
Received 12 December 2020; revised 23 January 2021; accepted 26 January 2021. Date of publication 2 February 2021;
date of current version 26 February 2021. The review of this article was arranged by Luis Gomes.

Digital Object Identifier 10.1109/OJIES.2021.3056400

A Formal Model of IEC 61499-Based Industrial
Automation Architecture Supporting

Time-Aware Computations
DMITRII DROZDOV 1, VICTOR DUBININ2, SANDEEP PATIL 1 (Member, IEEE),

AND VALERIY VYATKIN 1,3 (Senior Member, IEEE)
1 Luleå University of Technology, 97187 Luleå, Sweden

2 Penza State University, Penza 440026, Russia
3 Aalto University, 02150 Helsinki, Finland

CORRESPONDING AUTHOR: DMITRII DROZDOV (e-mail: dmitrii.drozdov@ltu.se)

This work was supported in part by Swedish Project DIACPA (Vetenskapsrådet dnr 2015-04675) and in part by the H2020 Project 1-SWARM, funded by the
European Commission under Grant Agreement 871743.

ABSTRACT This paper proposes a formal model for industrial cyber-physical systems (CPS) with dis-
tributed control based on IEC 61499 standard and supporting time-aware computations for better adaptation
to the ever changing environment conditions. Main features of the model include usage of timestamps,
flattening, unified and independent behaviour of function block interfaces. This allows to make correct
implementation of time-aware systems and significantly simplify the construction of models for verification
and simulation, as well as ensure fairness of the model and determinism of the function block system
execution at a resource level. The model formalism is based on a well-known abstract state machines (ASM)
notion, which can be used as an intermediate formal representation to generate a variety of models for
different purposes, e.g. formal verification, and executable code. This paper exemplifies this approach by
the generation of models in the SMV language. The paper discusses the time-aware computation concept
and its application in a few related case studies.

INDEX TERMS Abstract state machines, CPS, formal semantics, formal verification, IEC 61499, time-aware
computations.

I. INTRODUCTION
Distributed automation systems is a vast class of cyber-
physical systems (CPS) [1], providing many challenges for the
CPS design and analysis. Formal models of computations [2]
provide the underlying support for their implementation, test-
ing, simulation and formal verification.

The automation CPS are subject to the environment un-
certainties, the strongest of which is related to reliability of
wireless communication. Algorithms, dealing with the uncer-
tainties, require comprehensive validation. Model-based for-
mal verification of software is a well-known mechanism for
this purpose. To be applied efficiently, it requires creation of
tool-chains seamlessly connecting the design models with the
formal models of computations.

The use of block diagram languages for implementation
of CPS is becoming a mainstream trend. The well-known

examples of that include Matlab/Simulink and LabView. The
modelling environment Ptolemy II [3], developed at Berke-
ley, provides new modelling capabilities for heterogeneous
CPS, combining complex physical system dynamics and cy-
ber parts, based on different models of computations.

In industrial automation, the function block architecture of
the IEC 61499 standard [4] is increasingly used for modelling
complex distributed automation systems in such challenging
applications as SmartGrid [5], process automation, and ma-
terial handling systems [6]. IEC 61499 is based on the same
concepts of event-driven block diagrams as Ptolemy II and,
as such, allows for modelling of CPS composed of physical
processes (a.k.a. plant) combined with control and communi-
cation. The model can be used for validation of system-level
properties before deployment. The most common validation
method is simulation, but it has well-known limitations in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 169

https://orcid.org/000-0002-7001-3435
https://orcid.org/0000-0003-2936-4185
https://orcid.org/0000-0002-9315-9920
mailto:dmitrii.drozdov@ltu.se

DROZDOV ET AL.: FORMAL MODEL OF IEC 61499-BASED INDUSTRIAL AUTOMATION ARCHITECTURE SUPPORTING TIME-AWARE COMPUTATIONS

the discovery of possible faults. Model-checking [7] presents
a complementary method of exhaustive testing, however its
applicability is also limited by possible complexity explosion
when the original system uses rich data-types and compu-
tations. A recent survey [2] presents a summary of formal
methods application in industrial automation. In the past 15
years of research certain progress [8], [9] was achieved in
formal modelling of the IEC 61499 architecture, but it was
limited by support of very simple data types, non-timed se-
mantics and small scale systems. In the meantime the power of
model-checking tools and sophistication of supported model-
checking techniques has substantially improved and new op-
portunities emerge.

The notion of Abstract State Machines (ASM), proposed
by Yu. Gurevich [10], has been proven during the past three
decades as an efficient approach for the formal specification
and analysis of computer hardware and software. It has been
used in numerous modeling and verification projects, and later
was introduced into development environments for practical
usage in high-level system design and analysis [11].

The ASM can be used as an abstract modelling language for
high-level system design and analysis [12], model-checking,
and especially effective when different analysis and validation
techniques may be applied to the same model. Various model-
checking techniques have been applied to ASM models, start-
ing with symbolic model-checking using the SMV tool, first
proposed in [13] and later developed in [14], [15], and explicit
state model-checking with SPIN [16], [17].

The Ptolemy II/PTIDES model of computations ensures
execution determinism under an assumption that there is a
known and rather small upper bound on network transmission
delay. However, in distributed control systems the absolute
upper bound is very large, while the average delay time stays
reasonably small. This can happen when an occasional envi-
ronment disturbance interferes with transfer of rather small
number of messages. In this case, the solution of the PTIDES
model to wait for the maximum time to process an event may
lead to significant loss in control system’s performance.

In this paper we propose a different idea, called time-aware
computations (TAC). Instead of aiming at determinism, that is
very expensive in distributed systems, it aims at adaptability
and robustness. It is based on the same event-timestamping
mechanism as PTIDES, but is intended to let the developer
to handle each delay case individually thus minimizing its
impact on functional properties of the automation system. It
allows the controller to take into account actual point-point
delay of the measured sensor readings, and adjust the con-
trol reaction accordingly, instead of trying to put the up-
per bound on it and wait for the maximum possible delay
time.

We propose a comprehensive ASM-based formal model of
the IEC 61499 function block architecture and apply it to
the architecture extended with the event-timestamping mech-
anism of PTIDES. The developed model is an intermediate
formal model representation, which can be used for the pur-
poses of formal verification and as an underlying model of

run-time implementation. In particular, it is the back-end of
the developed open-source software tool fb2smv.

The rest of the paper is organized as follows: Section II
discusses the concept of time-aware computations and related
works. Sections III and IV present the core original contribu-
tion: Section III gives the basic description of the model and
Section IV defines core formal semantics for FB systems with
timestamps. In Section V, SMV models and model-checking
is discussed. Section VI combines several use-cases illus-
trating the applicability range of the proposed concepts and
models. Finally, the Section VII concludes the paper.

II. TIME-AWARE COMPUTATIONS: THE CONCEPT AND
RELATED WORK
We define time-aware computations as a set of methods,
approaches and design patterns to create distributed control
system software that can take advantage of precise informa-
tion of the timing of computations and communications. The
idea of TAC could be partially attributed to the precision
time architecture (PRET) [18], [19], which was introduced to
achieve timing repeatability at one computational node. On
the contrary, in TAC we target distributed systems. In the
following, the main mechanism for achieving TAC is times-
tamping of events, while in PRET it is achieved by taking into
account timing of every micro-operation and calculating the
worst-case execution time.

The main purpose of TAC in distributed automation is
to achieve robustness of the distributed system behaviour in
presence of various disturbances. One such common distur-
bance in the modern automation CPS is related to the jitter
of wireless communication, which is becoming increasingly
important in the automation context.

The works, enabling TAC, can be divided to several groups
as follows.

A. DISTRIBUTED NETWORKED CONTROL SYSTEMS
The progress in distributed networked control systems pro-
vides control methods adjusted to the distributed systems set-
ting. A cornerstone in the evolution towards distributed con-
trol systems was the introduction of event-based control [20],
[21]. Prior to that, an earlier study [22] discussed issues of
decentralized control systems with yet central control, but
sensors and actuators connected over communication network
and addressed questions of modelling random time delays that
occur in communication networks.

B. IEC 61499 ARCHITECTURE
IEC 61499 was introduced as a system-level architecture for
distributed automation systems, extending the software model
of popular programmable logic controllers (PLC), known as
IEC 61131-3 standard, with the means of describing complex
distributed systems composed thereof.

The central structural unit of the IEC 61499 architecture
is function block. As shown in Figure 1, function blocks have
clearly defined interfaces of event and data inputs and outputs.
Event inputs are used to activate the block. There are basic,

170 VOLUME 2, 2021

FIGURE 1. Interface of a function block.

FIGURE 2. ECC: a state-machine, defining the behaviour of a basic
function block.

composite and service-interface kinds of function blocks. A
basic function block may have internal variables which are
fully protected, i.e. not directly accessible from outside. As a
result of internal computations the block may change output
data variables and emit output events, which, if connected to
event inputs of other blocks, will activate them.

The behaviour of a basic function block is determined by
a state machine, called execution control chart (ECC), illus-
trated in Figure 2. Semantically, ECC is equivalent to a Moore
type finite automaton. States of ECC can have associated
actions, each consisting of invocation of an algorithm and
emission of an output event. Algorithms can be programmed
in different programming languages even within a single basic
FB. Thus, basic FBs can be regarded as a portable abstract
model of a single controller.

Function block instances can be connected one with another
by event and data connection links, thus forming function
block networks. The connections define control and data flow
between FB instances thus determining the network’s execu-
tion semantics. FB networks are seen as a universal model of
control systems, both distributed and centralized. Functional-
ity of composite function blocks is defined by a network of
function block instances, some of which can also be compos-
ite. This can lead to a hierarchical structure of applications,
as illustrated in Figure 3 for the elevator control application,
which will be discussed in more detail in Section VI-A.

In distributed systems FB instances included in a net-
work can be regarded as independent processes. Communi-
cation between them is abstractly modelled by event and data
passing.

FIGURE 3. Hierarchical structure of an application in IEC 61499.

The IEC 61499 standard includes a mechanism to add more
details to the abstract FB network model of a system. Appli-
cation’s FBs can be allocated to distributed devices, and com-
munication FBs inserted whenever event or data connections
cross borders of devices.

The event-based communication of FBs in IEC 61499 can
be seen as a mechanism making the behaviour of applica-
tions partially agnostic to the underlying distributed hardware
architecture. This mechanism, which can be seen as an ab-
straction of message passing, preserves causality of events
regardless of internal execution specifics of devices, where
parts of the application are executed.

For more details on IEC 61499, we refer the reader to the
proper introductory material, such as the book [23].

C. IEC 61499 FUNCTION BLOCKS FORMAL MODELLING
AND OPERATIONAL SEMANTICS
The IEC 61499 design architecture for distributed automation
appeared to improve determinism and reduce integration and
reconfiguration effort thanks to the event-driven execution
mechanism. The need to prove some properties of distributed
automation systems rigorously has lead to the development
of the corresponding formal execution semantics. The inter-
national standard IEC 61499 for distributed automation de-
fines an event-driven control architecture and a block-based
programming language aimed to fulfill new demand for fully
distributed and flexible control systems for Industry 4.0. The
first version of the standard was released in 2005 with updated
second release in 2012 [4]. While the standard itself well
defines language syntax, tool requirements, compliance pro-
files, etc., there is still a need for strict mathematically-defined
notation, which can be used as a basis to generate various
models and implementations.

The first attempt to model IEC 61499 formally was pre-
sented in [24] by means of a Petri-net derivative called net
condition-event systems. A good summary of early works on
IEC 61499 modelling and verification can be found in [8].

VOLUME 2, 2021 171

DROZDOV ET AL.: FORMAL MODEL OF IEC 61499-BASED INDUSTRIAL AUTOMATION ARCHITECTURE SUPPORTING TIME-AWARE COMPUTATIONS

An attempt to present a formal operational semantics of IEC
61499 is the work [25] by Yoong et al. This approach is, how-
ever, limited by the fact that the semantics was based on the
synchronous paradigm, similar to Esterel. A semantic char-
acterization of PLC programs based on extended λ-calculus
appears in [26], leading towards theorem proving and model
checking.

In [27] timed-models of plants and closed-loop automa-
tion systems are built as constrained timed discrete event
systems and timed controller models respectively. These
implementation-independent models are subsequently trans-
formed into timed automata for verifying timing requirements
such as urgency. Several works transform system artifacts into
format accepted by formal tools. In [28], IEC 61499 systems
are modelled as finite state machines, contracts or modules
in synchronous languages, subsequently allowing the use of
model checkers. Many algorithms use the UPPAAL model
checker to verify timeliness. In [29], IEC 61499 systems are
transformed into timed automata using set translation rules for
verifying timing requirements. However, hardware configura-
tions that affect a system’s timing characteristics are not con-
sidered. Works [30]–[32] look at formally specifying buffered
sequential execution model (BSENI) of the Fuber IEC61499
runtime. They also presents extended finite automata models
that are suitable for formal verification of the proposed execu-
tion semantics.

The works [33]–[35] give the first description of FB for-
mal model with ASM. This model can be (and is) used as
a basis to build applied models for formal verification and
simulations. For example, various works by the authors of
this paper on SMV modelling and formal verification of IEC
61499 function blocks [36]–[38] and the fb2smv converter
tool [39] are using underlying elements of the ASM-based
formal semantics.

D. CPS MODELING WITH TIMESTAMPS
The concept of event timestamping was originally devel-
oped in research on determinism of cyber-physical systems.
Cyber-physical system concept can be described as integra-
tion of tightly connected computer system and physical pro-
cess where physical process can affect computations and vice
versa [40].

A large research was done by Lee et al. on cyber-physical
systems concept in general and distributed software [41], lead-
ing to creation of PTIDES [42] model of computation and
Ptolemy II software framework for distributed CPS modelling
and simulation. As mentioned in Section III-A, semantic basis
and its implementation were suggested by Dai et al. [43],
however, the authors did not consider the time-aware com-
putations concept.

E. CYBER-PHYSICAL AGNOSTICISM
Possible enhancement of PTIDES model in application to
IEC 61499-based control systems was first proposed in [44].
Instead of full determinism in exchange to control systems

performance derived from PTIDES model, a different ap-
proach was proposed: to process messages (events) immedi-
ately when they received, but take actual communication de-
lay into account in the control algorithm. Instead of determin-
ism in PTIDES model, this property was called cyber-physical
agnosticism or CPA in short.

From the perspective of control theory, distributed con-
trol systems were studied in the late 1990-th by J. Nilsson
et. al. [22], [45], addressing the problems of optimal con-
troller generation and control system modelling and analysis
for distributed configuration with random delays. However,
that work was focused on the configuration with centralized
controller and remote sensors and actuators (in low-latency
networks). It does not consider the case where the controller
itself is distributed across several nodes.

III. MODEL BASICS
The semantic description of IEC 61499 extended with times-
tamps, presented in this section, is meant to be used as a for-
mal basis for different models in implementation, validation
and formal verification of IEC 61499-based control systems.
The model is designed in a way to keep a certain level of sim-
plicity in order to address the state space explosion problem
widely observed when using formal verification techniques,
preserving, at the same time, the crucial semantic features.

A. FLATTENED FB MODEL
As illustrated in Figure 3, a composite function block, or
an IEC 61499IEC 61499 application can have hierarchical
organisation due to the fact that composite function block
definitions can include instances of other composite function
blocks.

As for composite function blocks, their execution model
has not been fully clarified in the standard. According to [46],
there are two possibilities: to execute a composite FB as an
entity or as a transparent container, i.e. a flattened FB network.
In this work, we follow the transparent container model and
further specify its implementation: our flattening approach,
based on [47], [48], uses the concept of data valves, preserving
the semantics of interfaces (the event-data associations and
data latches). Events and data in our model are transferred
through interface border in and out immediately when they
appear.

A flat FB system consists of the following elements:
� Basic function blocks (BFB)
� Service interface function blocks (SIFB)
� Composite FB input interfaces
� Composite FB output interfaces
Fig. 4 shows an example of the flattened model structure of

a composite FB “quad” on the top level, that was composed
of the instances “tw1” and “tw2”. Each of the latter is also a
composite function block, composed of two instances of the
basic function blocks INC and DEC respectively.

Basic function blocks in our model are executed as atomic
units, that is while a BFB is being executed, no other actions
are possible (except buffering of input events from SIFBs),

172 VOLUME 2, 2021

FIGURE 4. Flattened FB system.

therefore a basic FB execution time should be as short as
possible.

The key difference of the CFB model from another IEC
61499 structure, called subapplication, is that events and data
are still bound together by means of the WITH-associations,
while in a subapplication events and data are always trans-
ferred independently. The WITH association between event
and data interface elements of a function block determines that
the data element is sampled only when the associated event
occurs.

The presented modelling approach sets certain restrictions
on FB systems that can be modelled, as follows:

1) A data input of one FB can be connected to only one
data output of another FB. (Event connections are free
of such restrictions and implicit usage of the E_SPLIT
and E_MERGE standard function blocks is assumed for
splitting and merging events respectively.)

2) Each event or data input of a component FB can be
connected to only one input interface.

3) Each event or data output of a component FB can be
connected to only one output interface.

Most of these restrictions do not limit the generality as they
follow the rules of IEC 61499.

While the proposed model for composite function blocks
does not support the IEC 61499 principle of “run to comple-
tion,” it can be be further enhanced with this feature, but on
account of some complications. One should note that different
implementations of IEC 61499 treat the “run to completion”
principle differently and the standard itself does not elaborate
on this side of the composite FB execution model.

B. MODELLING TIMESTAMPS
The IEC 61499 model, introduced in this paper, uses event
timestamps as proposed in [49] and further elaborated in [43],
[50]. This mechanism is not yet a part of the standard, but is
already supported by some of the implementation tools, such
as IDE Neptune [51] and is considered to be a useful extension

for its ability to check timing guarantees and implement robust
time-aware behaviour.

All input and output events of function blocks are loaded
with timestamps. A timestamp is determined by two vari-
ables: the event birth time (we will further refer to it as TB-
timestamp) and the event last update time (further referred as
TL-timestamp). Intuitively, an event birth time is the system
time, when the event was created by the event-producing FB
and the last update time is when the event was last processed
by a function block (or passed through an interface) firing a
consequent event. The event birth time is created either by
an event-producing SIFB, or by a user-defined event creating
BFB. The closest to the above semantics and implementation
was proposed by Dai et al. [43], however, the paper does
not give a complete semantic description of FB systems and
does not consider a possibility to use timestamp information
in control logic.

To ensure a fully deterministic execution of a FB system
(in a single resource), besides the timestamps, we also use
the principle of unique priorities of execution elements. For
example, in the whole system there should not be two input
events (of any FBs) with equal priority. This is achieved by
using two priority levels: a) unique FB priorities in the system
and b) unique local priorities of event inputs/outputs within
a single FB or interface. Priorities are taken into account iff
timestamps of two or more active events are equal. The times-
tamps are meant for received events at the time of evaluation.

C. MODELLING EVENT SCHEDULER
The formal model definition consists of two parts: model
schema and model dynamics. The model schema describes the
static part of the model (including basic syntactic constructs,
variables and common functions). The model dynamics is de-
scribed by the rules of state variables (and functions) change.

In addition to the earlier mentioned structural restrictions
for the FB system, the model-level abstraction is used to
improve model-checking performance. The abstractions are
based on the following assumptions:
� The model does not take into account clock synchro-

nization error on different devices. It is assumed that the
error is handled on the application level and not by the
execution semantics.

� The model considers only FB application execution
within a single resource.

� FB execution in a resource is always sequential. Re-
sources (or devices) run separately and independent from
each other.

� The model uses a discrete time notion, where time do-
main T = {unde f , 0, 1, 2, . . .} is a set of discrete time
values in the system. unde f means that time is not de-
fined or non-important.

However, too much independence in execution of compos-
ite FBs can lead to a behavior unwanted in some execution
models, for instance:
� A composite FB could be triggered when not all its

components finished executions (CFB reenterability).

VOLUME 2, 2021 173

DROZDOV ET AL.: FORMAL MODEL OF IEC 61499-BASED INDUSTRIAL AUTOMATION ARCHITECTURE SUPPORTING TIME-AWARE COMPUTATIONS

� A component FB inside a CFB could be executed multi-
ple times.

� Execution of component FBs from different CFB in-
stances could interleave.

It is assumed that a resource includes a scheduler that
controls execution of FBs. Execution of the FB system com-
ponents in a single resource is always sequential (since a
resource is usually implemented as non-preemptive to ensure
deterministic behaviour) [52].

The scheduler is built upon a chronologically ordered event
queue (events in a queue are ordered by TL-timestamps). The
scheduling elements in the queue are events and execution
elements are FBs and interfaces.

For the sake of model’s simplicity, we will use an implicit
event queue in the model instead of explicit queue in runtime
implementations. An implicit queue is formed as a set of
events buffered on event inputs of BFBs, SIFBs and CFB
interfaces. There is a chronological order relation defined on
this set. In case of implicit event queue, the elements are not
bound into a list. When describing the work of the scheduler,
it is convenient to use a queue of execution elements, i.e.
FBs and interfaces, instead of a queue of events. It is possi-
ble to uniquely map the events to their associated execution
elements.

For the reference, the listing below shows an abstract al-
gorithm of a possible scheduler implementation. During the
event transfer, we need to consider not only the FB that has
just finished execution, but also the event-producing SIFBs.
We assume that the need precautions are taken to insert the
newly produced events into the event queue safely, asyn-
chronously and concurrently to the scheduler algorithm.

scheduler = while execQueue not empty do

choose x ∈ execQueue :

x has a minimum timestamp and

the highest priority among other elements

with the same minimum timestamp (if any)

pm(x) (1)

where pm(x) is the execution rule for the corresponding
schedulable element x (e.g. a BFB). However, keeping in mind
the performance of model-checking, we do not use explicit
scheduler in the model, but instead the active event selection
is done by special predicates directly in the execution rules.

Concluding the above, we can summarize main differences
between formal model and actual implementations:

1) Model uses implicit event queue, while implementa-
tions use explicit event queue;

2) Model does not have an explicit scheduler, instead, it
uses predicates for selection of an active event among
timed prioritized events;

3) Model is based on sets, functions and ASM rules, while
a real implementation uses FB artefacts and computa-
tions based on them.

Model operation is based on transitions from one model
state to another according to certain ASM rules. This can be
called a rule-driven execution, when the model operation is
defined by execution of enabled ASM rules.

D. BASIC NOTATION
A model of a flat FB system S is formally defined as

MS = (SyntS, SemS) (2)

The syntactic part is what is defined by the IEC 61499
abstract syntax and can be described as a tuple:

SyntS = (FBS, INS, OUTS, PRS,

EVCONNS, DCONNS) (3)

where FBS is a set of component FB instances in the sys-
tem (only BFB and SIFB, composite FBs are unfolded into
interfaces and connections by flattening, as discussed in Sec-
tion III), INS is a set of input CFB interface instances, OUTS

- set of output CFB interface instances, PRS is a set of pri-
orities, EVCONNS and DCONNS are sets of event and data
connections in the system.

We call component FBs, input and output interface in-
stances - execution elements and define a set ELS = FBS ∪
INS ∪ OUTS for this purpose. Every execution element has its
unique priority from the PRS set. A priority of an element x
in the system is referred as priorS (x), where priorS : ELS →
PRS .

The semantic part of the system description will be:

SemS = (EIFB, EOFB, EIIN , EOOUT ,

V IFB,V OFB,V IIN ,V OOUT , τ) (4)

First eight elements of the tuple are event and data inputs
and outputs of BFBs/SIFBs and CFB interface instances. (Dif-
ferent lower indexes FB, IN and OUT indicate subsets of com-
ponent function blocks, input interfaces and output interfaces
correspondingly) τ is a monitored 0-ary function, returning
system (resource) clock value (in ASM model, the term “mon-
itored” means the function’s change is not defined by ASM
rules, but read (monitored) from external environment, e.g.
user input or external simulator). For all data variables we
define a universal value function Val : VARS → VAL, where
VARS = V IFB ∪ V OFB ∪ V IIN ∪ V OOUT is a union of all sets
of data variables in the model and VAL = B ∪ I ∪ F is a
domain including all possible values (in this model we limit it
to Boolean (B), integer(I) and float(F) data types). Changes
to variables are determined by the ASM rules, which are listed
below in the section IV.

Generally, most of the actions performed in the model are
delegated to the execution elements. On the top level it makes
sense to define just the rules for active event selection and
some basic commons.

First, we define three functions over an event e ∈
EVS (EVS = (EIFB ∪ EOFB ∪ EIIN ∪ EOOUT)):

Fired : EVS → B defines whether event e is fired or not;

174 VOLUME 2, 2021

T b : EVS → T is a function assigning TB-timestamp of the
event e;

T l : EVS → T is a function assigning TL-timestamp of the
event e.

The main predicate to be used for active event selection is
as follows:

IsAct ive(e) = (Fired (e) ∧ T l (e) = MinT l

∧ prior(get_ f b(e)) = MaxPrior(MinT l)) (5)

where get_ f b(e) is an execution element (in this case it is a
FB) which correspond to event e;

MinT l is an 0-ary function showing current minimal T L
timestamp value in the model;

MaxPrior(MinT l) is the maximum priority of execution
elements that have a minimum timestamp (in the current
state);

Model dynamics on the top level is defined by the model’s
main rule, which is parallel execution of all its components’
main rules:

main = for all x ∈ ELS do

pm(x) (6)

When defining the ASM model of a FB system, static,
derived, and dynamic functions are used. The derived func-
tions are those coming with a specification or computation
mechanism given in terms of other functions.

IV. FORMAL SEMANTICS WITH TIMESTAMPS
A. BASIC FB
1) MODEL SCHEMA
A basic function block model can be formally presented as
MFB = (SyntFB, SemFB). As in [34], we define the syntactic
part as follows:

SyntFB = (Inter f ace, ALG, IV, ECC,Val0, t) (7)

It consists of the interface, a set of algorithms (ALG), execu-
tion control chart (ECC), a set of internal variables(IV), a set
of initial values (Val0). We modify the basic semantic defini-
tion, given by the IEC 61499 standard, adding extra element -
t , which represents the last active event’s TB-timestamp.

A basic function block interface is a tuple Inter f ace =
(EI, EO,V I,V O, IW, OW), where EI ⊂ EIFB is a set of
event inputs of the basic function block, EO ⊂ EOFB is
a set if event outputs, V I ⊂ V IFB is a set of data inputs,
V O ⊂ V OFB is a set of data outputs, IW and OW are sets of
WITH-connections for the basic FB input and output interface
correspondingly. For every WITH-connection iw ∈ IW we
define two functions: Event : IW → EI and Data : IW →
2V I . Result of Event (iw) is a single event e ∈ EI associated
with iw; Data(w) returns a subset [V I] ⊆ V I of associated
data inputs. In a similar way we define Event : OW → EO
and Data : OW → 2V O for ow ∈ OW . We used the polymor-
phism principle defining the functions Event (iw)/Event (ow)

TABLE 1. ECC Operation State Machine

and Data(iw)/Data(ow), however, in certain implementa-
tions they can be just named differently, for example, using
suffix notation.

As discussed in [34], the functioning of a Basic Function
Block is defined by means of ECC. IEC 6499 ECC Operation
State Machine (OSM) defines an internal state machine for
ECC transition behavior. Table I below shows briefly the OSM
behavior.

One must note that the set-theoretical ASM notation is quite
complicated. To make the model presentation better readable
and usable, as compared to [35], we follow a higher level of
abstraction (without loosing rigorousness) and switch (where
it makes sense) from the notation of runtime variables and
value update functions to abstract ASM functions, so we can
produce more elegant and compact description.

The semantic part of the basic FB model is defined as a
tuple of functions:

SemFB = (Ecc, Osm, Na, Ni, Bu f f er) (8)

where Ecc : FBS → ECSTAT ES is a function represent-
ing the ECC state for the function block instance f b,
where ECSTAT ES is a set of ECC states; Osm : FBS →
OSMSTAT ES; OSMSTAT ES = {s0, s1, s2} - function rep-
resenting OSM state for the function block instance f b.

Na : FBS → N is the ECC action pointer, showing the
number of executing ECC action, where N = {0, 1, 2, . . . }
is a set of non-negative integers. If Na(f b) = 0, then it is
considered that no ECC actions are executing at the moment.

Ni : FBS → N is the algorithm step pointer if the basic
FB f b ∈ FBS . If Ni(f b) = 0, we consider that the algorithm
execution is finished.

Also, since the input data has to be buffered in the BFB
when there is an active input event, we define a function
Bu f f er : V I → VAL which corresponds to the internal buffer
value, associated with data input d ∈ V I , and we will use
Val : V I → VAL to define the input (before buffering) value
of d ∈ V I .

VOLUME 2, 2021 175

DROZDOV ET AL.: FORMAL MODEL OF IEC 61499-BASED INDUSTRIAL AUTOMATION ARCHITECTURE SUPPORTING TIME-AWARE COMPUTATIONS

2) MODEL DYNAMICS
The Basic FB dynamics is defined by the following rule:

pFB
m (f b) = (pFB

start (f b), pFB
EvReset (f b), pFB

OSM (f b),

pFB
ECC (f b), pFB

Ni (f b), pFB
EvOut (f b),

pFB
Finish(f b)) (9)

The rule is parameterised with f b, which means that for every
f b ∈ FBS there should be executed an individual instance of
the rule. pFB

m on its own consists of several sub-rules responsi-
ble for changing specific state variables and functions for the
function block instance f b.

The first sub-rule: pFB
Start (f b) is responsible for BFB in-

stance execution start routine, selecting active input event and
buffering data from input interface.

pFB
Start (f b) =

with e ∈ EI :

isAct ive(e) ∧ Osm(f b) = s0

do

t (f b) := T b(e)

forall iw ∈ IW : Event (iw) = e do

forall d in Data(iw) do

Bu f f er(d) := Val (d) (10)

This rule is activated when the following conditions are
met:

1) one of BFB event inputs is active;
2) BFB is “free” i.e. its OSM is in the state s0;
When the rule is activated, the following actions are per-

formed:
1) initialize “TB” timestamp variable with the value from

the active event input;
2) sample the input data, associated with the active input

event.
The next sub-rule: pFB

EvReset (f b) is responsible for resetting
event buffers. When the OSM is in the state S1 (which means
that BFB has started the active execution phase) it resets the
active event and the related timestamp buffers.

pFB
EvReset (f b) =

forall e ∈ EI : isAct ive(e) ∧ Osm(f b) = s1 do

Fired (e) := f alse

T b(e) := unde f

T l (e) := unde f (11)

The operation state machine (OSM) is responsible for con-
trolling basic function block’s operation state, i.e. executing
data sampling, ECC transitions, algorithms, etc., in the correct
order. It is defined by its state Osm(f b) and transition rule
pFB

OSM . But before defining it, we need to define some auxiliary
functions. First, we define a set of ECC transitions ECT RAN ,

for each element tr ∈ ECT RAN we need to individually de-
fine a guard condition Guard : ECT RAN → B - is a derived
function (predicate) to be used in ECC transition. Function
Ei : ECT RAN → EI returns event Ei(tr), associated with
specific ECC transition tr (note that only one event can be as-
sociated with each transition). Src : ECT RAN → ECSTAT E
and Dst : ECT RAN → ECSTAT E define source and des-
tination ECC states correspondingly. Function Enabled :
ECT RAN → B will be used as a predicate to check if a spe-
cific ECC transition is enabled. It can be defined as follows:
Enabled (tr) = IsAct ive(Ei(tr)) ∧ Guard (tr).

We also define a function ExistsEnabledECtran : FBS →
B, such that ExistsEnabledECtran(f b) = true if there is at
least one enabled ECC transition in f b and false otherwise.
The function is parameterised with FB instance f b ∈ FBS

which means it returns individual value for every FB instance.
We do not use this parameter in the definition, but we assume
that the transition set ECT RAN belongs to the instance f b.

ExistsEnabledECtran(f b) = exist tr ∈ ECT RAN :

Enabled (tr) ∧ (Ecc(f b) = Src(tr)) ∧ (Ecc(f b) = Src(tr))
(12)

The OSM functioning is defined by the following rule:

pFB
OSM (f b)=
if (Osm(f b)=s0 ∧ (existe ∈ EI :

isAct ive(e)) then

Osm(f b) :=s1

else if (Osm(f b)=s1 ∧ ExistsEnabledECtran(f b) then

Osm(f b) := s2

else if (Osm(f b)=s2 ∧ Na(f b) = 0) then

Osm(f b) := s1

else if (Osm(f b)=s1 ∧ ¬ExistsEnabledECtran(f b)) then

Osm(f b) := s0 (13)

OSM starts with transition from state s0 to s1 when there is
an active input event. The OSM is transitioned to s2 when its
state is s1 and there exists at least one enabled ECC transition,
and returns to the state s1 when all ECC actions are executed
in the current ECC state. Finally, the OSM will return to s0

from s1 if there are no enabled ECC transitions.
The ECC functioning is defined by the following rule:

pFB
ECC (f b) =
choose tr ∈ ECT RAN : (Ecc(f b) = Src(tr)

∧ Enabled (tr) ∧ Osm(f b) = s1)

do Ecc(f b) := Dst (tr) (14)

Every ECC state may have one or more ECC actions as-
sociated with the state. When OSM is in the state s2, these
actions are executed in the order they’ve been defined. To

176 VOLUME 2, 2021

schedule execution of ECC actions, in the BFB model schema
we defined a counter Na(f b). Update of this counter value is
done by the pFB

Na sub-rule (15).

pFB
Na (f b) =

if Osm(f b) = s1 then

Na(f b) := 1

elseif Osm(f b) = s2 ∧ Ni(f b) = 0∧
Na(f b) < MaxNa(Ecc(f b)) then

Na(f b) := Na(f b) + 1

elseif Osm(f b) = s2 ∧ Ni(f b) = 0∧
Na(f b) = MaxNa(Ecc(f b)) then

Na(f b) := 0 (15)

When we say that an ECC action is executed, we actually
mean execution of algorithm alg ∈ ALG associated with this
action and subsequent firing of associated output event. In
BFB model schema we defined an algorithm step counter
Ni(f b). As before, we first need to define some auxiliary
functions. A static function MaxNa : ECSTAT E → N de-
fines maximum value for actions counter (total number of
actions) for each specific ECC state. We assume that algorithm
step counter Ni(f b) is updated by the sub-rule pFB

Ni during
algorithm execution and therefore, the rule for its update is
specific to each algorithm. As mentioned in the model schema
definition, Ni(f b) = 0 always means that an algorithm execu-
tion has finished.

Finally, a basic FB has to output events and data and fin-
ish its execution. We assume that if there is an output event
e ∈ EO associated with ECC action, after algorithm execution
finished the function Out (e) will be set to true. Therefore, we
can define the output sampling sub-rule pFB

EvOut as follows:

pFB
EvOut (f b) =
forall e ∈ EO : Out (e) do

forall c ∈ EVCONNS : Src(c) = e do

Fired (Dst (c)) := true

T b(Dst (c)) := t (f b)

T l (Dst (c)) := τ

forall ow ∈ OW : Event (ow) = e do

forall d ∈ Data(ow) do

forall dc ∈ DCONNS : Src(dc) = d do

Val (Dst (dc)) := Val (d) (16)

B. COMPOSITE FB
As noted in sec. III-A, we decompose a composite function
block into two independent interface modules: input and out-
put. The data valve concept, described in works [46]–[48],

FIGURE 5. CFB input interface. Syntactic (a) and semantic
(b) representations.

despite all its advantages, may result in more complicated
models when a single data input belongs to more than one data
valve. Therefore, keeping in mind model simplicity desired
for formal verification, we represent CFB interface as a single
entity instead of (possibly) several data valves. Figure 5 (a)
and (b) show syntactic and semantic representations of the
CFB input interface.

1) INPUT INTERFACE MODEL SCHEMA
As for basic function block, we simply define the model of
input interface as MIN = (SyntIN , SemIN), omitting individ-
ual indices (i.e. Synt i

IN , Semi
IN), but assume that all elements

belong to an individual instance of an interface.
The syntactic part, defined as SyntIN = (EI,V I, IW), con-

sists of input events EI , input data V I and WITH-connections
IW .

In the semantic part, we do not define any more entities, but
reuse some component definitions given in the overall model
and the BFB descriptions.

2) INPUT INTERFACE MODEL DYNAMICS
Input interface operation consists of four steps:

1) Setting of the input event timestamps;
2) Transferring created output event to receivers;
3) Transfer of associated data to receivers;
4) Active (processed) input event reset.
It should be noted that the role of an input event in the input

interface is changed. When the interface is “triggered,” the
active input event becomes an output event for this interface
and is transferred to the corresponding event receivers.

We assume that scheduler has chosen an active event input
that belongs to the current interface.

Here we try to follow a unified approach, when a received
event/data is held in an input buffer, associated with CFB
input interface until it is processed (same as for BFB), and
output events are transferred to destinations of the correspond-
ing event and data connections by the FB/interface that trig-
gers the event or creates the data. An input interface module

VOLUME 2, 2021 177

DROZDOV ET AL.: FORMAL MODEL OF IEC 61499-BASED INDUSTRIAL AUTOMATION ARCHITECTURE SUPPORTING TIME-AWARE COMPUTATIONS

dynamics is defined as follows:

pIN
m (ii) =
forall e ∈ EI : IsAct ive(e) do

forall c ∈ EVCONNS : Src(c) = e do

Fired (Dst (c)) := true

T b(Dst (c)) := T b(e)

T l (Dst (c)) := τ

forall iw ∈ IW : Event (iw) = e do

forall d ∈ Data(iw) do

forall dc ∈ DCONNS : Src(dc) = d do

Val (Dst (dc)) := Val (d)

Fired (e) := f alse

T b(e) := unde f

T l (e) := unde f (17)

3) OUTPUT INTERFACE MODEL SCHEMA
Similar to the input interface, the output interface model
is defined as a tuple MOUT = (SyntOUT , SemOUT) where
SyntOUT = (EO,V O, OW) is a syntactic part of an interface,
SemOUT - semantic part of an interface.

4) OUTPUT INTERFACE MODEL DYNAMICS
An output interface model dynamics is defined by the rule
pOUT

m .

pOUT
m (io) =
forall e ∈ EO : IsAct ive(e) do

forall c ∈ EVCONNS : Src(c) = e do

Fired (Dst (c)) := true

T b(Dst (c)) := T b(e)

T l (Dst (c)) := τ

forall ow ∈ OW : Event (ow) = e do

forall d ∈ Data(ow) do

forall dc ∈ DCONNS : Src(dc) = d do

Val (Dst (dc)) := Val (d)

Fired (e) := f alse

T b(e) := unde f

T l (e) := unde f (18)

Execution of the rule above will perform the following
actions:

1) set timestamps for the output event;
2) send output event to corresponding event receivers;
3) output data, attached to the active output event by

WITH-connections;
4) reset active output event buffer.

V. MODELLING IN SMV
As defined in the previous section, we use discrete time
Time = {unde f , 0, 1, 2, . . . } in the model, where 0, 1, 2, . . .

refers to abstract time steps, which could be of different
length (e.g. millisecond, or ten milliseconds, or one second),
depending on each particular case study. The model is built
around the delayed-transition concept where certain transi-
tions between model states require some time. However, some
transitions may take just 1 or 2 time steps, and some other
may take hundreds, or the opposite - delay is so small that
we consider timing of this particular transition non important.
In such a case, a uniform time flow would lead to creating
a vast amount of intermediate states in the model state space
(and counterexamples) where nothing important to a system
behaviour happens, except incrementing a timer variable. To
address this problem, in [38], [53] we proposed a shifting-time
model, where the time of a nearest timed action is calculated
by an especially introduced “time scheduler” module and
the model is transitioned to that moment in time, avoiding
“empty” time increment states.

IEC 61499 standard defines standard library function
blocks E_DELAY and E_CYCLE as program timers to be
used in control software. E_CYCLE function block can be
easily represented by E_DELAY with a feedback event con-
nection from EO to START, therefore we will describe only
E_DELAY function block here.

To handle timestamps, we have to introduce global time
in the system. The main problem is that the ever increas-
ing global time variable would make the classic model-
checking intractable. However, we can always perform
model-checking for a limited trace length with bounded
model-checking (BMC). To bound the model’s state space,
only the time interval from 0 to T_max is considered during
verification. The global time variable is determined by the rule
below, where γ means the end of all execution at the given
moment of time (all component FBs’ execution finished and
there is no active input events in the system) and Doi is the
time scheduler’s output variable for the i’th timer block.

TGlobal < Tmax ∨ γ ∨ (∧(Doi)) ⇒ TGlobal = TGlobal + Dmin

(19)
Listing in Figure 6 shows the SMV code of time scheduler

with global time for two delay blocks. Note that the SMV
code for time scheduler is generated individually for a specific
number of delay blocks it has to handle.

VI. CASE STUDIES OF TIME-AWARE COMPUTATIONS
We discuss in this paper three examples of the time-aware
computations application:

1) Time-aware backtracking;
2) Continuous time-aware control;
3) Time-Complemented Event-Driven approach.
These examples are presented briefly in the following sub-

sections. One should note that these case studies were pre-
sented in more detail in the respective separate publications.
The purpose of presenting the cases here is to consolidate

178 VOLUME 2, 2021

FIGURE 6. Time scheduler for two delay blocks.

the experiences from the TAC use in different ways and in
different application scenarios.

A. TIME-AWARE BACKTRACKING: ELEVATOR CASE STUDY
Time-aware backtracking is applicable to reversible processes
with discrete control algorithms. It follows the simple idea
that if late arrival of a message from another device in dis-
tributed control system indicated that controlled process has
missed an important key point, it can be reversed back to that
point and certain actions can be performed after that. In the
paper [54] we showed a simple case study of where and how
time-aware backtracking can be applied. It can be viewed as a
sort of “toy” example, demonstrating, however, all necessary
elements.

A building with three floors is equipped with an elevator as
shown in Figure 7. Each floor has elevator doors, a call button
and a cabin position sensor. When a user presses a call button,
the elevator controller initiates the cabin to move towards the
user’s floor (by sending up and down signals to the motor
driver). When the elevator cabin reaches the desired floor,
the position sensor sends the signal that the cabin is at the
desired floor to the controller and controller stops the motor
and opens doors. The decentralised function block control
application, shown in Figure 7, is designed with distributed
hardware architecture in mind, where nodes are connected
with wired or wireless networks.

It is assumed that the cabin position sensors are connected
to the controller via a wireless network and there can appear
a random delay long enough to make the elevator overshoot

FIGURE 7. Elevator and its distributed function block application.

FIGURE 8. Elevator error.

by a sensible distance. Thereby it is possible to get the cabin
stopped in a wrong position and have the doors opened there
(see Figure 8). We assume that due to the random nature of
the communication delay, it is impossible to predict when the
elevator will miss the floor, but it is possible to detect it using
event timestamps and perform actions to correct the position.
When the sensor reading arrives, its timestamp is compared
against the present time in the PLC and if the time difference
�t = tpresent − tt imestamp is greater than the maximum safety
range, the sensor data is considered as outdated and a position
correction must be performed.

To simplify the model, the elevator speed is considered
constant and to correct the cabin position, the elevator motor
is switched backward for the duration �t . It is possible to
calculate the actual elevator correction time for the motor con-
sidering acceleration/deceleration calculated with knowledge
of weight, motor power, etc.

In the control logic, this approach was implemented by
adding special “correction” states to the ECC diagram of the
controller. Figure 9 shows the fragment of the ECC diagram
with the state for the position correction (Correct1u) when the
elevator misses the floor 1 going up, a similar state is added to
ECC for all six possible combinations of floor and direction.

The behaviour of the function block application was in-
vestigated by means of model-checking. The fb2smv model
generator, that is based on the formal model, presented in

VOLUME 2, 2021 179

DROZDOV ET AL.: FORMAL MODEL OF IEC 61499-BASED INDUSTRIAL AUTOMATION ARCHITECTURE SUPPORTING TIME-AWARE COMPUTATIONS

FIGURE 9. Fragment of ECC diagram with position correction state.

FIGURE 10. Plot from a trajectory in the model state space representing
correction of the elevator’s position.

this paper, was applied to generate the formal model in SMV
language given the source code in IEC 61499. The model was
checked against specifications stating that the elevator always
stops in the required floor and in the position safe for door
opening for a range of the communication jitter values.

Figure 10 shows a plot from nuSMV counterexample with
corrected elevator position. The time scale is given in abstract
time units, grey area shows when the elevator doors are open.
To reduce the SMV model state space, elevator’s continuous
movement was modelled as a timed automaton with seven dis-
crete positions where each transition between two subsequent
positions takes 2 time units.

As pointed out in [50], model-checking has shown signifi-
cant advantage as compared to testing by simulation in terms
of the time, spent on the system’s testing.

For more comprehensive details on this case study the
reader is referred to [50], [54].

B. CONTINUOUS TIME-AWARE CONTROL
Continuous time-aware control is a wide category of patterns,
where a knowledge of communication delay is used to adjust
the control action accordingly.

Case study in [49], [53] shows an example of time-aware
PID control. Figure 11(a) shows a linearly moving cylin-
der with centralized PID control implemented using funcion
block diagram of IEC 61499. Figure 11(b) shows the same
example, but with distributed control. The function block dia-
gram is mapped onto two devices. Here the cylinder’s position
detected by a sensor is transferred via wireless communication
network, where random message passing delays may occur.
In a simulation model for this example we compared three

FIGURE 11. Cylinder with PID control: (a) centralized; (b) distributed.

FIGURE 12. Cylinder with PID control. Ideal (blue), distributed with
random delay(red), distributed with TAC (green).

versions of control system running at a same time: first - ideal
with centralized control and no communication delay (blue
plot in Figure 12), second - with same control logic, but dis-
tributed control loop as mentioned before (red in Figure 12),
and finally the third - with random delay and time-aware PID
control (green in Figure 12).

The results show how time-aware PID control allows more
smooth movement compared to just a classic control logic in
case of distributed control system. Both are of course outper-
formed by the ideal control system case, where no communi-
cation delays occur.

This system was also verified using the SMV model-
checker with the prior help of the fb2smv model genera-
tor [53].

C. TIME-COMPLEMENTED EVENT-DRIVEN (TCED)
APPROACH
Time-complemented event-driven (TCED) approach in [55]
proposes a control architecture, where a control decision is
made in advance and events triggering control actions are
scheduled to be executed at a certain time.

The idea is to provide the actuating events not with past, but
with future time stamps, and use a smart actuator with built-in
scheduler and synchronized clock to perform control actions
at a certain time.

Implementation of this idea could be also done using the
time-aware computations concept. For example, for the case
of material handling systems from [55], the property to be
verified would refer to the precision of the object diversion

180 VOLUME 2, 2021

FIGURE 13. User interface of the fb2smv model generator.

FIGURE 14. Structure of the generated SMV code.

in presence of disturbances, such as communication jitter.
Implementation of the formal verification for TCED using
fb2smv and NuSMV model-checker is planned in future work.

D. ROLE OF ASM MODELS IN FORMAL VERIFICATION
TOOLCHAIN
The main motivation to use ASM is the need for an interme-
diate formal model, which can be used to generate different
models (e.g. SMV) or executable code. For example, the ASM
model of function blocks is used in the fb2smv converter [39],
which converts IEC 61499 description files in XML to SMV
code for formal verification. Its graphical user interface is
presented in Figure 13 . The window shows the loaded top-
level FB PNP_PLANT_MS_CONTROL_FOR_SMV and its
nested FBs. In addition, in the Connected variables field,
one can observe all the variables associated with the selected
cyl1_fwd variable.

The transformation rules to generate output model in
fb2smv are based on the defined ASM semantics. The gen-
erated SMV model structure is presented in Figure 14. One

can see that the SMV code of both basic and composite FBs
consists of the static declarations part (what was referred to as
model’s schema), and the rules part, which are the ASM rules,
discussed in this paper and represented in the SMV language.

The fb2smv tool is a part of formal verification tool-chain,
that includes the model checker NuSMV and the tool for
counterexample analysis in terms of the original FB system.

VII. CONCLUSION AND FUTURE WORK
In this paper, we presented for the first time a novel formal
model of IEC 61499 which can be used as a universal formal
intermediate semantic layer. Unlike the existing formal mod-
els of IEC 61499, this one can be used for many purposes,
providing a semantic reference to the entire function block
system. For example, the model is used as as a back-end
of the fb2smv model generator: the generated SMV code is
structured according to the proposed ASM structure and rules.
Moreover, we modelled the semantic extension of IEC 61499
with event timestamping, paving the way to both formal anal-
ysis of the applications, following the extended syntax and
semantics, and developing novel run-time execution engines,
based on a formal model of execution.

Formalization of model semantics for IEC 61499 based
control systems opens a path for building various models of
such systems for simulation and formal verification. Synchro-
nized device clocks and event timestamping plays a key role
in dependable distributed control systems for Industry 4.0.
In this work, we addressed the problem of formalization of
such systems’ semantics using ASM notation and proved its
consistency on several examples where we applied formal ver-
ification methods (i.e. model-checking) to the models based
on this semantics.

To claim for completeness, this model needs to be ex-
tended to address inter-resource (inter-device) communica-
tions and clock synchronization errors inevitably occurring in
distributed systems. This is the matter for future work.

REFERENCES
[1] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A

Cyber-Physical Systems Approach. Cambridge, MA, USA: MIT Press,
2016.

[2] R. Sinha, S. Patil, L. Gomes, and V. Vyatkin, “A survey of static formal
methods for building dependable industrial automation systems,” IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 3772–3783, Jul. 2019.

[3] C. Ptolemaeus, System design, modeling, and simulation: Using
ptolemy II. Ptolemy. Org Berkeley, 2014, vol. 1, 2012.

[4] “IEC 61499-1: Function Blocks Part 1: Architecture,” 2nd ed., Interna-
tional Electrotechnical Commission, 2012.

[5] G. Zhabelova and V. Vyatkin, “Multiagent smart grid automation ar-
chitecture based on IEC 61850/61499 intelligent logical nodes,” IEEE
Trans. Ind. Electron., vol. 59, no. 5, pp. 2351–2362, May 2012.

[6] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent automa-
tion: State-of-the-art review,” IEEE Trans. Ind. Informat., vol. 7, no. 4,
pp. 768–781, Nov. 2011.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Trans. Program. Lang. Syst., vol. 8, no. 2, pp. 244–263, 1986.

[8] H.-M. Hanisch, M. Hirsch, D. Missal, S. Preuße, and C. Gerber, “One
decade of IEC 61499 modeling and verification-results and open is-
sues,” IFAC Proc. Volumes, vol. 42, no. 4, pp. 211–216, 2009.

VOLUME 2, 2021 181

DROZDOV ET AL.: FORMAL MODEL OF IEC 61499-BASED INDUSTRIAL AUTOMATION ARCHITECTURE SUPPORTING TIME-AWARE COMPUTATIONS

[9] J. O. Blech, P. Lindgren, D. Pereira, V. Vyatkin, and A. Zoitl, “A
comparison of formal verification approaches for IEC 61499,” in Proc.
IEEE 21st Int. Conf. Emerg. Technol. Factory Automat., 2016, pp. 1–4.

[10] Y. Gurevich and E. Börger, “Evolving algebras 1993: Lipari guide,”
Evolving Algebras, p. 40, 1995.

[11] E. Börger, “The origins and the development of the ASM method for
high level system design and analysis,” J. Universal Comput. Sci., vol. 8,
no. 1, pp. 2–74, 2002.

[12] E. Börger, “The abstract state machines method for high-level system
design and analysis,” in Proc. Formal Methods: State Art New Direc-
tions. Berlin, Germany: Springer, 2010, pp. 79–116.

[13] K. Winter, “Model checking for abstract state machines,” J. Universal
Comput. Sci., vol. 3, no. 5, pp. 689–701, 1997.

[14] P. Arcaini, A. Gargantini, and E. Riccobene, “AsmetaSMV: A way to
link high-level ASM models to low-level NuSMV specifications,” in
Proc. Int. Conf. Abstr. State Mach., Alloy, B. and Z, 2010, pp. 61–74.

[15] G. D. Castillo and K. Winter, “Model checking support for the ASM
high-level language,” in Proc. Int. Conf. Tools and Algo. Const. Anal.
Sys. Berlin, Germany: Springer, 2000, pp. 331–346.

[16] R. Farahbod, U. Glässer, and G. Ma, “Model checking coreasm specifi-
cations,” in Proc. 14th Int. ASM Workshop., 2007.

[17] G. Z. S. Ma, “Model checking support for CoreASM: Model check-
ing distributed abstract state machines using Spin,” Ph.D. dissertation,
School Comput. Sci., Simon Fraser Univ., 2007.

[18] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. A. Lee, “A PRET
microarchitecture implementation with repeatable timing and competi-
tive performance,” in Proc. IEEE 30th Int. Conf. Comput. Des., 2012,
pp. 87–93.

[19] S. Andalam, P. Roop, and A. Girault, “Predictable multithreading of
embedded applications using PRET-C,” in Proc. 8th ACM/IEEE Int.
Conf. Formal Methods Models Codesign., 2010, pp. 159–168.

[20] K.-E. Åarzén, “A simple event-based PID controller,” IFAC Proc. Vol-
umes, vol. 32, no. 2, pp. 8687–8692, 1999.

[21] K. J. Aström, “Event Based Control,” in Proc. Anal. Des. Nonlinear
Control Syst. Berlin, Germany: Springer, 2008, pp. 127–147.

[22] J. Nilsson, “Real-time control systems with delays,” Ph.D. dissertation,
Dept. Autom. Control, Lund Inst. Technol., Sweden, 1998.

[23] A. Zoitl and R. Lewis, “Modelling control systems using IEC 61499:
Applying function blocks to distributed systems,” ROM, U.K., vol. 95,
2014.

[24] V. Vyatkin and H.-M. Hanisch, “A modeling approach for verification
of IEC1499 function blocks using net condition/event systems,” in Proc.
7th IEEE Int. Conf. Emerg. Technol. Factory Automat., 1999, pp. 261–
270.

[25] L. H. Yoong, P. S. Roop, V. Vyatkin, and Z. Salcic, “A synchronous
approach for IEC 61499 function block implementation,” IEEE Trans.
Comput., vol. 58, no. 12, pp. 1599–1614, Dec. 2009.

[26] L. Xiao, R. Wang, M. Gu, and J. Sun, “Semantic characterization of
programmable logic controller programs,” Math. Comput. Modelling,
vol. 55, no. 5, pp. 1819–1824, 2012.

[27] M. Perin and J.-M. Faure, “Building meaningful timed models of
closed-loop DES for verification purposes,” Control Eng. Pract.,
vol. 21, no. 11, pp. 1620–1639, 2013.

[28] H. Prahofer and A. Zoitl, “Verification of hierarchical IEC 61499 com-
ponent systems with behavioral event contracts,” in Proc. IEEE Int.
Conf. Ind. Inform., 2013, pp. 578–585.

[29] M. Stanica and H. Guéguen, “Using timed automata for the verification
of IEC 61499 applications,” in IFAC Proc., vol. 37, no. 18, pp. 375–380,
2004.

[30] G. Cengic and K. Akesson, “Definition of the execution model used in
the fuber IEC 61499 runtime environment,” in Proc. IEEE Int. Conf.
Ind. Inform., 2008, pp. 301–306.

[31] G. Cengic and K. Åkesson, “On formal analysis of IEC 61499 appli-
cations, Part A: Modeling,” IEEE Trans. Ind. Informat., vol. 6, no. 2,
pp. 136–144, May 2010.

[32] G. Cengic and K. Åkesson, “On formal analysis of IEC 61499 applica-
tions, part b: Execution semantics,” IEEE Trans. Ind. Informat., vol. 6,
no. 2, pp. 145–154, May 2010.

[33] S. Patil, V. Dubinin, C. Pang, and V. Vyatkin, “Neutralizing semantic
ambiguities of function block architecture by modeling with ASM,”
in Proc. Int. Andrei Ershov Memorial Conf. Perspectives Syst. Inform.
Berlin, Germany: Springer, 2014, pp. 76–91.

[34] S. Patil, V. Dubinin, and V. Vyatkin, “Formal verification of IEC 61499
function blocks with abstract state machines and SMV–Modelling,” in
Proc. IEEE Trustcom/BigDataSE/ISPA,, vol. 3, 2015, pp. 313–320.

[35] S. Patil, V. Dubinin, and V. Vyatkin, “Formal modelling and verification
of IEC 61499 function blocks with abstract state machines and SMV-
execution semantics,” in Proc. Int. Symp. Dependable Softw. Eng.: The-
ories, Tools, Appl. Berlin, Germany: Springer, 2015, pp. 300–315.

[36] S. Patil, V. Vyatkin, and M. Sorouri, “Formal verification of intelligent
mechatronic systems with decentralized control logic,” in Proc. 17th
Conf. Emerg. Technol. Factory Automat., 2012, pp. 1–7.

[37] S. Patil, D. Drozdov, V. Dubinin, and V. Vyatkin, “Cloud-based frame-
work for practical model-checking of industrial automation applica-
tions,” in Proc. Doctoral Conf. Comput., Elect. Ind. Syst. Berlin, Ger-
many: Springer, 2015, pp. 73–81.

[38] D. Drozdov, S. Patil, V. Dubinin, and V. Vyatkin, “Formal verification
of cyber-physical automation systems modelled with timed block dia-
grams,” in Proc. IEEE 25th Int. Symp. Ind. Electron., 2016, pp. 316–
321.

[39] D. Drozdov, “fb2smv: IEC 61499 Function Blocks XML Code to SMV
Converter,” https://github.com/dmitrydrozdov/fb2smv

[40] E. A. Lee, “Cyber physical systems: Design challenges,” in Proc. 11th
IEEE Symp. Object Oriented Real-Time Distribution Comput., 2008,
pp. 363–369.

[41] E. Lee, “The past, present and future of cyber-physical systems: A.
focus on models,” Sensors, vol. 15, no. 3, pp. 4837–4869, 2015.

[42] P. Derler et al., “Ptides: A programming model for distributed real-time
embedded systems,” Dept. Elect. Eng Comput. Sci., California Univ.
Berkeley, Tech. Rep., 2008.

[43] W. Dai, C. Pang, V. Vyatkin, J. H. Christensen, and X. Guan, “Discrete-
event-based deterministic execution semantics with timestamps for in-
dustrial cyber-physical systems,” IEEE Trans. Syst., Man, Cybern. Syst.,
vol. 50, no. 3, pp. 851-862, Mar. 2020.

[44] C. Pang, W. Dai, and V. Vyatkin, “Towards IEC 61499 models of
computation in Ptolemy II,” in Proc. IECON 2015-41st Annu. Conf.
IEEE Ind. Electron. Soc., 2015, pp. 001988–001993.

[45] J. Nilsson, B. Bernhardsson, and B. Wittenmark, “Stochastic analysis
and control of real-time systems with random time delays,” Automatica,
vol. 34, no. 1, pp. 57–64, 1998.

[46] C. Sunder, A. Zoitl, J. H. Christensen, M. Colla, and T. Strasser, “Ex-
ecution models for the IEC 61499 elements composite function block
and subapplication,” in Proc. 5th IEEE Int. Conf. Ind. Inform., vol. 2,
2007, pp. 1169–1175.

[47] V. Dubinin and V. Vyatkin, “Towards a formal semantic model of IEC
61499 function blocks,” in Proc. 4th Int. Conf. Ind. Inform., 2006,
pp. 6–11.

[48] V. Dubinin and V. Vyatkin, “On definition of a formal model for IEC
61499 function blocks,” EURASIP J. Embedded Syst., vol. 2008, p. 7,
2008.

[49] V. Vyatkin, C. Pang, and S. Tripakis, “Towards cyber-physical agnos-
ticism by enhancing IEC 61499 with ptides model of computations,”
in Proc. IECON 2015-41st Annu. Conf. IEEE Ind. Electron. Soc, 2015,
pp. 001970–001975.

[50] V. Shatrov and V. Vyatkin, “Formal verification of IEC 61499 enhanced
with timed events,” in Proc. Doctoral Conf. Comput., Elect. Ind. Syst.
Berlin, Germany: Springer, 2020, pp. 168–178.

[51] (2020) Function Block Builder. [Online]. Available: https://www.
yueyiautomation.com/Software?type=FBB

[52] C. Pang, S. Patil, C.-W. Yang, V. Vyatkin, and A. Shalyto, “A portability
study of IEC 61499: Semantics and tools,” in Proc., 12th IEEE Int.
Conf., 2014, pp. 440–445.

[53] D. Drozdov, S. Patil, and V. Vyatkin, “Formal modelling of distributed
automation CPS with CP-agnostic software,” in International Workshop
Service Orientation Holonic Multi-Agent Manufacturing Berlin, Ger-
many: Springer, 2017, pp. 35–46.

[54] D. Drozdov, S. Patil, V. Dubinin, and V. Vyatkin, “Towards formal
verification for cyber-physically agnostic software: A case study,” in
Proc. IECON 2017-43rd Annu. Conf. IEEE Ind. Electron. Soc., 2017,
pp. 5509–5514.

[55] C. Pang, J. Yan, and V. Vyatkin, “Time-complemented event-
driven architecture for distributed automation systems,” IEEE
Trans. Syst., Man, Cybern. Syst., vol. 45, no. 8, pp. 1165–1177,
Aug. 2015.

182 VOLUME 2, 2021

https://github.com/dmitrydrozdov/fb2smv
https://www.yueyiautomation.com/Software{?}type$=$FBB

DMITRII DROZDOV received the B.Tech. degree
in computer engineering and the M.Sc. degree
in computer science from Penza State University,
Penza, Russia, in 2013 and 2015, respectively.

He is currently working toward the Ph.D. degree
with Luleå University of Technology, Luleå, Swe-
den, with major in industrial informatics. His re-
search interests include distributed control systems
in industrial automation, methods and means of
their efficient design, testing, formal verification,
and implementation.

VICTOR DUBININ received the Diploma degree
in computer engineering, and the Ph.D. degree in
computer engineering and Dr.Sc. degree in com-
puter science from the University of Penza, Penza,
Russia, in 1981, 1989, and 2014, respectively.

From 1981 to 1989, he was a Researcher, from
1989 to 1995, he was a Senior Lecturer, and from
1995 to 2015, he was an Associate Professor with
the University of Penza. Since 2015, he has been
a Professor with the Department of Computer Sci-
ence, University of Penza. In 2011, he held a Vis-

iting Researcher position with The University of Auckland, Auckland, New
Zealand, and from 2013 to 2019, he was with the Luleå University of Tech-
nology, Luleå, Sweden. His research interests include formal methods for
specification, verification, synthesis, and implementation of distributed and
discrete event systems.

He was a recipient of DAAD-grants to work as a Guest Scientist with
Martin-Luther-University Halle-Wittenberg, Halle, Germany, in 2003, 2006,
and 2010, respectively.

SANDEEP PATIL (Member, IEEE) received the
bachelor’s degree in computer science engineering
from the CMR Institute of Technology, Bengaluru,
India, in 2005, the Master of Computer Science de-
gree in software engineering from the Illinois Insti-
tute of Technology, Chicago, IL, USA, in 2010, the
Master of Engineering Studies degree in computer
systems from The University of Auckland, Auck-
land, New Zealand, in 2011, and the Ph.D. degree
in formal verification of cyber physical systems
from the Luleå University of Technology, Luleå,

Sweden, in 2018.
He also works with formal verification techniques in the same application

field. He is an Accomplished Software Engineering Professional with more
than 14 years of research and development experience in systems and applica-
tion software, including four years with Motorola India Pvt. Ltd., India, as a
Senior Software Engineer. His research interests include software engineering
principles and methodologies in distributed industrial automation, especially
using the IEC 61499 paradigm.

VALERIY VYATKIN (Senior Member, IEEE) re-
ceived the Doctoral degrees from Russia and Japan,
in 1992 and 1999, respectively, and Habilitation
degree from Germany, in 2002.

He is on joint appointment as a Chaired Profes-
sor with Luleå University of Technology, Sweden,
and Full Professor with Aalto University, Helsinki,
Finland. Previously, he was a Visiting Scholar
with Cambridge University, Cambridge U.K., and
had permanent academic appointments with New
Zealand, Germany, Japan, and Russia. His research

interests include dependable distributed automation and industrial informat-
ics, software engineering for industrial automation systems, artificial intelli-
gence, distributed architectures, and multi agent systems applied in various
industry sectors, including smart grid, material handling, building manage-
ment systems, data centres, and reconfigurable manufacturing.

He was awarded the Andrew P. Sage Award for the best IEEE Transactions
paper in 2012. He has been the Chair of IEEE IES Technical Committee on
Industrial Informatics since 2016.

VOLUME 2, 2021 183

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

