC MOSFETs, are utilized in
the self-commutated inverter configuration. This framework
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FIGURE 26. Grid-connected inverters.

also provides the facilitates to enable the current transfer from
one switching device to another in a controlled manner. The
self-commutated inverter can be divided into voltage source
inverter and current source inverter.

Based on the existence or absence of the transformer, the
inverter configuration can be classified into two categories,
i.e., those with transformers and the transformerless ones.
When a transformer is embedded in the inverter configura-
tion, it provides galvanic isolation between the HRES and the
utility grid. Since the transformers are bulky and costly, the
overall expenditure of the HRES will be increased consider-
ably in comparison with the transformerless inverter scheme.
In transformerless inverter topology, the inverter output are
generally medium-voltage levels, and additional circuitry may
be needed to address the problem of DC current injection. Fur-
thermore, as there is no galvanic isolation in the transformer-
less inverter architecture, it might induce voltage fluctuation,
common mode voltage, and leakage current issues between
the RE sources and the ground [98].

1) MULTILEVEL INVERTERS
Multilevel inverters are the power inverters that utilize a
large number of semiconductor switches, which can with-
stand higher DC-link voltage and synthesize staircase quasi-
sinusoidal waveforms. Thus, the output line voltages possess
much lower THD, lower dv/dt , and lower common-mode
voltage, in comparison to the conventional two-level voltage
source inverters. Therefore, the size and cost of the harmonic
and EMI filters will be dramatically reduced. There are several
types of multilevel inverters, such as neutral-point-clamped
(NPC) inverters, cascaded H-bridge inverters, flying capacitor
inverters, modular multilevel converters, as well as numerous
derivatives of these topologies [98], [99]. Each multilevel
inverter topology has its pros and cons, depending on the
specific HRES applications and power mission profiles. The
selection of the inverter topology requires comprehensive per-
formance analysis by concurrently considering the efficiency,
cost, power density, and reliability.

The T-type converter is one of the advanced NPC con-
verter configurations that have the benefits of reduced num-
ber of switching elements and higher efficiency compared to
conventional I-type NPC converter [100]. The 3-level I-type

FIGURE 27. Circuit topology of 3-level I-type NPC inverter [111].

FIGURE 28. Circuit topology of 3-level T-type NPC inverter [111].

NPC inverter (3L-INPCI) and 3-level T-type NPC inverter(3L-
TNPCI) are the most extensively utilized topologies for grid-
tied renewable energy applications. The circuit architecture of
the 3L-INPCI is illustrated in Fig. 27. The clamping diodes
linked to the neutral point enable producing a zero-voltage
level, with which the three different output voltage levels
are obtained. The 3L-TNPCI excludes the clamping diodes
from the topology, as shown in Fig. 28. The inner switches
(S2 and S3) are associated with the neutral point of the DC bus,
blocking half of the DC-bus voltage. Therefore, the break-
down voltages of inner switches (S2 and S3) can be half of
these with the outer switches (S1 and S4). In comparison
with the 3L-INPCI, the 3L-TNPCI has the leverage of shorter
commutation loops and reduced number of switches due to no
clamping diodes.

The diode clamped, flying capacitor (FC), and cascaded
H-bridge (CHB) topologies are the most frequently utilized
multilevel inverter (MLI) configurations in grid-interfaced RE
systems. These three MLI topologies are considered as the
classic MLI topologies, and they are widely employed in
industries due to their common advantages, including lower
harmonic distortion, higher voltage withstanding capability,
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FIGURE 29. Classic multilevel inverter topologies (with one phase shown).
(a) Three level diode clamped. (b) Three level flying capacitor. (c) Five level
cascade H-bridge [112].

FIGURE 30. The topology of a modular multilevel converter (MMC) [102].

lower common mode voltage, and lower dv/dt in the out-
put waveforms [101]. The configuration of a single-phase
leg of these three topologies is depicted in Fig. 29. The
modular multilevel converter (MMC) is another popular MLI
topology that has received increasing attention for renewable
energy integration due to its superior features such as modu-
larity, scalability, high efficiency, and high output waveform
quality [102]. The general topology of an MMC is illus-
trated in Fig. 30. The submodule (SM) can be either a half-
bridge or full-bridge circuit, depending on the performance
requirements. Unlike half-bridge MMC, full-bridge MMC
can be controlled to isolate and tolerate a DC short-circuit
fault, which is preferred for safety-critical HRES applications,
while at relative higher cost due to the larger number of power
devices [103]. Furthermore, based on the number of employed
DC sources, the classic MLI topologies can be classified into
two main groups, as shown in Fig. 31. The classic MLI config-
urations have been thoroughly analyzed in the literature, and

FIGURE 31. Multilevel inverter classification [112].

each has its own set of benefits and drawbacks. Here, a com-
parison between the classic MLI topologies is contemplated
in terms of the advantages and disadvantages, as illustrated
in Table 7 [104]–[108]. In the Table 7, the common advan-
tages with MLI such as lower harmonic distortion and lower
common-mode voltage are excluded, and only their unique
characteristics are summarized.

Recent trends in MLI have emphasized lowering the num-
ber of switches, DC supplies, and gate driver circuits while
improving power quality and fault tolerant capability in order
to make them more cost-effective for grid-connected HRES
applications [109]. As a result, various hybrid topologies have
been developed in recent years, most of which are derived
from classical topologies in order to meet high grid code stan-
dards and power quality issues while remaining cost-effective.
As previously stated, based on the specific HRES applications
and power mission profiles, each MLI topology has its own
pros and cons. As a result, selecting an inverter topology
requires a thorough performance evaluation that takes into
account efficiency, cost, power density, and reliability all at
the same time. Despite the fact that each MLI faces distinct
challenges, the CHB families appeared to be the most suitable
topology for HRES application since they provide modular-
ity, reliability, grid support, and high power density within
a reasonable range [110]. However, more improvements are
required for the CHB topology to guarantee the desired per-
formance.

E. GRID COUPLED INVERTER CONTROLLER
In the grid-connected inverter control architecture, the grid
synchronization to power flow management and pulse width
modulation (PWM) of the inverter is occurred. This control
topology employed an outer DC-link voltage control loop and
an inner current control loop to secure decoupled regulation
of active and reactive power components. The grid voltage-
oriented reference frame utilized for transformations deploys
the phase angle provided by instantaneous voltage measure-
ments. The voltage control loop is responsible for maintaining
the DC bus voltage and providing the active power current
reference to the internal current loop. The current control
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TABLE 7 Summarized Advantages and Disadvantages of Classical topologies [104]–[108]

loop, based on the active power current reference and reac-
tive power current reference, yields the appropriate voltage
reference signals. The desired voltage reference signals real-
ized from the current controller are then employed to provide
PWM pulses for the semiconductor switches in the inverter.

Nowadays, inverter-based resources are becoming an
inevitable part of AC power systems due to the rapid ad-
vancement of hybrid PV-Wind grid integration. Inverter-based
resources utilized in the HRES framework are responsible for
providing active and reactive power to the grid. They can be
categorized into two main groups: grid following inverter and
grid forming inverter. The main discrepancy between the grid-
forming and grid-following is the synchronization approach
that gives the correct rotation in the abc/dq transformation.

To this date, the grid following inverter is dominated where
a phase locked loop (PLL) is employed to align with the grid
voltage at the point of common coupling (PCC) of the con-
verter. Therefore, it follows the measured voltage by aligning
and utilizing the measured voltage as a reference. As a result,
the grid following inverter is not expected to respond to grid
frequency variations. This specific grid following characteris-
tic resembles a current source. On the other hand, the primary
objective of the grid forming inverter is regulating the voltage
and frequency of the grid. The control of converters should be
restructured from a grid-following to a grid-forming control to
avoid the challenges associated with low inertia. In this way, it
can provide damping to frequency variations and whose char-
acter is more similar to that of a synchronous machine. This
is feasible since the grid forming system generates its own
internal voltage reference angle based on the output power

FIGURE 32. Control working principles: (a) Grid Following Inverter (Top),
(b) Grid Forming Inverter (Bottom) [113], [114].

of the converter. A simplified representation of the working
principles of the grid following inverter and grid forming
inverter is documented in Fig. 32.

F. FILTER TOPOLOGIES FOR HRES
High-frequency switching of power converters in the HRES
framework produce considerable harmonics in the systems.
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Typically, for commercial and utility-scale power converters,
the switching frequencies between 2 to 15 kHz can generate
high-order harmonics that is responsible for inducing grid
stability and harmonics issues. In general, a passive filter
needs to be employed to mitigate or eliminate the harmonics
around multiplies of the switching frequency. Likewise, there
are several factors to be concurrently considered during the
filter development, namely, attenuation ratio, voltage drop,
losses, cost, weight, and volume [115].

Different circuit topologies of the grid-connected filter,
such as L-filter, L-C filter, and L-C-L filter, are analyzed in
the literature. The most essential features—harmonic atten-
uation, system dynamics, and decoupling between the filter
and grid impedance—are discussed while comparing different
types of filter configurations. Due to its simple structure, the
L-filter can easily be implemented. However, a high value of
inductance or higher switching frequency needs to be selected
for reducing the harmonics around the switching frequency.
As a consequence, the system dynamic response may become
sluggish, and the switching losses in the semiconductor power
devices may increase significantly. Although the L-C filter
has satisfactory performance in voltage-current conversion,
the damping of the high-frequency noise has been a challenge.

In the L-C-L filter configuration, the damping of the high-
frequency noise is improved due to its extra inductance. In
addition, the capacitor in the L-C-L filter is not exposed to
line current distortion at the fundamental frequency, unlike the
L and L-C filters [116]. The utilization of the L-C-L filter in
the HRES framework provides several advantages, i.e., rela-
tively low switching frequency requires for a given harmonic
attenuation, reduces the grid current distortion, decreases the
reactive power production, and so on [117], [118].

The LCL filter is a third-order filter with a −60 db/decade
attenuation that produces a resonance peak. Therefore, the
LCL filter must be designed meticulously according to the
parameters of the inverter. Several attributes, such as current
ripple, filter size, and switching ripple attenuation, must be
addressed while designing an LCL filter. The design approach
of the LCL filter is documented in [111].

The first step in the procedure of designing LCL filter pa-
rameters is the estimation of the base impedance (Zb) and base
capacitance (Cb) values as expressed below:

Base impedance, Zb = V 2
g

Pn
(20)

Base capacitance,Cb = 1

2 × π × fg × Zb
(21)

where Vg is the line to line RMS voltage (inverter output), Pn

is the rated active power, and fg is the grid frequency.
The next step in computing the filter components is the

design of the inverter side inductance (Li), which can be in-
dicated as:

Li = VDC

16 × fsw × �IL
(22)

where VDC is the DC bus voltage, fsw is the switching fre-
quency, and �IL is the current ripple specified by:

�IL = (1% − 10%)
Pn × √

2

Vg
(23)

Then, the filter capacity (Cf ) is calculated as a multiplication
of Cb by accounting the maximal power factor variation ac-
cepted by the grid 5%.

Cf = 0.05 × Cb (24)

The grid side inductance (Lg) can be determined as:

Lg = r × Li (25)

where r is the ratio between the Li and Lg.
The final step in the design is to regulate the resonant

frequency ( fres) of the filter. Since the filter must have enough
attenuation in the fsw of the inverter, the fres should be far
above the grid frequency fg and lower than the switching
frequency fsw.

fres = 1

2π
×
√

Li + Lg

Li × Lg × Cf
(26)

10 fg ≤ fres ≤ 0.5 fsw (27)

The filter capacitor (Cf ) should be included with an in
series connected resistor to diminish oscillations and unstable
states of the filter. The value of the damping resistor (Rd ) can
be expressed as:

Rd = 1

3 × 2 × π × fres × Cf
(28)

VI. HRES OPTIMIZATION
The primary objective of using optimization techniques in
HRES is to achieve superior overall performance as well as
to meet grid requirements and constraints. It is crucial to
implement an systematic optimization algorithm to solve the
optimal solution which provides the least annual cost as well
as fulfilling the requirements. Recent survey has indicated
that there are different types of optimization algorithms used
by the researchers for HRES, such as the genetic algorithm
(GA), the particle swarm optimization (PSO), the shuffled
frog leaping algorithms, etc. [119]. Constrained by system
cost, efficiency target, and local weather conditions, a system-
atic sizing optimization method will be of paramount impor-
tance for HRES. Table 8 presents a summary of the analysis
and sizing constraints employed for optimum sizing of the
wind-solar HRES.

Furthermore, the widely utilized modelling and optimiza-
tion approaches for the HRES can be categorized as: clas-
sical algorithms, metaheuristic methods, and hybrid of two
or more optimization techniques. The differential calculus
manner is used in the classical optimization algorithm to
seek optimum solutions for differentiable and continuous
functions. Therefore, it exhibits limited capabilities for appli-
cations whose objective functions are not continuous and/or
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TABLE 8 Optimization Algorithms of “Wind+Solar” HRES
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TABLE 9 Comparative Comparison Among the Commonly Used Optimization Techniques for HRES

differentiable [120]. Metaheuristic strategies have the poten-
tial to provide efficient, accurate, and optimal solutions, and
it is extensively employed for optimizing the complex HRES.
Metaheuristic approaches are nature-based, and their evolu-
tions are based on the behavior of nature [121], [122]. In the
hybrid techniques, two or more optimization approaches are
combined to overcome the limitations of the individual strate-
gies mentioned above. Consequently, it can provide more ef-
fective and reliable solutions for HRES [123]. The attributes
of these optimization techniques are synopsized in Table 9.

The various criteria are contemplated in the literature for
optimal sizing of the HRES can be mainly categorized as
economic and technical. Economic criteria are employed to
minimize the expenditure of the HRES. The cost optimization
of the HRES, which objective is to seek the compromise
solution between the costs and benefits, including minimizing
energy cost, net present cost, and any other costs associated
with the HRES. On the other hand, technical criteria deal
with the reliability, efficiency, and environmental benefits of
the HRES. The objective of the technical criteria fulfills the
desired reliability levels based on loss of power supply prob-
ability or loss of load probability, curtailing cost/efficiency
ratio, minimizing carbon emissions and maximizing power.

VII. BENEFITS AND CHALLENGES OF HRES
To sum up, the advantages of the HRES can be highlighted as
follows:
� Continuous power supply.
� Utilize the RE sources in best way.
� Low maintenance cost.
� High efficiency.
� Load is supplied in the most optimal way.
� Improves the dispatch flexibility.
� Greater balance in energy supply.
� Yield greater economic and environmental returns.

� Reduces negative effects associated with burning fossil
fuels.

� HRES can be synchronized to ameliorate the RE con-
verter infrastructure.

� Enhance the system reliability.
� Decreases lifecycle costs for peaky loads or growing

fixed loads.
� System energy service is enhanced.
� Truncates downtime during repairs or routine mainte-

nance.
� Nearly zero pollutant emissions especially for PV-Wind-

Energy storage HRES architecture.
� Relived transmission and distribution congestion.
� Improved power quality.
� Provides more flexibility for future extension and

growth.
Even though the HRES has come a long way in terms of

research and development, there are still some impediments
in terms of its efficiency and optimal utilization. The chal-
lenges associated with the HRES faced by practitioners can
be summarized as:
� The HRES demands innovative technology to harness

the optimal power from the RE sources.
� The poor efficiency of HRES is a significant hindrance

in encouraging its deployment.
� Since the high capital cost leads to a prolonged payback

time, the manufacturing expenditure of RE sources re-
quires a substantial reduction.

� The power electronic devices interfaced with HRES
should be a minimal amount of power loss.

� Geography plays a prominent role in the HRES deploy-
ment.

� Due to the high installation expenditure, government
incentive policies are required to make the HRES eco-
nomically viable.
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� The energy storage technologies deserve more research
attention and efforts to ease their durability and perfor-
mance.

� Real-time energy management and robust communica-
tion between the respective energy sources of the HRES
require to be ameliorated through cutting-edge investiga-
tion.

� Systematic approaches and standardization, e.g., IEEE
Standard 1547, are demanded effective and safe deploy-
ment of the HRES.

� As the new advanced semiconductor devices such as
silicon carbide and gallium nitride become available,
research efforts are required to integrate them into the
evolving HRES.

� System reliability and energy sustainability are needed
to be improved to the maximum extent possible.

VIII. FUTURE TRENDS OF HRES
In the future, operators would like RE plants to have the ability
to operate more like traditional power plants in terms of ca-
pacity value, dispatchability, ancillary services, and reliability.
As higher HRES capacity is connected to the power grid, it is
expected that integration technology for high levels of HRES
penetration will be an important research area in the following
decade. Here, the future trends of the HRES are outlined as
follows:
� Further advances in wind-solar technologies will signif-

icantly reduce the cost of HRES. As a result, HRES
will be more cost-effective in the future. Aside from
the expense, the environmental advantages are likely to
make this hybrid system more widely used and accepted.

� A modern control technique can be employed to ensure
optimal resource allocation based on load demand and
RE resource forecast. Correspondingly, the total operat-
ing cost of HRES will be reduced substantially.

� Artificial intelligence as part of the energy management
system has the potential to improve HRES operation.

� Advanced control methods implemented in a central-
ized system controller can ameliorate the performance
of modular hybrid systems.

� Advanced research in the control and operation of HRES
should be performed in the areas of grid code compliance
and the potential to provide ancillary services to the grid.

� Developing an RE optimization model or toolset to sur-
vey and analyze market and resource conditions in order
to assess the performance and cost of HRES.

� Evaluate HRES-specific design challenges and opportu-
nities, e.g., economies of scale, technological innovation.

� Standard guidelines on the forecasting of hybrid power
plant energy in commitment and dispatch operations
must be defined for utilities.

� Most HRES plant designs are still in the early stages of
development, which means that their long-term viability
in terms of energy and capacity has yet to be established.

� Investigate various system architectures (AC coupled,
DC coupled) and innovations related to inverters within
the HRES.

� During the implementation of the HRES project, a sys-
tematic approach for optimizing the sizing of different
assets and their layout to meet land constraints must be
devised.

� As the penetration of the HRES increases, specifications
for transient voltage and frequency become more critical.
As a result, many countries’ grid codes will need to be
updated to accommodate the integration of the HRES
generation and maintain a stable operation.

� The ESS becomes an indispensable component by
strongly supporting ramp control and frequency regula-
tion in HRES deployment. As a result, more detailed grid
codes for ESS are expected in the future, including in-
ertia emulation, power oscillation damping, and voltage
control.

� Advanced weather forecasting techniques will reduce the
uncertainty of HRES generation considerably and avoid
HRES energy curtailment substantially.

� Both the sensitivity and reliability assessments of any
proposed HRES configuration should be carried out.

� Develop a paradigm that would enable a feedback mech-
anism between end-users and grid operators to further
improve the system’s reliability and flexibility.

� There should be a minimal amount of power loss in the
power electronic devices while interfacing the HRES to
the utility.

IX. CONCLUSION
In this paper, a comprehensive review of existing wind-solar
hybrid renewable energy resources is conducted, in which the
system modeling, power converter configurations, and the op-
timal design algorithms are reviewed. The basic mathematical
modeling of PV and WT, and the degradation model of batter-
ies and supercapacitors are discussed in this study. A critical
review of different HESS topologies is presented. A compar-
ative study on different power converter configurations em-
ployed in the wind-solar HRES is also reported. Commonly
used optimization algorithms in the literature for optimizing
the wind-solar HRES system are analyzed and summarized.
Although considerable accomplishments have been achieved
over the years on various HRES, a comprehensive review
helps to identify and fulfill the technical gaps for improving
the future HRES.
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