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ABSTRACT Torque control of electric drives is a challenging task, as high dynamics need to be achieved
despite different input and state constraints while also pursuing secondary objectives, e.g., maximizing
power efficiency. Whereas most state-of-the-art methods generally necessitate thorough knowledge about
the system model, a model-free deep reinforcement learning torque controller is proposed. In particular, the
deep Q-learning algorithm is utilized which has been successfully used in different application scenarios with
a finite action set in the recent past. This nicely fits the considered system, a permanent magnet synchronous
motor supplied by a two-level voltage source inverter, since the latter is a power supply unit with a limited
amount of distinct switching states. This contribution investigates the deep Q-learning finite control set
framework and its design, including the conception of a reward function that incorporates the demands
concerning torque tracking, efficiency maximization and compliance with operation limits. In addition, a
comprehensive hyperparameter optimization is presented, which addresses the many degrees of freedom of
the deep Q-learning algorithm striving for an optimal controller configuration. Advantages and remaining
challenges of the proposed algorithm are disclosed through an extensive validation, which includes a direct
comparison with a state-of-the-art model predictive direct torque controller.

INDEX TERMS Data-driven control design, deep Q-learning, direct torque, hyperparameter optimization,
nonlinear control systems, permanent magnet motors, reinforcement learning.

I. INTRODUCTION
The utilization of sophisticated and highly tailored model-
based controller designs has been a standard in electric
drive control for the past fifty years. The available AC drive
control methods range from linear proportional-integral (PI)
controllers based on the concept of field-oriented control
(FOC) [1] and direct torque control (DTC) [2] to model pre-
dictive control (MPC) [3]. Especially in the past twenty years,
the concept of MPC has been investigated in depth, with a
comprehensive set of improvements to the original current
control concept [4]. Furthermore, the emerging considera-
tion of combining approaches like model predictive direct
torque control (MP-DTC) [5], [6] enables for state-of-the-art
torque dynamics. A weakness that all these model-based con-
trol designs have in common is their dependence on plant-
specific system knowledge. The control engineer needs to
have a parameterized drive model readily available in order to

develop a torque controller of satisfactory performance. Here,
the accuracy of the plant knowledge is crucial for the result-
ing control quality. Accordingly, a significant fraction of the
development time is spent with plant modeling and parameter
identification tasks [7], [8], even before the actual controller
design can begin. Performance losses due to unavoidable
modeling inaccuracies still have to be accepted in the final
outcome.

Another bottleneck is the required calculation time. As the
linear PI controller dictates an explicit control policy, the nec-
essary processing capacity for this control scheme on its own
is rather low. If, however, online identification tasks need to be
considered in order to adapt the controller to the demands of
the drive system’s momentary operating point, the processing
time can increase dramatically. Since MPC oftentimes also
relies on online parameter identification, the design process
of such a controller usually incorporates the task to split the
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turnaround time appropriately between the model identifica-
tion and solving the optimal control problem.

The utilization of machine learning for the domain of drive
control has recently made some advances, e.g., for the com-
pensation of parasitic inverter behavior [9] or the estimation
of drive temperature [10]. However, the potential of machine
learning methods for drive controllers that could overcome the
above-mentioned difficulties is yet to be explored. This article
is dedicated to contribute to this endeavor.

A. STATE-OF-THE-ART
In optimal control scenarios, the control problem can be de-
fined as a dynamic optimization task:

min
u

∞∑
i=k

γ i−kr(xk,uk ),

s.t. xk+1 = f (xk,uk ),

h(xk,uk ) = 0,

l (xk,uk ) ≤ 0.

(1)

Herein, the discrete time index is denoted by k, the system
state and system input are denoted by x and u, respectively.1

The discount factor γ ∈ [0, 1[ allows to shift the focus of
the control task between short-sighted and far-sighted per-
spective. The cost r evaluates the control performance within
each step. In addition to the optimization task, the system
state is subject to the dynamics of the corresponding plant
system f , and the state and input variables need to comply
with operation limitations h and l .

For the application of power electronic-driven systems, two
general controller classes can be formulated. In continuous-
control-set (CCS) problems, the optimization problem in (1)
has to be solved considering real-valued, continuous input
voltages u. This applies whenever the drive voltage source
inverter receives its input signals from an intermediate mod-
ulator. In contrast, this contribution focuses finite-control-set
(FCS) problems where the control output is limited to discrete
actions. In the drive control context this corresponds to the
distinct switching states of the power electronic inverter. Ac-
cordingly, FCS-MPC applications target the selection of op-
timal switching commands to solve the optimization problem
in (1).

Since exhaustive search to find optimal switching se-
quences is unfeasible for the infinite time horizon specified
in (1), FCS-MPC is only applicable if the optimal control
problem (1) is considered on a finite time horizon N <<∞
(hence, allowing γ = 1) [11]. Simplification methods may
then be employed to facilitate the optimization, which can per-
mit a slight increase of N , e.g., utilizing sphere decoding [12],
[13] or by using heuristic search algorithms [14].

An interesting, emerging alternative to solving (1) is rein-
forcement learning (RL). Here, the control design is shifted

1Bold symbols denote multidimensional quantities (e.g., matrices and
vectors).

FIG. 1. Schematic of the overall control structure.

to a data-driven approach [15]–[17]. While MPC is mostly
based on online optimization, the RL agent optimizes its con-
trol policy during the training phase, resulting in an explicit
and, therefore, high-performance controller after the training
is finished. This, however, only holds given the assumption
that the training phase sufficiently covers the operation range
which is relevant for the later usage. During training, the RL
controller (usually denoted as the agent) learns about the drive
characteristics by direct interaction with the system. The RL
controller is therefore a model-free approach since it does not
require any model information beforehand.

In RL, the optimization problem in (1) is usually reformu-
lated as a maximization problem, rendering r a reward signal.
It is inherently viewed for an infinite time horizon without the
problem of growing computational effort. In order to avoid
convergence problems in this case, the discount factor then
needs to be lower than one (γ ∈ [0, 1[).

While first promising CCS-RL approaches for the current
control problem of drives are already available [18]–[20],
additional control tasks, such as torque or speed control, and
learning FCS approaches have not yet been investigated. The
question therefore arises if learning, model-free controllers
can also be successfully applied to further, challenging control
tasks in drive and power electronic applications.

B. CONTRIBUTION
In the following investigation, FCS torque control of a perma-
nent magnet synchronous motor (PMSM) fed by a two-level
inverter is addressed. In particular, this contribution utilizes
a deep Q-learning agent [21] to solve the described control
problem. This kind of RL concept is customized to deal with
continuous state measurements and discrete control inputs
(actions). Therefore, the resulting control approach is labeled
deep Q direct torque control (DQ-DTC). A schematic of the
overall controller structure is presented in Fig. 1. Compared
to established, model-based approaches, the DQ-DTC method
offers the following potentials:
� The same preconfigured learning algorithm can be ap-

plied to any new PMSM drive system.
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� Plant-specific expert knowledge is not required (e.g.,
motor parameters do not need to be available).

� Parasitic effects such as (cross-)saturation, iron losses
and temperature influences do not need to be modeled
or identified since they are included within the learned
control policy.

� The entire constant torque and flux weakening range are
covered by an explicit torque control algorithm.

In order to deliver a comprehensive investigation of the
DQ-DTC approach, this contribution will firstly present the
theoretical fundamentals of electrical drives and the deep
Q-learning concept, followed by a review of the available
domain-specific knowledge that can be utilized to enable ex-
pedient and generalizable training. The learning framework is
introduced focusing on the coverage of the state space using
exploring starts. A hyperparameter optimization process is
performed in order to find an optimally configured agent for a
PMSM drive environment. Lastly, the DQ-DTC is compared
to the related MP-DTC approach from the MPC domain.

II. DRIVE SYSTEM MODEL
The drive system under investigation consists of a B6-
bridge power electronic voltage source inverter that supplies a
PMSM.

A. PERMANENT MAGNET SYNCHRONOUS MOTOR
The three-phase PMSM can be modeled concisely when using
rotor-fixed dq-coordinates. In order to transform the three-
phase voltages uabc and currents iabc to the two-dimensional,
rotor-fixed representation, the following transformation is em-
ployed:

[
ud

uq

]
=
[

cos(εel) sin(εel)

−sin(εel) cos(εel)

][
2
3 − 1

3 − 1
3

0 1√
3
− 1√

3

]⎡⎢⎣ua

ub

uc

⎤
⎥⎦

︸ ︷︷ ︸
=
[
uα uβ

]T

,

(2)

wherein the electrical rotor angle is denoted by εel. The in-
termediate result is given by the two-dimensional, stator-fixed
voltage uαβ. Using the dq representation, the PMSM can be
characterized by the fundamental wave model [22]:

d

dt
x(t ) = A(t )x(t )+ Budq(t )+ e(t ),

x(t ) =
[

id(t )

iq(t )

]
,udq(t ) =

[
ud(t )

uq(t )

]
, e(t ) =

[
0

− pωme(t )ψp
Lq

]
,

A(t ) =
⎡
⎣ −Rs

Ld

pωme(t )Lq
Ld

− pωme(t )Ld
Lq

−Rs
Lq

⎤
⎦ ,B(t ) =

[
1

Ld
0

0 1
Lq

]
,

is(t ) =
√(

id(t )
)2 + (iq(t )

)2
,

T (t ) = 3

2
p
(
ψp +

(
Ld − Lq

)
id(t )
)

iq(t ), (3)

FIG. 2. Circuit diagram of the three-phase B6-bridge voltage source
inverter.

TABLE I Correspondence Between the Control Action, the Switching
Commands and the Applied Voltages

with the d and q inductances Ld, Lq, the stator resistance
Rs, the permanent magnetic flux ψp, the pole-pair number
p, the mechanical angular velocity ωme, the stator current is
and the generated drive torque T . This model will be utilized
for the simulative analysis, which is conducted based on the
open-source control simulation software gym-electric-motor
(GEM) [23].

B. B6-BRIDGE POWER CONVERTER
The B6-bridge inverter is depicted in Fig. 2. In the given
context of FCS control, the action space of this inverter con-
sists of eight distinguishable switching states (which already
excludes all switching states that result in half-bridge short
circuits). The task of any FCS-type controller is to choose the
switching state which is most preferable to optimize a given
reward or cost function. From a control and learning point of
view, one major challenge is to handle nonlinear mapping of
switching commands a, switching states sabc and three-phase
voltages uabc as shown in Table I. In the scope of this article,
the DC-link voltage UDC is assumed to be constant.

C. DISCRETE-TIME CONTROL
In addition to the physical system behavior, the impact of time
discretization for computerized control has to be considered.
As depicted in Fig. 3, the action ak is calculated based on
the feature vector ok−1 (lifted measurement vector, will be
discussed in Sec. III), but will be applied at time step k due
to the digital control delay. The change of the system state,
triggered by ak , will become visible in ok+1. This one-step
computational delay between the application of an action and
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FIG. 3. Chronology of the digital control loop.

the measurability of its effect poses another challenge when
designing the control agent. As the drive system behaves de-
terministically, the prediction of ok is possible if ok−1 and ak−1
are known. In the MPC domain this control delay compen-
sation is easily realized via another model-based prediction
step. Model-free RL approaches must learn to implicitly com-
pensate the influence of such a dead time by means of their
data-driven training process before satisfactory control quality
can be achieved. This knowledge will later be integrated into
the agent’s design.

III. DEEP Q-LEARNING
The deep Q-learning algorithm is one of the most established
RL algorithms for scenarios with a real-valued feature vector
o, which is derived from the system’s measurement, and a
discrete action a [21]. Its goal is to maximize the return g,
which is the cumulative, discounted reward over time:

gk = E

{ ∞∑
i=k

γ i−kRi+1

∣∣∣∣Ok = ok,Ak = ak

}
. (4)

Herein, capital letters denote random variables and E{·} de-
notes the expected value. The infinite horizon series presented
in (4) can be reformulated to resemble a dynamic one-step
problem by the Bellman equation [24]:

gk = q(ok, ak )

= E{Rk+1 + γ q(Ok+1,Ak+1)︸ ︷︷ ︸
gk+1

|Ok = ok,Ak = ak}. (5)

This equation recursively defines the action value q, which
is computed by means of the immediate reward rk+1 and by
the discounted future action value. Thus, the action value
represents the expectable return which is based on the mo-
mentary state-action pair. For a given action-value function,
the optimal action a∗ on the FCS can be determined by

a∗k = arg max
a′

q(ok, a′). (6)

Therefore, one major challenge in Q-learning is to deter-
mine an action-value approximation that allows an accurate
mapping q : (o, a)→ g in an online fashion, which is chal-
lenging if the system dynamics or the reward behavior are

nonlinear and can vary at runtime. The desired mapping can
be found by combining the flexibility of deep neural networks
with the Q-learning algorithm, leading to an action-value
approximator network q̂θ with θ representing the network
weights2. This representation of the action value function is
popularly known as deep Q-network (DQN), which is the core
of the deep Q-learning algorithm. In order to train such a
DQN, the Bellman equation in (5) can be rearranged to yield
a mean squared error minimization problem [25]

min
θ

JQ

s.t. JQ = 1

|B|
∑
Ek∈B

(q̂θ (ok, ak )−

(rk+1 + γ (1− dk+1)max
a′

q̂θtarget (ok+1, a′)))2, (7)

wherein a done flag d = 1 would mark the termination of
the control episode (e.g., due to violations of the operation
limits), consequently nullifying the look-ahead action value.
An optimization step can be performed whenever a state tran-
sition experience Ek = {ok, ak, rk+1, ok+1, dk+1} is available,
but usually, the transitions are processed in mini batches B,
leading to more robust improvements of the DQN.

When investigating (7) a little further, it can be seen that
the DQN comes up within the estimator as well as in the es-
timation target, allowing efficient updates at runtime without
the need for another estimation mechanism. The practice of
updating an estimation towards an estimation is commonly
known as bootstrapping [16]. Within bootstrapping methods,
there is a risk of rising parameter oscillations if the estimation
target is too volatile. Therefore, the best practice of using a
target network q̂θtarget has been established for such bootstrap-
ping methods [21]. The target network contains a set of target
parameters θtarget which are derived from the original param-
eters θ in order to dampen emerging parameter oscillations.
This can be achieved either by low-pass filtering the original
parameters

θtarget ← (1− ρ)θtarget + ρθ, ρ ∈]0, 1], (8)

or by updating the target parameters θtarget only occasionally:

θtarget ← θ, after every ρ ∈ N steps. (9)

The target update parameter ρ can be considered a hy-
perparameter of the training procedure. Its optimal choice is
problem-dependent and will be investigated during hyperpa-
rameter optimization in Section V-B.

Another trait of the Q-learning algorithm is the assump-
tion of the optimal look-ahead action value, as shown in
(7). This characteristic implements a maximization bias, as
it only yields realistic estimations if the system behavior is
deterministic and, thus, reproducible. Since this can usually be
assumed for technical applications like electric drive control,
no further measures are necessary here. However, attention is

2x̂ denotes an estimated quantity.
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FIG. 4. Schematic depiction of the DQN learning routine.

needed when transferring this concept to stochastic systems or
systems with very dominant measurement noise. For the latter
cases, the usage of double Q-learning should be considered
instead [26].

Lastly, the DQN agent performs exploration, i.e., evaluating
new actions which deviate from the current control policy.
This step is required to find better policies and is implemented
using the so-called ε-greedy policy:3

ak =
⎧⎨
⎩

arg max
a′

q(ok, a′), with probability 1− ε.
a random element from A, with probability ε.

(10)

With the set of available actions A. After finishing the
training phase, the ε parameter is usually set to zero, in order
to yield reproducible performance. Especially in the context
of technical process control, randomness is unwanted after
finishing the training phase, resulting in ε = 0 to enable reli-
able controller validation and usage. A schematic of the DQN
learning routine is depicted in Fig. 4, the pseudocode of the
presented deep Q-learning algorithm is given in Alg. 1.

IV. DEEP Q DIRECT TORQUE CONTROL (DQ-DTC)
The considered control problem of torque control necessitates
a control agent that chooses the optimal inverter switching
state such that the primary condition of adherence to the ref-
erence torque T ∗ has priority over the secondary condition
of maximum efficiency, which translates to minimal stator
current is while still maintaining the reference torque [27].
These demands can be formulated as

min
ak

is,k

s.t. Tk = T ∗k ,

is,k ≤ ilim, (11)

with the current limit ilim. Although the motor current and
torque behavior highly depend on the individual drive system,

3The greek letter epsilon is commonly used within the drive domain („rotor
angle εel“), as well as in the RL domain („ε-greedy policy“) In this con-
tribution the distinguishable symbols ε (within the electric drive domain)
and ε (within the RL domain) were used to avoid breaking with the naming
conventions of both communities.

Algorithm 1: Deep Q-Learning Pseudocode.
randomly initialize weights θ of q̂θ (o, a)
initialize target weights accordingly θtarget ← θ

initialize replay memory D with capacity |D|
m← 0
while m < M do

k← 0
obtain o0 and d0

while k < K do
select a random action ak ∈ A with probability ε
otherwise select ak = arg max

a′
q̂θ (ok, a′)

execute ak and obtain rk+1, ok+1, dk+1
save transition experience to replay buffer

D← {ok, ak, rk+1, ok+1, dk+1}
sample experience minibatch B ⊂ D of the size |B|
update θ by minimizing JQ on B, (7)
if ρ ∈]0, 1] then

update target weights according to
θtarget ← (1− ρ)θtarget + ρθ

else if ρ ∈ N then
update target weights according to

θtarget ← θ whenever m mod ρ = 0
end if
if dk+1 = 1 then

reset the environment and break
end if
k← k + 1
m← m+ 1

end while
end while

the DQ-DTC agent does not have any access to a plant model
and, therefore, must learn a policy to optimize (11) using
Alg. 1 purely in a data-driven fashion.

In order to achieve satisfactory controller performance with
the DQ-DTC approach, it is therefore sensible to design the
state feature vector o and the reward function r with respect
to the domain-specific knowledge about the PMSM. Since
plant-specific knowledge will not be integrated into the design
process, this approach is directly transferable to the large
class of synchronous motors (SMs), e.g., the surface perma-
nent magnet SM (where Ld = Lq), the synchronous reluctance
motor (where ψp = 0) and the highly utilized PMSM (where
Ld = Ld(idq) and Lq = Lq(idq)).

Domain-specific expert knowledge (which is available
without comprehensive plant analysis) can be implemented
by appropriately designing the feature vector o, which can
be considered as feature engineering. As will be discussed
later in detail, the feature vector is based only on the available
measurement signals during drive operation but lifted into a
higher feature space enriching the learning process. Another
exploitable design decision has to be made when constructing
the reward function r such that the optimization problem (11)
can be solved sufficiently and with respect to the operation
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FIG. 5. Schematic of the operation regions, reward gradients and optimal
operating point at low speed.

limitations of the PMSM. Naturally, these degrees of freedom
must be configured without knowledge about the individual
drive parameters.

Since the formal definition of the control problem (11)
is not readily suitable for DQN learning, a proper reward
function design reproducing these control objectives is to be
discussed in the following.

A. OPERATION LIMITATIONS
As any technical process the operation range of the drive
system underlies physical boundaries whose violation has
to be avoided for safety reasons, and reasonable operation
conditions whose violation reduces the efficiency and should
therefore be avoided whenever possible. A depiction of the
corresponding operation regions is given in Fig. 5. In the case
of the PMSM, the primary operation limit is given by the
current limit ilim, which should not be surpassed in order to
prevent the motor and inverter from overheating (region E).
The nominal current in < ilim is the maximum current the mo-
tor can endure permanently. It can be exceeded for short time
periods, but a long-term operation in respective states is not
advisable (region D). A secondary operation condition is mo-
tivated by the current id, which corresponds to the magnetic
field within the PMSM. For efficiency reasons, operating at
positive id values must be prevented (region C). However, the
corresponding boundary id+ should be allowed to be slightly
greater than zero, since low-torque operation points, which
naturally have low current demands, will be maintained more
precisely if the current ripple has a little leeway. As already
stated in Sec. IV, the general objective of the DQ-DTC is
to track the reference torque T ∗ (region B) while minimiz-
ing stator current (region A). Naturally, these performance
criteria have a lower priority than the aforementioned safety

FIG. 6. Shrinking of the reachable operation range as implied by (12) at
moderate speed (left) and high speed (right).

criteria. The significance of each named condition is ordered
hierarchically, from A being least important, to E being most
important, which will be incorporated into the reward design.

Lastly, the DC-link voltage UDC is also a limiting factor
for the reachable torque references. At high velocity, the con-
troller will use a large portion of the available voltage only to
compensate for the generative induced voltage:

(
Ldid + ψp

)2 + (Lqiq
)2 ≤ ( UDC√

3p|ωme|

)2

. (12)

This so-called flux weakening mode reduces the feasible
current state space, potentially disabling the control system
from reaching the optimal operation point as depicted in
Fig. 6. Hence, the controller must target a different operation
point in dependence of the motor speed: motor operation at
low speed is to be optimized for efficiency, leading to max-
imum torque per current (MTPC) operation. At high speed,
when operating at the voltage limit, higher torque output
requires maximum torque per voltage (MTPV) characteris-
tic [28]. The feature vector and the reward function must con-
vey these demands without specific plant model knowledge.

B. FEATURE VECTOR DESIGN
The feature vector o at every time step k obtains the informa-
tion about the momentary control system state. Thus, it needs
to be designed such that it contains as much relevant informa-
tion as possible without being bloated with redundant states.
When considering the equation of torque generation (3), it is
obvious that the motor currents idq and the reference torque T ∗
should be implemented into o. In usual drive applications the
drive torque T is not measurable when considering economic
factors. Within the scope of this contribution it is assumed
that such a measurement is only available within the training
phase (which could be conducted on a laboratory test bench
setup where a torque sensor is usually in use), allowing for
T to be considered for the reward function, but not for the
feature vector. Thus, the control agent is forced to implicitly
learn the mapping from current to torque, which includes the
implicit learning of the corresponding parameters. In order to
allow compensation of the computational delay mentioned in
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Sec. II-C, the previously applied voltage udq,k−1 is considered
within the feature vector, enabling the DQN to implicitly
predict ok+1, which is important for solving the Bellman equa-
tion in (5). The operation boundaries mentioned in Sec. IV-A
further necessitate the consideration of the motor speed ωme

and the stator current amplitude is. Finally, the mapping of the
static three-phase frame to the time-variant dq-frame depends
on the motor angle εel, which needs to be considered as well.

As usual in the field of machine learning, it is sensible to
normalize the inputs and outputs of the DQN to the range of
[−1, 1] [29]. For most of the input variables this is easily done
by dividing them by their corresponding limit value. For the
motor angle εel it is more reasonable to make use of the cos(·)
and sin(·) in order to provide a continuous and bounded angle
information

ok =
[
ωme,k

ωme,lim

id,k
ilim

iq,k
ilim

ud,k−1
UDC

2

uq,k−1
UDC

2

κ cos(εel,k ) κ sin(εel,k ) 2
is,k
ilim
− 1

T ∗k
Tlim

]
, (13)

with the maximum mechanical angular velocity ωme,lim and
the maximum reference torque Tlim. The strictly positive stator
current is also needs to be offset in order to cover the range
of [−1, 1]. The scaling parameter κ changes the value range
of the cos(·) and sin(·) from [−1, 1] to [−κ, κ], which can
be used to dampen the impact of the angle information if
dominant harmonics are visible within the DQN output. A
value of κ = 0.1 yielded good results in practice.

C. REWARD DESIGN
The reward function r has to be designed such that the opti-
mization problem denoted in (11) is solved optimally under
any given circumstance. This means that the highest achiev-
able reward always has to correspond to the optimal oper-
ating point. Since the control agent seeks to maximize the
reward through interaction, the reward function needs to be
constructed with caution. As a first step, the range of estimated
action values will be fixed to q ∈ [−1, 1], resulting in the
utilized DQN to have normalized outputs, which is beneficial
for the training [29]. In case of system termination, no look-
ahead action value will be considered, making it fairly easy to
determine the termination reward:

qterm = rterm
!= −1. (14)

This can be interpreted as a penalty whenever the DQN
leaves the allowed state space, i.e., the RL agent is learning to
stay within the system’s limitations during the training phase.

For ongoing operation, the normalization can be achieved
when considering the geometric series for the best and the
worst case operation point:

qmax =
∞∑

i=k

γ i−krmax = rmax

1− γ
!= 1

⇔ rmax = 1− γ , (15)

qmin =
∞∑

i=k

γ i−krmin = rmin

1− γ
!= −1

⇔ rmin = −(1− γ ). (16)

With the computed reward range it is now possible to design
the reward function in dependence of the active operation re-
gion as presented in Sec. IV-A. The resulting reward gradients,
that will ultimately determine the targeted operation point, are
depicted in Fig. 5 and Fig. 6.

E Excess current region
Entering this region will trigger an emergency system
shutdown which in the RL sense corresponds to the
termination of the episode. The learning is temporarily
discontinued and the drive system must be re-initialized
(starting a new episode). Minimum reward to discour-
age system termination is defined:

if ilim < is,k :

rk = −1, dk = 1. (17a)

D Short-time overcurrent region
Reward rises with decreasing stator current for safety
reasons, i.e., the agent is encouraged to not permanently
overload the system.

if in < is,k < ilim :

rk =
(

1− is,k − in
ilim − in

)
1− γ

2
− (1− γ ),

⇒ rk ∈
[
−(1− γ ),−1− γ

2

]
, dk = 0. (17b)

C Unfavorable efficiency region
Although stable and safe operation can be achieved for
positive id current, the resulting efficiency is inferior to
operating the drive in the left id-iq-half plane.

if is,k < in and id+ < id,k :

rk =
(

1− id,k − id+

in − id+

)
1− γ

2
− 1− γ

2
,

⇒ rk ∈
[
−1− γ

2
, 0

]
, dk = 0. (17c)

B Desired operating region
Reward rises with decreasing torque error for tracking
performance reasons:

if is,k < in and id,k < id+ and Ttol <
∣∣T ∗k − Tk

∣∣ :

rk =
(

1−
∣∣∣∣T ∗k − Tk

2Tlim

∣∣∣∣
)

1− γ
2

,

⇒ rk ∈
[

0,
1− γ

2

]
, dk = 0. (17d)
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TABLE II Parameterization of the Considered Drive System

A Reference torque isoline
Reward rises with decreasing stator current for effi-
ciency reasons:

if is,k < in and id,k < id+ and
∣∣T ∗k − Tk

∣∣ < Ttol :

rk =
(

1− is,k
ilim

)
1− γ

2
+ 1− γ

2
,

⇒ rk ∈
[

1− γ
2

, 1− γ
]
, dk = 0. (17e)

The reward functions (17a)-(17e) cover the entire motor
operation region including constant torque and flux weak-
ening operation. They represent the control objective from
(11) without requiring knowledge of the specific drive behav-
ior. Only the nominal and limit data of the drive should be
(roughly) known in order to be able to perform the presented
normalization of the reward functions.

V. SIMULATION RESULTS
To yield performance results, the PMSM drive system is sim-
ulated using the system model as presented in Sec. II, with
further parameters given in Table II. The suggested DQ-DTC
approach can now be optimized in terms of the DQN degrees
of freedom (hyperparameters). Afterwards, the resulting con-
trol agent will be tested against a state-of-the-art MP-DTC
implementation.

A. BASIC SETUP
The training and testing programs are implemented in Python
3.7. The drive system is simulated using the GEM library [23],
the setup and training of the DQN is handled with the use
of kerasRL [30], kerasRL2 [31] and tensorflow 2 [32]. The
DQN weights are optimized using the Adam optimizer [33].
To force state-space exploration (i.e., to ensure state-space
coverage), the training makes use of uniformly distributed
exploring starts [16] on the controllable sub-space:

ωme,0 ∈ [− ωme,lim, ωme,lim], εel,0 ∈ [−π, π ],

id,0 ∈ [max(−in, id,c,min),min(in, id,c,max)],

iq,0 ∈
[

max
(
−
√

i2n − i2d,0, iq,c,min

)
,

FIG. 7. Exemplary DQ-DTC performance in an early training episode,
ωme = −1177, 779 s−1.

TABLE III Evaluation of the Training Duration for the Learning Processes
Depicted in Fig. 11 and Specification of the Workstation on Which These
Computations Were Conducted

min
(√

i2n − i2d,0, iq,c,max

) ]
,

T ∗0 ∈ [− Tlim,Tlim], (18)

with

id,c,max = −
ψp

Ld
+ UDC

Ld
√

3p|ωme,0|
,

id,c,min = −
ψp

Ld
− UDC

Ld
√

3p|ωme,0|
,

iq,c,max =

√√√√( UDC

Lq
√

3p|ωme,0|

)2

− L2
d

L2
q

(
id,0 +

ψp

Ld

)2

,

iq,c,min = −iq,c,max.

(19)

Herein, the maximum/minimum controllable id and iq for
the initialization are denoted by id,c,max, id,c,min, iq,c,max and
iq,c,min respectively. The exploring starts are important to
cover the entire drive’s operation range during training. The
model parameters used in (19) are unknown to the DQ-DTC
agent and were only used to narrow down the training to the
relevant working areas of the operation range.

Representative episodes of an exemplary training process
are depicted in Fig. 7, Fig. 8 and Fig. 9. The training pro-
cess starts out with a randomly initialized DQN, leading to

VOLUME 2, 2021 395



SCHENKE AND WALLSCHEID: DEEP Q-LEARNING DIRECT TORQUE CONTROLLER FOR PERMANENT MAGNET SYNCHRONOUS MOTORS

TABLE IV Considered Hyperparameters With Their Respective Search Spaces and the Found Three Best Parameter Sets

FIG. 8. Exemplary DQ-DTC performance in an intermediate training
episode, ωme = 891.291 s−1.

FIG. 9. Exemplary DQ-DTC performance in an advanced training episode,
ωme = −155.149 s−1.

FIG. 10. Controller validation profile.

FIG. 11. Convergence behavior of the best found DQ-DTC hyperparameter
set from Table II during 50 distinct trainings with averaged mean reward
per episode μr and a confidence interval of one standard deviation σr .

TABLE V Search Space of the DQN Activation Functions
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FIG. 12. Reference step performance for the MP-DTC and DQ-DTC.

FIG. 13. Validation profile performance for the MP-DTC.

FIG. 14. Validation profile performance for the DQ-DTC.

execution of random actions on the motor environment. Ac-
cordingly, the untrained agent is not able to comply to the
operation limits and violates them early (Fig. 7). Over the
course of the training (Fig. 8), the DQ-DTC agent learns how
to track the torque reference T ∗, and how limit violations can
be avoided more reliably. Finally (Fig. 9), the agent will be
able to track the reference torque accurately and with high
dynamic. Nevertheless, exploration necessitates occasional
execution of random actions and even late training episodes
are not entirely free of limit violations.

Further excitation of the control loop is ensured via random
changes of the reference torque, as can be seen in Fig. 9. At
any time step k there is a chance of 0.1 % that the reference
torque is resampled, otherwise it is kept constant. Please note
that the maximum reference torque Tlim surpasses the nominal
torque Tn of the considered PMSM, which would require over-
current operation (regions D and E). This way, the controller
is forced to operate the plant closely to these regions while
preventing to enter them in order to avoid the corresponding
lower reward, making the stabilization of the plant integral to
the training.

The implemented DQ-DTC training algorithm is available
in [34] to supplement this article.

B. HYPERPARAMETER OPTIMIZATION
For the given setup, different configurations of the feedfor-
ward multilayer perceptron [25] are considered as a choice for
the DQN q̂θ . The selection of an expedient hyperparameter set
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is in the following analyzed within the scope of an optimiza-
tion process. The hyperparameters in question with their re-
spective search spaces are outlined in Tabs. IV and V. The hy-
peropt Python library [35] in conjunction with the integrated
tree-structured Parzen estimator [36] is used as optimization
tool. The large computational effort of this optimization is
managed using the capacities of a high-performance comput-
ing system. The hyperparameter optimization aims to maxi-
mize the average reward G for the reward function presented
in Sec. IV-C, parameterized with γ = 0 to yield G ∈ [−1, 1]

G = rγ=0 = 1

K

K∑
i=0

rγ=0,i+1, (20)

on the speed and reference torque validation profile as de-
picted in Fig. 10. A total of 500 different parameter sets have
been considered. The three best results of this investigation are
presented in Table IV. It can be seen that these parameter sets
are very similar, hinting that a quite reliable parameterization
can be found in the corresponding region of the hyperparam-
eter search space.

To evaluate the convergence reliability of the training pro-
cess with the found best hyperparameter set from Table IV,
the control-learning procedure is conducted for another 50
agents. The resulting average learning curve is depicted in
Fig. 11. As it seems, the found parameter set permits reliable
controller training for the torque control task. It should also be
noted that the exploring starts at the beginning of each episode
incorporate random set points. This adds some degree of noise
to the reward distribution of subsequent episodes since the
initial motor states might or might not fit well to these set
points. Some variation in reward distribution is therefore to be
expected.

Within this convergence investigation the training duration,
assessed in Table III, includes both, drive simulation as well
as deep Q learning. In consideration of the early performance
increase visible in Fig. 11, it could be considered to examine
a shortened training phase in the future.

C. PERFORMANCE COMPARISON AGAINST MP-DTC
After hyperparameter optimization, the resulting DQN setup
is to be compared against an already established state-of-the-
art control solution, allowing a reliable performance rank-
ing. The control method which comes closest to the DQ-
DTC is the MP-DTC concept from the MPC domain [5],
[6]. The utilized MP-DTC parameterization was designed
with respect to the performance metric (20) and is also fully
available at [34]. It is realized assuming a one-step predic-
tion horizon, which is the usual choice in FCS-MPC [11].
A larger prediction horizon will only yield negligible perfor-
mance improvements but will strongly add to computational
burden [5], [11].

For the MP-DTC, whose validation episode is depicted in
Fig. 13, it is visible that id is positive during some transients
and that the intended current boundary at in was violated very

FIG. 15. Reference step performance for the MP-DTC and DQ-DTC.

briefly, which is unwanted behavior, but otherwise the MP-
DTC shows very good torque accuracy and efficiency. It is
visible that the marked MTPC trajectory is adhered to for most
of the time. For higher velocities the MTPC operation points
are located outside the ellipsis of available voltage, leading to
flux weakening operation.

The validation episode of the DQ-DTC is shown in Fig. 14.
This agent is parameterized according to the best set as
listed in Table IV. Operating points of positive id are less
striking in this setup, and moreover, it is visible that the
behavior at low speed is preferable in terms of the torque
ripple. At higher speed, however, this agent is not as well
performing and has problems to steadily hold high torque
magnitudes. Interestingly, this seems to be less critical in
generator operation (ωmeT < 0), and more severe in motor
operation (ωmeT > 0).

The transient behavior of both control approaches in reac-
tion to a reference step is highlighted in Fig. 12 and Fig. 15.
Here, the DQ-DTC reaches the reference torque faster than
the MP-DTC, which is particularly noticeable at higher speed.
The average performance of the best ten hyperparameter sets
is presented in Fig. 16. This plot suggests that the factor of
randomness, that is an inherent part of the training phase,
is quite important for the performance outcome. Hence, it
is not advisable to use the trained controller without proper
testing.

In terms of quantitative performance evaluation, the result-
ing performance metrics on the validation profile and the step
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FIG. 16. Reference step performance for the MP-DTC in comparison to the
average performance of the best ten DQ-DTC parameterizations with
sample mean μDQ and a confidence interval of one standard deviation σDQ.

TABLE VI Performance Comparison of MP-DTC and DQ-DTC

profile are rated in Table VI. The metrics used are defined by

MSE(T ) := 1

K

K∑
i=0

(
T ∗i − Ti

2Tlim

)2

,

MAE(T ) := 1

K

K∑
i=0

∣∣∣∣T ∗i − Ti

2Tlim

∣∣∣∣ ,

RMS(is) :=
√√√√ 1

K

K∑
i=0

(
is,i
ilim

)2

,

fsw := 1

mcTs

K∑
k=0

||
sabc,k||1, (21)

with the average switching frequency fsw, the number of
converter half bridges m = 3, the number of converter lev-
els c = 2, the duration of the sampling period Ts and

sabc,k = sabc,k − sabc,k−1. For the validation profile the
torque ripple that was observed for the DQ-DTC at higher
speed leads to a higher torque MSE. Furthermore, since these
operating points are also characterized by a diminished torque
output, the power flux to / from the drive is lowered as well,
leading to a lower current RMS. Due to the higher rating
concerning the performance metric G it can be expected that
the DQ-DTC achieved a higher drive efficiency than the MP-
DTC. For the reference steps, the gained metrics fit the ob-
served behavior very well: in both cases, the DQ-DTC shows
better dynamic behavior and, hence, better performance con-
cerning the torque reference. The average switching frequency
- as an indicator for inverter switching losses - is in the same
value range for both considered algorithms. However, the
switching frequency is operation point-dependent and was not
addressed as part of the optimization task in either control
approach, so separate consideration of it should be made in
future work in this area.

VI. CONCLUSION AND OUTLOOK
A data-driven PMSM torque controller has been successfully
trained using the developed reward function within the deep
Q-learning algorithm. The resulting DQ-DTC agent was able
to perform comparable to a state-of-the-art MP-DTC con-
troller which had full and precise model knowledge. It has
been shown that the RL controller design approach without
plant-specific knowledge yields a controller with satisfactory
performance. However, since no general stability and perfor-
mance theory has yet been established in the domain of RL,
comprehensive and rigorous controller testing is necessary
before deployment. The results of the hyperparameter opti-
mization propose a DQN design configuration that should be
reusable for any other SM drive.

In the upcoming research it has to be investigated in how far
the same setup can be transferred to a physical test bench drive
system. If trained online, the DQ-DTC allows consideration of
the usually challenging parasitic effects of (cross-) saturation,
inverter nonlinearity, constructive anisotropy and iron losses.
Furthermore, switching losses could be incorporated into the
design of the presented holistic performance- and efficiency-
motivated control algorithm. However, online learning also
needs to be conducted with caution, because a too random
action selection could result in overcurrent situations trigger-
ing emergency shutdowns. Moreover, it has to be investigated
whether the proposed DQN architecture is real-time capable
on industrial, low-cost control hardware.

Moreover, it has to be analyzed if the utilized reward design
can be transferred to the continuous control set scenario, and
in how far the data-driven torque control approach is feasible
for non-synchronous motors.
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