
Received 25 December 2020; accepted 28 January 2021. Date of publication 1 February 2021;
date of current version 19 February 2021. The review of this paper was arranged by Associate Editor Stamatis Karnouskos.

Digital Object Identifier 10.1109/OJIES.2021.3055901

Performance Evaluation of Containerization in
Edge-Cloud Computing Stacks for Industrial

Applications: A Client Perspective
YU LIU 1, DAPENG LAN 2, ZHIBO PANG 3 (Senior Member, IEEE),

MAGNUS KARLSSON 1 (Member, IEEE), AND SHAOFANG GONG 1 (Member, IEEE)
1Department of Science and Technology, Linköping University, 60221 Norrköping, Sweden

2Department of Informatics, University of Oslo, NO-0316 Oslo, Norway
3ABB AB, Corporate Research, Forskargränd 7, 72178 Västerås, Västmanland, Sweden

CORRESPONDING AUTHOR: YU LIU (e-mail: yu.a.liu@liu.se).

This work was supported by the financial grant by Swedish Innovation Agency, Vinnova.

ABSTRACT Today, the edge-cloud computing paradigm starts to gain increasing popularity, aiming to
enable short latency, fast decision-making and intelligence at the network edge, especially for industrial
applications. The container-based virtualization technology has been put on the roadmap by the industry to
implement edge-cloud computing infrastructures. Has the performance of the container-based edge-cloud
computing stacks reached industry requirement? In this paper, from the industrial client perspective, we
provide a performance evaluation methodology and apply it to the state-of-the-art containerization-based
edge-cloud computing infrastructures. The influences of the message sending interval, payload, network
bandwidth and concurrent devices on full stack latency are measured, and the processing capability of
executing machine learning tasks are benchmarked. The results show that containerization on the edge does
not introduce noticeable performance degradation in terms of communication, computing and intelligence
capabilities, making it a promising technology for the edge-cloud computing paradigm. However, there is a
large room for performance improvement between current implementation of the edge-cloud infrastructure
and the demanding requirements anticipated by time-critical industrial applications. We also emphasize and
showcase that partitioning of an industrial application into microservices throughout the whole stack can
be considered during solution design. The proposed evaluation methodology can be a reference to users of
edge-cloud computing as well as developers to get a client perspective overview of system performance.

INDEX TERMS Performance evaluation, edge-cloud computing, containerization, partitioning.

I. INTRODUCTION
Traditional centralized cloud-enabled Internet of Things (IoT)
architecture have encountered huge challenges after many
years rapid expansion, e.g., the heterogeneity of hardware,
software, communication protocols and data format [1], and
especially the demanding low latency and high reliability that
are required by time-critical applications in cyber-physical
systems (CPS) in industrial IoT (IIoT). In recent years, the
edge-cloud computing paradigm, as a result of the techno-
logical evolution in cloud computing, has been proposed to
resolve the challenges and facilitate the adoption of IoT inno-
vations into various domains, as shown in Fig. 1.

With distributed edge computing units, a part of the func-
tionalities of the cloud platform is relocated to the edge of
field networks, leading to boost of performance in commu-
nication, computing and intelligence. First, edge computing
units enable low latency and fast response while eliminate
the heterogeneity challenge by providing rich communica-
tion interfaces. Second, tasks used to be computed in the
cloud are extended to the edge units so as to accelerate
decision-making at the edge. Third, deployment of machine
learning/deep learning models to the edge moves artificial
intelligence closer to user scenarios and fosters novel ma-
chine learning techniques such as federated learning [2].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 2, 2021 153

https://orcid.org/0000-0002-5742-1266
https://orcid.org/0000-0003-1104-5039
https://orcid.org/0000-0002-7474-4294
https://orcid.org/0000-0002-4136-0817
https://orcid.org/shaofang.gong@liu.se

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

FIGURE 1. An overview of the edge-cloud computing paradigm used in
different scenarios, e.g, smart city, agriculture, logistics, traffics, factory,
power grid, and healthcare. Edge devices are connected to the cloud
platform via Ethernet while the communications between field and edge
devices are through heterogeneous wired or wireless protocols. (A part of
the icons are created by Adrien Coquet, Misbahul Munir, Chameleon
Design, SBTS and Royyan Razka from the Noun Project. [3]).

Furthermore, edge-cloud computing reduces the traffic to-
wards the cloud and therefore features enhanced security and
privacy.

The widespread deployment nature of edge computing units
calls for a flexible framework that enables continuous integra-
tion/continuous deployment (CI/CD) at scale, regardless of
the heterogeneity in hardware and software. In this regard,
microservice and Docker container-based virtualization be-
come an indispensable approach [4]–[7]. Microservices split
a traditional monolithic application into smaller task modules
with little dependency on each other while the lightweight
and small footprint characteristics of the container technol-
ogy make it an optimal carrier for microservices. Therefore,
container-based virtualization is a key enabler to the success
of edge computing, especially in the approaching 5G era,
which has been a consensus of hyper-scale cloud (HSC) and
network infrastructure suppliers [8] that are keen to bring
containerization into edge computing.

However, can the state-of-the-art edge-cloud computing
stacks fulfill the industry requirement? How much room of
the performance shall be improved to reach the anticipation?
These questions are still unclear. The heterogeneous industrial
sectors and end applications of IIoT, i.e., process automation,
industrial control, power system automation, building automa-
tion, and automobile, etc., have resulted in rich invention of
industrial connectivity protocols [9]. The diverse connectivity
between industrial field devices and edge infrastructure, de-
pending on the communication medium and protocols from
the media access control (MAC) layer all the way toward
the application layer as defined in the open systems intercon-
nection (OSI) model, leads to widely divergent performance.
Many researchers have provided thorough study on the per-
formance of existing industrial connectivity protocols from

different perspectives, such as IEEE 802.11 [10], [11], IEEE
802.15.4 [12], [13], ISA100.11a [14], [15], WIA-PA [16],
[17], wirelessHART [18], [19], Thread [20], [21], and Lo-
RaWAN [22]–[24], whereas the performance of the backbone,
i.e., the edge-cloud computing stack, is still unknown.

Therefore, in this study, we limit our scope to the per-
formance of containerization-based edge-cloud computing
stacks in IIoT applications. Specifically, we focus on the pro-
cedure that starts from a field device message arriving the edge
unit and ends with the same message being received after it is
serviced by either edge or cloud. From a client perspective,
communication, computing, and intelligence capabilities at
the edge and between the edge and the cloud platforms should
be considered to provide a comprehensive understanding of
the holistic performance of the edge-cloud computing stacks.

The main contributions of this study are as follows.
� Performed a client perspective evaluation of the holistic

system latency performance of containerization, namely
full stack round trip time with regard to message send-
ing interval, payload, network bandwidth and concurrent
devices, on the state-of-the-art edge-cloud computing
platforms.

� Evaluated the processing capability of containerization
in edge-cloud computing stacks, in terms of executing
machine learning and neural network tasks for real in-
dustrial applications.

� Profiled the performance limits and highlighted the ne-
cessity of partitioning in currently available edge-cloud
computing infrastructures in industrial practice.

� Showcased the methodology of applying partitioning to
an industrial application, i.e, a vertical plant wall system,
based on the performance evaluation results, to verify the
feasibility and to promote the methodology.

The remainder of the paper is organized as follows. In
Section II, the background of edge-cloud computing stacks
are provided. In Section III, the virtualization-based system
performance evaluations of edge-cloud stacks in the litera-
ture are reviewed. Sections IV and V present the evaluation
methodology and detailed experiment setup, respectively. In
Section VI, the evaluation results are analyzed and the ne-
cessity for partitioning is discussed. In Section VII, a case
study about partitioning in a real-world industrial application
using the container-based edge-cloud computing paradigm is
presented. Section VIII discusses the meaning of the proposed
evaluation methodology, results, and future work. The last
section concludes the paper.

II. EDGE-CLOUD COMPUTING STACK
In this section, the architecture and typical deployment models
of the state-of-the-art edge-cloud computing stack are intro-
duced as background information.

A. ARCHITECTURE
Fig. 2 illustrates a containerization-based edge-cloud comput-
ing architecture. In the edge unit, industry applications are
modularized as independent containers that are managed by

154 VOLUME 2, 2021

FIGURE 2. Architecture breakdown of the edge-cloud computing paradigm
for containerization-based industrial IoT applications.

a container runtime. These containerized applications can be
remotely created, upgraded and destroyed in an elastic manner
with low overhead while the procedure can be fully managed
with container orchestration tools such as Kubernetes [25].
An edge hub infrastructure takes responsibility to maintain
traffic flows taking place in the edge, including bidirectional
communication between field devices and the cloud platform,
and message routing among containerized applications, which
is similar to the role that an IoT hub plays in the cloud. Field
IoT devices can get served by edge applications by establish-
ing communications to the edge hub, either using natively
supported protocols such as the message queuing telemetry
transport (MQTT) protocol or through a protocol translator.
This design has become the de facto edge-cloud computing
architecture agreed and put into practice by the industry, e.g.,
Microsoft Azure IoT Edge [4], Amazon Greengrass [5], IBM
Edge Application Manager [6], and Huawei KubeEdge [7],
and is envisioned to be leveraged by industry artificial intelli-
gence and IoT (AIoT) applications [26].

B. EDGE-CLOUD DEPLOYMENT MODELS
With the edge-cloud computing stack, three typical models
that describe the connectivity between the field devices and
the edge and cloud platforms can be utilized to deploy appli-
cations.

1) DEVICE-CLOUD MODEL (D-C)
The device-cloud model enables a field device to establish a
direct connection to the cloud without getting traffic passing
through the edge infrastructure. The field device only takes
advantage of the networking capability of the edge device
where Internet is accessed. Communication between the field
device and the cloud services is straightforward within an

established session. This model originates from the cloud
computing paradigm in which the edge device only functions
as a router.

2) DEVICE-EDGE-CLOUD MODEL (D-E-C)
The device-edge-cloud model inherits from the device-cloud
model but provides extra reliability to the applications. Traf-
fics from the field devices are firstly aggregated to the edge
hub and then forwarded to the cloud with a multiplexed
communication channel so as to save bandwidth. In case of
intermittent loss of connection to the cloud, all the field de-
vice traffics can temporarily be held at the edge unit till the
recovery of the connection to the cloud.

3) DEVICE-EDGE MODEL (D-E)
The device-edge model shifts more responsibilities to the edge
device, i.e., both communication and computing take place at
the edge device. The model ensures field devices can directly
establish communication channels to and get feedback from
edge-native services, which aims at fast response and low
latency for time-critical applications or scenarios where the
cloud is not reachable.

III. RELATED WORK
Many researches have been conducted to explore the per-
formance of containerization in the edge-cloud computing
stacks, from networking layer, application layer or resource
utilization perspective, by utilizing one or more of the device-
cloud, device-edge-cloud, and device-edge deployment mod-
els. For instance, some studies have investigated the network-
ing performance of the container technology. In [27], the
authors measured the performance of three network solutions
specifically for managing container communication, namely
Flannel, Swarm Overlay, and Calico. The latency of network
layer and the throughput of two transportation layer proto-
cols, i.e., TCP and UDP, were studied. In [28], the authors
investigated the latency performance of Docker container that
functioned as a HTTP proxy and highlighted its advantage to
the virtual machine (VM) based solutions. The authors of [29]
presented a edge-cloud computing architecture utilizing the
Docker container technology. The publish-subscribe pattern
based latency was measured to evaluate the performance of
containerized microservices migrated between cloud and the
edge devices. The results show that containerized microser-
vice can satisfy ultra-low latency required by novel appli-
cations. The authors in [30] researched the capability of
container-based virtualization used in time sensitive applica-
tions in industrial automation. Three criteria, namely round
trip time, CPU time delay, and time distribution were con-
sidered to assess the system performance of containerization.
In [31], the authors looked into the latency performance of
multi-access edge computing platform running a container-
based user mobility analysis service and concluded that the
low latency promise in the edge could be guaranteed with a
containerized implementation. The authors in [32] provided

VOLUME 2, 2021 155

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

a thorough performance benchmarking of stream data la-
tency, scalability and resource utilization on a container-based
edge computing system. Three scenarios, edge-only, cloud-
only and combined edge-cloud, were benchmarked on a self-
implemented testbed using open source frameworks running
as containers.

Plenty of studies narrow their view to application layer
system performance in microservice-based cloud and edge
computing. In [33], the authors introduced a container-based
function as a service (FaaS) model for the edge environment.
The model was benchmarked on both resource constrained
single board computer and high performance machine. The
system performance was reflected by CoAP and HTTPS based
latency metric. The authors in [34] presented an assessment of
a containerized MQTT broker cluster. Throughput, end-to-end
latency and system resource consumption of runtime were
benchmarked, and an average latency of less than 10 ms was
achieved. In [35], the authors made a comparison of full-cloud
and edge-cloud architectures in respect to time delay and
bandwidth usage. An anomaly detection task was utilized to
mimic IIoT use case. A containerized edge gateway and a
virtual machine based cloud were selected to perform data
processing, whereas MQTT was selected as the protocol to
deliver messages.

A lot of work focus on the processing capability of con-
tainer running on edge platforms. In [36] the authors evalu-
ated the container performance from a hardware perspective
including CPU, memory, disk and network utilization, and
drew a conclusion that the performance of containerization
was comparable to the host OS. The authors in [37] applied
the same metrics to a comparative study between the container
and the hypervisor virtualization deployed at the network
edge device. In [38] the author performed a comprehensive
study on the performance of containers running on five single
board computers that were popularly used as edge gateway
platforms, with consideration of metrics such as CPU exe-
cution time and load, memory speed, disk I/O and network
throughput, as well as power consumption. Similarly, in [39]
the authors utilized containers to run microservices on an
IoT edge gateway with WiFi, radio and satellite interfaces,
and evaluated the container performance with aforementioned
metrics as well as system boot-up time. The authors in [40]
focused on evaluating container hardware utilization and pro-
cessing capabilities based on different runtime technologies.
In [41] the authors inspected the performance of containerized
deep learning applications running on an edge platform in a
smart home environment. Specifically, CPU load, execution
time and network traffic were studied and compared to native
applications.

There are also studies considering the interference of con-
currently executed container instances that are running in an
edge-cloud environment. In [42], the authors evaluated inter-
ference of microservices that were carried out within a single
container and separate containers, and the CPU load and the
throughput of memory and network were used for metrics.
The authors in [43] utilized handling rate and connection time

to compare the concurrent performance between edge con-
tainer and cloud container-based server, whereas in [32] the
author performed similar tests but used latency as the rating
criterion.

Table I gives a summary of the review studies, including
deployment models, measured performance, adopted metrics,
and experiment environment that are used in the test. It can be
observed that existing studies have evaluated the performance
of containerization-based edge-cloud computing stacks with a
focus on a specific aspect or layer, e.g., latency introduced by
virtualization, interference between containers, and hardware
utilization. These approaches are valuable to identify bottle-
necks existed in a specific layer. However, from an industrial
client perspective, it is equivalently significant to have a holis-
tic evaluation that penetrates the full stack of the edge-cloud
computing infrastructures, so as to provide a complete picture
of the system performance. Besides, benchmarking with a real
industrial application and platform is essential to reproduce
real-world edge-cloud computing scenarios, which can greatly
validate the results and bring meaningful reference to indus-
trial production development. Therefore, in this study, we aim
to probe the holistic performance of containerization-based
edge-cloud computing paradigm, utilizing the cutting-edge
infrastructures available to the industry.

IV. EVALUATION METHODOLOGY
This section introduces the evaluation methodology that is
applied throughout the study.

A. EVALUATION CRITERIA
A mature IIoT solution shall comprehensively consider all
aspects of communication, computing and intelligence capa-
bilities, as the performance improvement in one layer can
be mitigated by performance loss in other layers, which can
lead to system performance degradation. In order to provide
a holistic vision of the edge-cloud computing paradigm, the
following criteria are used in this study.

1) FULL STACK ROUND TRIP TIME (RTT)
The time latency metric measures how fast a field application
can send update to and get a result from service applica-
tions in an edge-cloud architecture. In an IIoT application,
the time latency can be introduced by various aspects such
as the application layer implementation, network stack, prop-
agation delay, and processing time. Therefore, we use full
stack RTT to characterize the latency feature for a typical
edge-cloud architecture. The evaluation of a specific layer
can help identify the bottleneck of the system, however, from
a client perspective, the full stack RTT is more meaningful
to depict the holistic performance of the adopted edge-cloud
architecture, thus provides insightful knowledge to the so-
lution design. Fig. 3 illustrates the measurement of the full
stack RTT in the aforementioned three deployment models
in Section II.B. It counts from an application layer message
getting transmitted till the corresponding response message

156 VOLUME 2, 2021

TABLE 1 A Summary of the Related Work, Including the Deployment Models, Measured Performance, Tested Metrics, and Experiment Environment Used
in the Studies

FIGURE 3. The data flow of three benchmarking cases. (1, 2)
Device-cloud/device-edge-cloud: an application directly connecting to the
cloud / connecting to the cloud via the Edge hub infrastructure, and
getting a response from a service application hosted in the cloud. (3) An
application connecting to the Edge hub and getting a response from a
containerized application hosted at the edge.

arriving the application layer, which reflects the accumulated
latency throughout the full stack of an edge-cloud architec-
ture. With full stack RTT as the metric, several parameters that
can influence the system performance are benchmarked, i.e.,
the message sending interval, the payload size, the network
bandwidth and the amount of concurrent devices. These
parameters are tweaked to evaluate the performance boundary
of different deployment models.

The full stack RTT values are evaluated according to two
factors, namely time sensitivity and determinism [44]. Time
sensitivity requires the latency of critical industrial applica-
tions to meet their deadlines while determinism guarantees

the latency is predictable, i.e., the jitter shall be considered
and constricted.

2) PROCESSING CAPABILITY
In an industrial AIoT solution, computing and intelligence
services such as data analytics, machine learning based pre-
dictive maintenance and so on, are more related to creating
business values. This criterion is proposed to measure com-
puting and intelligence capabilities of the edge-cloud comput-
ing architecture in order to explore the system limitation and
to serve as a guideline in AIoT solution design. In the bench-
marking, training and prediction tasks for machine learning
and neural networks models are adopted for stress test while
the execution time, CPU load and memory utilization are
recorded for comparison. In this way, the computing perfor-
mance in terms of providing intelligence tasks is measured.

V. EXPERIMENT SETUP
A. APPLICATION LAYER PROTOCOL
With the proliferation of next generation telecommunication
technologies like 5G and WiFi 6, the application layer com-
munication protocol becomes the bottleneck in IoT practice.
An appropriate selection of the application layer protocol
can be significant to the benchmarking. Standards such as
OPC UA over Time sensitive network (TSN) [45] and data
distribution service (DDS) [46] have been promoted by the
industry to push edge computing into time-critical domain.
But they are still not full-fledged and lack of seamless integra-
tion to existing cloud infrastructures. The study [47] surveyed
a series of popular IoT messaging protocols, e.g., MQTT,
the hypertext transfer protocol (HTTP), the advanced mes-
sage queuing protocol (AMQP), the constrained application

VOLUME 2, 2021 157

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

protocol (CoAP) and the extensible messaging and presence
protocol (XMPP). The results show that the MQTT proto-
col is the only protocol that has been natively integrated to
a vast majority of edge-cloud computing platforms such as
Microsoft, Amazon, Google, Alibaba and IBM. Furthermore,
the work done in [48], [49] show that MQTT ourperforms
HTTP, AMQP and XMPP in terms of latency performance.
Therefore, in this experiment, the MQTT protocol is selected
as the application layer protocol.

B. CONTAINERIZED EDGE INFRASTRUCTURE
In this study, Microsoft Azure IoT Edge is utilized as the edge
infrastructure. Azure IoT Edge offers a container-based edge
computing framework that enables customized services to be
deployed to the edge as microservices. An edge agent mod-
ule is responsible for instantiating containerized applications
while an edge hub module manages the message communica-
tion and routing. The Raspberry Pi 3B+ board is chosen as the
hardware platform which features a Broadcom BCM2837B0
SoC running at 1.4 GHz, a 1 GB SDRAM and an Ethernet port
with the maximum throughput of 300 Mbps. The edge plat-
form is directly connected to the Internet through the Ethernet
port at Linköping University, Sweden. According to measure-
ment, the bandwidth of downlink and uplink are 236.82 and
275.76 Mb/s at the edge Ethernet port. The edge platform runs
the Raspbian 9.11 (Stretch) operating system which is based
on Linux kernel 4.19. In all the experiments, the applications
are run with the default Linux time-sharing scheduling policy
namely SCHED_OTHER to keep consistency.

C. CLOUD INFRASTRUCTURE
An IoT Hub service and a virtual machine (VM) are deployed
to the Azure cloud to provide message ingestion and to run
service applications, respectively. IoT Hub has built-in MQTT
broker capability and is able to route messages between IoT
or edge devices and service applications. An S1-standard tier
of the IoT Hub service is used, which enables 400 K messages
per day and a theoretical throughput of 100 messages per
second while the message size can be up to 256 KB. The VM
features four Intel Xeon E5-2673 CPUs running at 2.40 GHz
and a 16 GB RAM. The services are deployed to the same
data center, i.e., the Azure North Europe data centre, which is
close to where the edge platform deployed.

D. EXPERIMENT IMPLEMENTATION
1) EXPERIMENT 1 - FULL STACK ROUND TRIP TIME TEST
In this experiment, the full stack RTT is tested under three
edge-cloud models (D-C, D-E-C and D-E). A client applica-
tion written in Python is deployed to the edge device, running
on the host operating system, as shown in Fig. 3. With D-C
model, the client application initializes a connection to IoT
Hub. It periodically sends messages with sequence numbers
to IoT Hub using the MQTT protocol with QoS set to 1. A
containerized service application running in the VM listens to
the incoming messages through IoT Hub. The messages are

TABLE 2 Parameter Configuration for Experiment 1

processed by the service application and a direct method is
triggered and sent back to the client via IoT Hub. The D-E-C
model setup is similar to the D-C model, except that the client
application is configured to connect to IoT Hub through the
Edge Hub module running as a container in IoT Edge. In D-E
model, a containerized application is deployed to IoT Edge
as a service module. Messages from the client application are
routed to the service module where a direct method towards
the client is triggered. In all three models, four timestamps,
i.e., TClientSend , TServerReceive, TServerSend , and TClientReceive,
are recorded, as marked in Fig. 3. The full stack RTT is
calculated as follows.

f ull stack RT T = TClientReceive − TClientSend − TServer

TServer = TServerSend − TServerReceive (1)

Four parameters, i.e., the message sending interval, mes-
sage payload, network bandwidth and number of concurrent
devices, are adjusted to evaluate their influences on the full
stack RTT metric with regard to aforementioned three edge-
cloud models. The detailed parameter configuration is shown
in Table II.

2) EXPERIMENT 2 - PROCESSING CAPABILITY TEST
In this experiment, three machine learning models extracted
from this study [50], which are used to detect anomalies
in an indoor environment so as to realize predictive main-
tenance with an active plant wall system, are utilized for
the benchmarking. Specifically, a regression model is imple-
mented using the Scikit-learn library, an autoencoder and a
long short-term memory-encoder decoder (LSTM-ED) neural
network model are implemented with Tensorflow. For model
implementation details refer to [50].

These models are deployed to three environments, the edge
host OS, a container on the edge, and the VM in the cloud.
Models execution time, CPU load and memory usage of both
training and prediction procedures are measured with the
Linux Sysstat toolbox.

Two experiments are conducted separately to evaluate the
communication and processing capabilities so as to guarantee
the evaluation results are not interfered by each other. The
separation also helps to identify the performance limitation for
each aspect. The benchmarked containerization environment

158 VOLUME 2, 2021

is consistent in both experiments, as the container runtime
adopted by Azure IoT Edge is based on Moby Docker, which
is the upstream project of Docker.

VI. EXPERIMENTAL RESULTS
In this section, the results of the benchmarking are presented
and discussed.

A. RESULTS OF EXPERIMENT 1
1) MESSAGE SENDING INTERVAL
Fig. 4 shows the results of full stack RTT with regard to
different message sending intervals ranging from 1 ms to 5
seconds. Fig. 4(a)–4(c) are the full stack RTT distributions in
the D-C, D-E-C and D-E models. As a baseline, the full stack
RTT benchmarked with the native MQTT protocol (imple-
mented with Eclipse Paho) and with the raw socket are shown
in Fig. 4(d) and 4(e). Fig. 4(f)–4(j) show the full stack RTT
variations with regard to the incremental message sequence
number in the situations of Fig. 4(a)–4(e).

In Fig. 4(a)–4(c), it can be observed that the full stack
RTTs are deterministic when message sending intervals are
above 200 ms, i.e., the mean, median, and value ranges do not
vary a lot, which guarantees determinism or predictability to
applications.

The full stack RTTs tend to increase drastically as the send-
ing interval goes smaller. In the D-C model, more outliers
can be seen when the sending intervals are set to 50 and
100 ms while the majority RTT values are still bounded within
180 ms. When the sending interval goes down to 10 ms, the
RTT experiences a dramatic growth. This can be verified in
Fig. 4(f) that the full stack RTT slightly grows for each mes-
sage as time goes on. In the D-E-C and D-E models, the RTT
performances already go worse when the sending intervals are
smaller than 100 ms, which can also be verified in Fig. 4(a)
and 4(h) that the RTTs linearly increase when the sending in-
tervals are below 100 ms. Therefore, the drastic increase in the
three models are in accordance with the phenomenon of incre-
mental full stack RTTs shown in Fig. 4(f)–4(h), which results
from the buffering mechanism implemented by the Azure
edge-cloud infrastructure to guarantee that the messages are
delivered instead of being dropped. However, the increasing
phenomenon cannot continue forever since the buffer size is
limited. It also suggests that with current edge-cloud infras-
tructure, a message sending interval of 200 ms has reached
the performance limit to promise a deterministic performance
in all three edge-cloud models.

Comparing the deterministic performance zones of
Fig. 4(a)–4(c), the average RTT for D-C and D-E-C models
are around 114 ms and 136 ms, suggesting that sending traffic
through the edge hub results in additional 22 ms delay. For
the D-E model, the average RTT increases from 123 ms to
179 ms as the sending interval increases from 200 ms to
5 s. This phenomenon can result from the operating system
context switch, considering both the container and the host
OS are not enabled with real-time features. It also suggests in

our benchmarking platform, a containerized service applica-
tion deployed to the edge device cannot offer better latency
performance than deployed to the cloud. However, the edge
infrastructure brings stability to the network communication
by exploiting multiplexing traffics within a single communi-
cation channel. For instance, Fig. 4(g) and 4(h) show more
linearity and smoothness than Fig. 4(f).

Fig. 4(d) shows the results of benchmarking with the Paho
MQTT [51] implementation and the Mosquitto broker [52].
Both the broker and a service application are containerized
and deployed to the same edge platform. In the figure, a full
stack RTT of 5.7 ms is achieved when the sending interval is
set to 100 ms. The performance decreases when the interval
is shortened from 50 ms to 1 ms, but in the worst case the
RTT is still bounded below 80 ms, which can be clearly seen
from Fig. 4(i). The results suggest that a containerized MQTT
server is able to provide demanding latency performance with
message sending interval below 100 ms.

Benchmarking results in Fig. 4(e) and 4(j) show the full
stack RTT of raw socket implementation. It exhibits that a
containerized TCP/IP server deployed to the edge device is
able to provide superior latency performance, i.e., 543 us
average RTT is achieved with 1 ms sending interval. The fluc-
tuation in and variations between different curves observed in
Fig. 4(j) are believed to be attributed to the TCP congestion-
avoidance algorithm, but need further investigation with ded-
icated experiments in the future.

In summary of Fig. 4, with Azure IoT Edge and IoT Hub
(S1-standard tier) infrastructure, a message sending interval
above 200 ms can bring deterministic full stack RTT perfor-
mance, which is much under the promised performance (100
messages/second). Also, the latency performance cannot ben-
efit from the container-based IoT Edge infrastructure. It is the
additional considerations such as authentication, encryption,
routing mechanism and management components that must
be added to the industrial edge implementation, that greatly
worsen the latency performance.

2) MESSAGE PAYLOAD
The influences of the message payload to the full stack RTT in
the D-C, D-E-C, and D-E models are exhibited in Fig. 5(a)–
5(c). Specifically, a baseline implemented using Paho MQTT
is benchmarked and shown in Fig. 5(d). It can be observed
in the four graphs that messages with a payload size up to
10 kilobytes do not show clear difference in terms of latency
while the RTT starts to increase when the payload size is set
to 100 and 250 kilobytes, which indicates that the MQTT pro-
tocol can guarantee an optimal performance with the payload
size under 10 kilobytes.

Although the full stack RTT experiences a growth when the
message payload is above 100 kilobytes in the aforementioned
four conditions, the growth tendencies vary a lot. In the case of
payload size set to 250 kilobytes, the average RTTs increase
by 1.67, 4.26, 1.96 and 2.24 times, respectively. This is due
to that the cloud platform is equipped with more powerful

VOLUME 2, 2021 159

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

FIGURE 4. Sub-figure (a)–(c): Full stack round trip time with regard to message sending interval in D-C/D-E-C/D-E models. Sub-figure (d)–(e): Full stack
round trip time with regard to message sending interval using the Paho MQTT/raw Socket implementations in D-E model. In the boxplots, the white circle
marks the average, the notch line marks the median, and the black dots are outliers. Sub-figure (f)–(j): Full stack round trip time changes with regard to
message index, corresponding to the benchmarkings of subfigure (a)–(e), respectively.

160 VOLUME 2, 2021

FIGURE 5. Sub-figure (a)–(c): Full stack round trip time with regard to message payload in D-C/D-E-C/D-E models. Sub-figure (d): Full stack round trip
time with regard to message payload using the Paho MQTT implementation in D-E model. In the boxplots, the white circle marks the average, the notch
line marks the median, and the black dots are outliers. Sub-figure (e)–(f): Full stack round trip time with regard to bandwidth. Sub-figure (g)–(i): Full stack
round trip time with regard to the number of concurrent nodes. Sub-figure (j): CPU utilization between the D-C, D-E-C, and D-E models in the concurrency
test.

VOLUME 2, 2021 161

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

machines that can handle larger messages while the resource
constrained edge platform has reached the bottleneck. Be-
sides, the performance gap between the containerized Paho
MQTT server deployed to the edge and the Azure IoT
Hub/IoT Edge infrastructures is still obvious. Under heavy
message payload, the RTT of the Paho MQTT test case is
bounded under 20 ms while the worst cases of Azure IoT
Hub/IoT Edge infrastructures have been above 250, 700 and
400 ms, respectively.

3) NETWORK BANDWIDTH
Fig. 5(e) and 5(e) show the influence of network bandwidth on
the full stack RTT metric. The RTT gradually gets increased
as the bandwidth is narrowed but not in a proportional manner.
For instance, when the bandwidth is declined by 78 times from
10 Mbps to 128 Kbps, the RTT performance only downgrade
by 13% and 10% in the D-C and D-E-C models. An obvious
performance loss appears when the bandwidth is limited to
32 Kbps and goes extremely worse when the bandwidth is
constrained to 8 Kbps. In the 8 Kbps case, the average RTT
for D-C model is slowed down to 301 ms while the boxplot
for the D-E-C model cannot be seen in Fig. 5(f) due to the
large latency.

In general, considering the fact that nowadays Internet in-
frastructure can easily reach 100 Mbps or above, the network
bandwidth should not be a factor to impact the performance
of edge-cloud computing.

4) NUMBER OF CONCURRENT DEVICES
The impact of concurrently connected devices are measured
in Fig. 5(g)–5(i), corresponding to the D-C, D-E-C, and D-C
models. Apart from the client application, the number of other
concurrent nodes is increased from 1 to 20. In the case of the
D-C model, concurrent connections to the cloud do not result
in any performance degradation to the system and the full
stack RTT distributions are quite close. In the D-E-C model,
the average RTTs are relatively close when the number of
concurrent nodes is below 15, but show a clear jump when the
number of nodes increases to 20. Additionally, the up bounds
of the RTT tend to gradually increase from 225 to 280 ms,
showing a performance decrease. In the D-E model, the qual-
ity of service degrades quickly as the concurrent nodes are
added from 1 to 20, leading to a 35% loss of RTT performance
from 133 to 180 ms.

The downgrade of performance in the D-E-C and D-E
models is due to the limited computing resource in an edge
device. The CPU usage comparison is shown in Fig. 5(j),
which clearly shows that D-E-C and D-E models demand
much more compute resource than the D-C model. In the
D-E-C model, the load is mostly put on the edge hub module
that manages message routing while heavy computations take
place in the cloud. When it comes to the D-E model, both
message routing and computations take place in the edge,
which is more resource-consuming.

FIGURE 6. Sub-figure (a): Full stack round trip time with regard to
message sending interval when MQTT QoS is set to 0 and 2. Sub-figure (b):
Full stack round trip time with regard to payload when MQTT QoS is set to
0 and 2. These two experiments are conducted with the Paho MQTT library.

5) THE IMPACT OF MQTT QOS
Different MQTT QoS values can have different impacts on the
communication quality as well as latency. In experiment 1, the
MQTT QoS is set to 1 for all the four test scenarios, which is
hard coded to the Azure edge-cloud infrastructure. Based on
the Paho MQTT library, the full stack RTT performance with
regard to message sending interval and payload using QoS 0
and 2 are investigated and the results are shown in Fig. 6. It
can be observed that the conclusions we draw from QoS 1 still
hold for QoS 0 and 2 test cases. In Fig. 6(a), for both QoS 0
and 2 cases, as message sending interval decreases from 5 ms
to 1 ms, the RTT performance goes worse, i.e., the average
RTT is increased and the values become less deterministic.
In Fig. 6(b), a similar performance degradation is witnessed
when the payload is increased from 100 bytes to 250 kilobytes
for both QoS 0 and 2. The maximum payload size that can
guarantee the optimal performance is 10 kilobytes, the same
as in the case of QoS 1. Meanwhile, it can be noticed that QoS
0 can always deliver the optimal full stack RTT performance
among all QoS values when other parameter settings are con-
sistent, which benefits from the nature that QoS 0 does not
require acknowledgement for messages.

B. RESULTS OF EXPERIMENT 2
The results of experiment 2 are recorded in Table III,
which shows the processing capabilities of three platforms

162 VOLUME 2, 2021

TABLE 3 A Processing Capability Comparison on the Edge Host Operating System, Container on Edge, and the Cloud Virtual Machine. a Regression
Machine Learning Model, an Auto-Encoder Neural Network Model, and a Long Short-Term Memory-Encoder Decoder Ensemble Model are Utilized to
Benchmark the Execution Time, CPU Load and Memory Utilization. the Peak and Average Percentage Values are Based on the Resource Utilization of a
Single Process, Which Can Be Above 100%, Depending on the Number of CPU Cores, E.g., 400% is the Maximum for a 4-Core CPU. the System Percentage
Values are Based on the Resource Utilization of the Whole System, I.e., Maximum 100%. Comparisons of the Cost and the Scalability are Also Provided.
(More * Means Better Scalability.)

concerning executing machine learning applications in the
edge-cloud architecture.

From execution time perspective, the performance of the
container-based edge environment is rather close to the host
OS in both training and prediction tasks. For the regression
and the auto-encoder models, the difference in execution time
can be neglected. As for the complicated LSTM-ED model,
running in the containerized environment takes 35 seconds
more in training, which is merely slowed down by 2.6%.
While the prediction time is doubled, it is still bounded to
a few hundred milliseconds that is acceptable to an edge
platform. The performance of the cloud VM shows great ad-
vantages. Compared to the container environment, the training
time is accelerated by 13, 9.5 and 13 times and the prediction
time 4.3205 and 98.6 times, for the regression, auto-encoder
and LSTM-ED models respectively.

In respect to the CPU and memory utilization, the peak and
average values reflect a single application’s consumption of
the hardware resource while the system percentage value is
the main focus. The system level utilization metric is also
more significant because running a containerized application
needs the support from container runtime. Comparing the
CPU load and the memory usage, the performance of run-
ning the auto-encoder and the LSTM-ED models in the edge
container and on the edge host OS is close. For the regres-
sion model, in the container, the training task is scheduled
to execute with the multithreading technique to speed it up,
leading to 70% system CPU load and 84% memory usage,
which are much higher than executing on the host OS (26%
system CPU load and 76% memory usage). The CPU load
in the cloud VM is generally higher than in the edge for
both training and prediction tasks of the three models while
the memory utilization is limited to 8.43% in the worst case,
benefiting from the equipped 16 GB memory. High CPU load
and large memory of the cloud VM also explain the superior
performance in terms of the execution time metric.

FIGURE 7. A comparison of resource utilization between the edge host OS
and the edge container with regard to executing the LSTM-ED model.

Fig. 7 gives a visual comparison between the edge host
OS and the edge container with regard to resource utilization
of executing the LSTM-ED model. The measured metrics
are sufficiently close. The result suggests that, compared to
running machine learning on the host OS, the container-based
virtualization does not introduce a considerable performance
downgrade but offers additional flexibility and scalability to
the deployment of applications, which is a complement to
the computing and intelligence features in the edge-cloud
computing paradigm. The cloud-based virtual machine can
be used for processing computation-demanding tasks such
as neural networks model training, with which the execution
time can be greatly accelerated while maintaining a minimum
cost.

C. HIGHLIGHTS OF EXPERIMENTAL RESULTS
IoT applications are categorized into the massive IoT, broad-
band IoT, critical IoT and industrial automation IoT [53]. The
industry poses distinct performance requirements on IoT ap-
plications. For instance, the latency requirement in industrial
automation is much demanding, e.g., < 2 ms cycle time for

VOLUME 2, 2021 163

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

FIGURE 8. Performance gaps between the benchmarked edge-cloud
infrastructure, the minimal requirement for industrial automation, and the
performance of raw MQTT/Socket protocols are rather large. (Note
logarithmic scale is used.) Current edge-cloud infrastructure needs to
improve at least 3.3, 12 and 20 times in terms of concurrency, RTT and
message sending interval to fulfill industry automation needs.

motion control, 2-10 ms for factory automation, ∼ 50 ms for
process monitoring and 10-100 ms for video-operated remote
control [54] while latency is relatively tolerable in the massive
IoT category, e.g., 40-500 ms for traffic management, < 1 s for
audio and video transfer in smart grid [55], etc. The payload
in industrial communication can range from a few bytes for
process automation up to 250 bytes for machine control [54]
and 1.5 kilobytes for smart grid [56]. Considering the num-
ber of concurrent nodes, typically > 20 are deployed for
high-mobility nodes and 10000 are required for low-mobility
nodes [54].

The quantitative results of the two experiments provide a
direct view of the performance of containerized edge-cloud
computing stacks from a client perspective. Therefore, it’s
more meaningful to evaluate the results according to afore-
mentioned hard values from industrial requirements. The key
findings highlighted by the experiment results are reflected by
Fig. 8 and listed as follows.
� With current implementation of the containerization

based edge-cloud computing infrastructure provided by
the public cloud industry, an average full stack RTT
above 100 ms is observed, regardless of locating the
service to the cloud or the edge.

� The time sensitivity and determinism can only be guar-
anteed when message sending interval is limited to
200 ms in the benchmarking, which is far from the per-
formance promised by the cloud supplier, indicating that
the cloud industry has not been prepared to enter the
industrial automation sector but remain in the massive
IoT domain.

� Twenty concurrent nodes connecting to the edge already
shows non-negligible performance degradation to the
system, which cannot fulfill the industry automation re-
quirement in which up to 10000 nodes can be deployed.

� The system performance is insignificantly impacted by
the bandwidth variation whereas the quality of service
is guaranteed when the payload is below 10 kilobytes,

which is sufficient for many industry automation use
cases.

� The MQTT protocol and the TCP/IP stack are able to
satisfy the demanding latency needs for time-critical
tasks in IIoT, with 5.7 ms and less than 1 ms full stack
RTT achieved, respectively. Therefore, the latency per-
formance of current edge-cloud computing infrastruc-
ture imposes the bottleneck, which shall be largely op-
timized.

� To reach the minimal requirement of industry automa-
tion, the performance of current edge-cloud infrastruc-
ture shall be improved by at least 3.3, 12, and 20 times
in concurrency, RTT and message sending interval, re-
spectively.

� Container-based virtualization does not bring noticeable
performance loss in terms of communication, computing
and intelligence compared to the host OS, thus can play
an essential role in the edge-cloud computing paradigm
for industrial applications. It is able to execute machine
learning tasks at the edge. However, the execution effi-
ciency and resource utilization suggest the cloud shall
be prioritized for heavy task load.

From client perspective, the performance evaluation results
can be taken as a reference at the beginning of solution design
for industrial applications that consider using the state-of-the-
art edge-cloud computing infrastructures. With current per-
formance, an appropriate task partitioning between the edge
and the cloud is inevitable for industrial applications. Taking
the performance limitation into account, a static partitioning
strategy can be utilized, in which the tasks are broken down
into microservices and distributed to the edge and the cloud.
More complicated dynamic partitioning strategies that enable
online offloading of tasks between edge devices and the cloud
shall also be investigated.

VII. PARTITIONING FOR EDGE-CLOUD COMPUTING: A
CASE STUDY
In this section, a real application, i.e., the vertical plant wall
system (VPS) [57], is introduced as a case study to show-
case utilization of the container-based edge-cloud computing
paradigm with proper partitioning in industrial applications.

Fig. 9(a) shows a VPS that is installed in a workshop. A
VPS consists of vertically grown greenery and is used to pu-
rify indoor climate. As shown in Fig. 9(b), with IoT technolo-
gies, environmental sensors that measure temperature, humid-
ity, CO2, particulate matter (PM), multiple gas concentrations,
illumination intensity and the water level in the tank, are
installed to a VPS. Controllers used for manipulating the LED
lighting, ventilation and irrigation systems are also deployed.
In such a system, sensor readings shall be periodically sent
to the cloud while the controller can be invoked on-site and
from a remote site. In general, the sensor update and remote
operation of controllers are latency tolerable, except that when
a water leakage is detected, the water pump shall be shut down
immediately. In light of this, a static partitioning strategy is
leveraged in the solution design to break down the system

164 VOLUME 2, 2021

FIGURE 9. Applying container-based edge-cloud computing paradigm to the vertical plantwall system. (a) A vertical plantwall system is installed in a
workshop. (b) The hardware setup of a vertical plantwall system equipped with sensors, actuators and a BCM2837 SoC-based edge platform. (c)The block
diagram of the edge-cloud computing architecture for the vertical plantwall system. A partitioning strategy is leveraged to break down the system tasks
into microservices that can be deployed to the edge host OS, edge containers and the cloud.

TABLE 4 Static Partitioning of a Vertical Plantwall System. the System Functions are Partitioned Into Microservices That are Distributed Across the
Edge-Cloud Computing Infrastructures According to Their Performance Requirements

functions into microservices that can be deployed through-
out the whole stack. The partitioning details are described
in Table IV while the block diagram of the used edge-cloud
architecture with service partitioning is shown in Fig. 9(c).

The edge platform is built on a BCM2837 SoC. Sensor
update and actuator control functions are latency tolerable but
shall have offline capability and hardware accessibility. There-
fore, an application natively running on the edge host OS is
developed with Azure IoT SDK and the MRAA library to
enable interfacing with hardware and communication with the
edge-cloud infrastructure. The control parameters are stored
in the digital twin to ensure offline capability, which can also
be updated from the cloud.

Taking advantage of the Azure IoT Edge infrastructure,
three functions are deployed as containers to the edge, i.e., a
water level alarm module and two anomaly detection modules
using the auto-encoder and LSTM-ED models that are used
in Experiment 2. The periodically updated sensor data will be
routed to all three modules by the Edge Hub module. With a

containerized water level alarm module in the edge, the water
tank is monitored and the pump can be stopped in real-time
(< 200 ms) in case of an intermittent offline. Containerization
also enables the anomaly detection models to realize online
learning as they can be flexibly upgraded to the latest models.

As for the cloud, IoT Hub is deployed to enable bidirec-
tional communication between the services and the device. A
serverless function application that can be triggered by IoT
Hub messages is used to save sensor data to an SQL database
that features scalable and massive storage capacity, whereas a
web application-based human-machine interface is developed
to visualize sensor data and manipulate control functions,
which shall accessible from anywhere. Besides, benefiting
from the performance advantage, a cloud VM is exploited
for training neuron network models, which are then pushed
to a container registry service and fetched by the IoT Edge so
as to realize online training. In this way, a VPS can be fully
digitized by partitioning the tasks throughout the edge-cloud
infrastructure.

VOLUME 2, 2021 165

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

VIII. DISCUSSION
Catering to the edge-cloud computing paradigm, industrial ap-
plications are migrating from monolithic towards cloud native
applications, which highly relies on the containerization tech-
nology. The performance evaluation experiments conducted in
this study intend to provide a client perspective understanding
of the capability of containerization in edge-cloud computing
stacks on the state-of-the-art infrastructures.

Considering the nature that majority in the industrial soci-
ety are clients of edge-cloud computing stacks, the proposed
holistic evaluation methodology can offer a client perspective
view of the system performance. The results can be a refer-
ence to applications using a similar edge-cloud implementa-
tion while the methodology can be referenced by developers
to understand the holistic system performance and determine
whether a fine-grained probe on each stack layer shall be
conducted. In IIoT practice, for performance-relaxed applica-
tions, after aforementioned evaluation, appropriate task parti-
tioning strategies can be applied at the beginning of solution
design. For performance-demanding applications, more fine-
grained experiments shall be conducted to investigate bottle-
necks of performance. The evaluation methodology used in
this study can also be referenced to perform a joint bench-
marking of communication and computation for a specific
industrial application.

Limited by the platform used in this evaluation, i.e., the
Azure IoT Edge infrastructure, many other parameters that
can potentially impact the performance such as the QoS value
and the scheduling policy cannot be thoroughly studied. As
for the future, evaluation and development based on open
source implementation of edge-cloud computing stacks shall
be considered, as it offers more flexibility and transparency
than commercial implementations. Meanwhile, evaluation on
real-time operating systems, different physical platforms, and
with other quantitative metrics such as power consumption
can also be explored.

IX. CONCLUSION
In this study, we conducted a comprehensive performance
evaluation of the popular containerized edge-cloud archi-
tecture to investigate the performance gap between avail-
able edge-cloud stacks and industry requirement. Three
edge-cloud connectivity models are benchmarked using the
state-of-the-art edge-cloud computing infrastructures, i.e., the
Azure IoT Hub/IoT Edge platform. The holistic capabilities
in terms of communication, computing and intelligence are
measured with full stack round trip time and system resource
utilization. We find out that current implementation of the
edge-cloud infrastructure by the public cloud industry has
not been full-fledged for time-critical industrial applications.
The performance in respect to concurrency, RTT and message
sending interval must be improved by at least 3.3, 12, and
20 times, respectively to satisfy industry requirement. We
also confirm that the native MQTT and TCP/IP protocols
are able to offer demanding latency performance, showing a

large room for optimization in today’s edge-cloud computing
infrastructure. The results also show that container-based vir-
tualization does not introduce noticeable performance loss in
communication, computing and intelligence, which indicates
that containerization has a promising future in the edge-cloud
computing paradigm. We also call for partitioning to be lever-
aged for industrial applications and verified the feasibility
with a case study, i.e., the digitalization of a vertical plant-
wall system using the edge-cloud computing paradigm.The
results and evaluation methodology of the study give a client
perspective overview of the system performance, providing
a reference to both users in the industry and developers as
a start point before fine-grained probe of a given edge-cloud
computing stack.

ACKNOWLEDGMENT
The authors thank Ola Weister at Vertical Plant Systems AB
for providing vertical plant walls as research platform, and
thank Associate Professor Evangelos Angelakis for his valu-
able inputs.

REFERENCES
[1] Y. Liu, K. Akram Hassan, M. Karlsson, Z. Pang, and S. Gong, “A

data-centric Internet of Things framework based on azure cloud,” IEEE
Access, vol. 7, pp. 53839–53858, 2019.

[2] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
AI: Intelligentizing mobile edge computing, caching and communica-
tion by federated learning,” IEEE Netw., vol. 33, no. 5, pp. 156–165,
Sept./Oct. 2019.

[3] “Noun Project: Free icons & stock photos for everything,” Accessed:
Dec. 25, 2020. [Online]. Available: https://thenounproject.com/

[4] kgremban, “Azure IoT Edge documentation,” Accessed: Dec. 25, 2020.
[Online]. Available: https://docs.microsoft.com/en-us/azure/iot-edge/

[5] “Greengrass,” Accessed: Dec. 25, 2020. [Online]. Available: https:
//aws.amazon.com/greengrass/

[6] “IBM edge application manager - IBM developer,” Accessed: Dec. 25,
2020. [Online]. Available: https://developer.ibm.com/components/ibm-
edge-application-manager/

[7] “Kubeedge,” Accessed: Dec. 25, 2020. [Online]. Available: https://
kubeedge.io/en/

[8] C. Bravo and H. Bäckströ, “Edge computing and deployment strate-
gies for communication service providers,” White Paper, Ericsson,
2020.

[9] A. A. Kumar S., K. Ovsthus, and L. M. Kristensen, “An industrial
perspective on wireless sensor networks–A survey of requirements,
protocols, and challenges,” IEEE Commun. Surveys Tuts., vol. 16, no. 3,
pp. 1391–1412, Jul.–Sep. 2014.

[10] X. Ma and X. Chen, “Performance analysis of IEEE 802.11 broadcast
scheme in ad hoc wireless LANs,” IEEE Trans. Veh. Technol., vol. 57,
no. 6, pp. 3757–3768, Nov. 2008.

[11] S. Hu, Y. Zhu, and X. Xiao, “Performance research of IEEE
802.11 WLAN,” in Proc. Int. Conf. Comput. Inf. Sci., 2013,
pp. 1323–1326.

[12] C. Wang, C. Chou, P. Lin, and M. Guizani, “Performance evalua-
tion of IEEE 802.15.4 nonbeacon-enabled mode for Internet of vehi-
cles,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3150–3159,
Dec. 2015.

[13] M. S. Akbar, H. Yu, and S. Cang, “Performance optimization of the
IEEE 802.15.4-based link quality protocols for WBASNS/IOTS in a
hospital environment using fuzzy logic,” IEEE Sensors J., vol. 19,
no. 14, pp. 5865–5877, 2019.

[14] N. Q. Dinh, S.-W. Kim, and D.-S. Kim, “Performance evaluation of
priority CSMA-CA mechanism on ISA100.11A wireless network,” in
Proc. 5th Int. Conf. Comput. Sci. Convergence Inf. Technol., 2010,
pp. 991–996.

166 VOLUME 2, 2021

https://thenounproject.com/
https://docs.microsoft.com/en-us/azure/iot-edge/
https://aws.amazon.com/greengrass/
https://developer.ibm.com/components/ibm-edge-application-manager/
https://kubeedge.io/en/

[15] F. P. Rezha and S. Y. Shin, “Performance analysis of ISA100.11a under
interference from an IEEE 802.11b wireless network,” IEEE Trans. Ind.
Informat., vol. 10, no. 2, pp. 919–927, May 2014.

[16] T. Zhong, C. Mengjin, Z. Peng, and W. Hong, “Real-time communica-
tion in WIA-PA industrial wireless networks,” in Proc. 3rd Int. Conf.
Comput. Sci. Inf. Technol., vol. 2, 2010, pp. 600–605.

[17] M. Zheng, W. Liang, H. Yu, and Y. Xiao, “Performance analysis of
the industrial wireless networks standard: WIA-PA,” Mob. Netw. Appl.,
vol. 22, no. 1, p. 139–150, Feb. 2017.

[18] Q. Huang, A. Sikora, V. F. Groza, and P. Zand, “Simulation analysis of
wirelessHART nodes for real-time actuator application,” in Proc. IEEE
Int. Instrum. Meas. Technol. Conf. Proc., 2014, pp. 1590–1594.

[19] J. Benoit, A. Yao, L. Saladis, and Y. Zheng, “Performance eval-
uations of multi-hop wirelessHART network and 6LoWPAN us-
ing different topologies,” in Proc. Global Smart Ind. Conf., 2018,
pp. 1–5.

[20] E. Azoidou, Z. Pang, Y. Liu, D. Lan, G. Bag, and S. Gong, “Battery life-
time modeling and validation of wireless building automation devices
in thread,” IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 2869–2880,
Jul. 2018.

[21] D. Lan, Z. Pang, C. Fischione, Y. Liu, A. Taherkordi, and F. Eliassen,
“Latency analysis of wireless networks for proximity services in smart
home and building automation: The case of thread,” IEEE Access,
vol. 7, pp. 4856–4867, 2019.

[22] H. Lee and K. Ke, “Monitoring of large-area IoT sensors using a lora
wireless mesh network system: Design and evaluation,” IEEE Trans.
Instrum. Meas., vol. 67, no. 9, pp. 2177–2187, Sep. 2018.

[23] D. Croce, M. Gucciardo, S. Mangione, G. Santaromita, and I. Tin-
nirello, “Lora technology demystified: From link behavior to cell-
level performance,” IEEE Trans. Wireless Commun., vol. 19, no. 2,
pp. 822–834, Feb. 2020.

[24] A. Furtado, J. Pacheco, and R. Oliveira, “PHY/MAC uplink perfor-
mance of lora class a networks,” IEEE Internet Things J., vol. 7, no. 7,
pp. 6528–6538, Jul. 2020.

[25] “Production-grade container orchestration,” Accessed: Dec. 25, 2020.
[Online]. Available: https://kubernetes.io/

[26] J. S. Katz, “AIoT: Thoughts on artificial intelligence and the Internet
of Things,” 2019. [Online]. Available: https://iot.ieee.org/conferences-
events/wf-iot-2014-videos/56-newsletter/july-2019.html

[27] H. Zeng, B. Wang, W. Deng, and W. Zhang, “Measurement and eval-
uation for docker container networking,” in Proc. Int. Conf. Cyber-
Enabled Distribution Comput. Knowl. Discov., 2017, pp. 105–108.

[28] R. S. V. Eiras, R. S. Couto, and M. G. Rubinstein, “Performance evalu-
ation of a virtualized http proxy in KVM and docker,” in Proc. 7th Int.
Conf. Netw. Future, 2016, pp. 1–5.

[29] M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y.
Chen, “Orchestration of microservices for IoT using docker and
edge computing,” IEEE Commun. Mag., vol. 56, no. 9, pp. 118–123,
Sep. 2018.

[30] M. Sollfrank, F. Loch, S. Denteneer, and B. Vogel-Heuser, “Evaluating
docker for lightweight virtualization of distributed and time-sensitive
applications in industrial automation,” IEEE Trans. Ind. Informat., to
be published, doi: 10.1109/TII.2020.3022843.

[31] T. Leppanen et al., “Edge-based microservices architecture for Internet
of Things: Mobility analysis case study,” in Proc. IEEE Global Com-
mun. Conf., 2019, pp. 1–7.

[32] F. Carpio, M. Delgado, and A. Jukan, “Engineering and experimen-
tally benchmarking a container-based edge computing system,” in Proc.
IEEE Int. Conf. Commun., 2020, pp. 1–6.

[33] T. Pfandzelter and D. Bermbach, “tinyFAAS: A lightweight faas plat-
form for edge environments,” in Proc. IEEE Int. Conf. Fog Comput.,
2020, pp. 17–24.

[34] Z. Y. Thean, V. Voon Yap, and P. C. Teh, “Container-based MQTT
broker cluster for edge computing,” in Proc. 4th Int. Conf. Workshops
Recent Adv. Innov. Eng., 2019, pp. 1–6.

[35] P. Ferrari et al., “Performance evaluation of full-cloud and edge-cloud
architectures for Industrial IoT anomaly detection based on deep learn-
ing,” in Proc. II Workshop Metrology Ind. 4.0 and IoT (MetroInd4.0
IoT), 2019, pp. 420–425.

[36] E. Preeth N, F. J. P. Mulerickal, B. Paul, and Y. Sastri, “Evaluation of
docker containers based on hardware utilization,” in Proc. Int. Conf.
Control Commun. Comput. India, 2015, pp. 697–700.

[37] F. Ramalho and A. Neto, “Virtualization at the network edge: A perfor-
mance comparison,” in Proc. IEEE 17th Int. Symp. A. World Wireless,
Mobile Multimedia Netw., 2016, pp. 1–6.

[38] R. Morabito, “Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,” IEEE Access,
vol. 5, pp. 8835–8850, 2017.

[39] A. S. Gaur, J. Budakoti, and C. Lung, “Design and performance eval-
uation of containerized microservices on edge gateway in mobile IoT,”
in Proc. 2018 IEEE Int. Conf. Internet Things (iThings). IEEE Green
Comput. Commun. (GreenCom). IEEE Cyber, Physical. Social Comput.
(CPSCom). IEEE Smart Data (SmartData), Halifax, NS, Canada, 2018,
pp. 138–145, doi: 10.1109/Cybermatics_2018.2018.00055.

[40] R. Kumar and B. Thangaraju, “Performance analysis between RunC and
kata container runtime,” in Proc. IEEE Int. Conf. Electron., Comput.
Commun. Technol., 2020, pp. 1–4.

[41] N. Gupta, K. Anantharaj, and K. Subramani, “Containerized architec-
ture for edge computing in smart home: A consistent architecture for
model deployment,” in Proc. Int. Conf. Comput. Commun. Inform.,
2020, pp. 1–8.

[42] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R.
Ranjan, “A holistic evaluation of docker containers for interfer-
ing microservices,” in Proc. IEEE Int. Conf. Serv. Comput., 2018,
pp. 33–40.

[43] S. Liu and Y. Zu, “Design and research of edge layer service platform
based on flexible service architecture,” in Proc. IEEE 10th Int. Conf.
Softw. Eng. Serv. Sci., 2019, pp. 555–560.

[44] T. Lennvall, M. Gidlund, and J. Åkerberg, “Challenges when bring-
ing IoT into industrial automation,” in Proc. IEEE AFRICON, 2017,
pp. 905–910.

[45] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open
source OPC UA PubSub over TSN for realtime industrial communica-
tion,” in Proc. IEEE 23rd Int. Conf. Emerg. Technol. Factory Automat.,
vol. 1, 2018, pp. 1087–1090.

[46] J. F. Inglés-Romero, A. Romero-Garcés, C. Vicente-Chicote, and J.
Martínez, “A model-driven approach to enable adaptive QoS in DDS-
based middleware,” IEEE Trans. Emerg. Topics Comput. Intell., vol. 1,
no. 3, pp. 176–187, Jun. 2017.

[47] E. Al-Masri et al., “Investigating messaging protocols for the In-
ternet of Things (IoT),” IEEE Access, vol. 8, pp. 94 880–94 911,
2020.

[48] T. Sultana and K. A. Wahid, “Choice of application layer protocols for
next generation video surveillance using internet of video things,” IEEE
Access, vol. 7, pp. 41 607–41 624, 2019.

[49] L. S̆ikić et al., “A comparison of application layer communication
protocols in IoT-enabled smart grid,” in Proc. Int. Symp. ELMAR, 2020,
pp. 83–86.

[50] Y. Liu, Z. Pang, M. Karlsson, and S. Gong, “Anomaly detection based
on machine learning in IoT-based vertical plant wall for indoor cli-
mate control,” Building Environ., vol. 183, 2020, Art. no. 107212.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0360132320305837

[51] I. Craggs, “Eclipse Paho,” Accessed: Dec. 25, 2020. [Online]. Avail-
able: https://www.eclipse.org/paho/

[52] “Eclipse Mosquitto,” Accessed: Dec. 25, 2020. [Online]. Available:
https://mosquitto.org/

[53] “Cellular IoT evolution for industry digitalization,” White Paper, Erics-
son, Jan. 2019.

[54] S. Gangakhedkar, H. Cao, A. R. Ali, K. Ganesan, M. Gharba, and J.
Eichinger, “Use cases, requirements and challenges of 5G communi-
cation for industrial automation,” in Proc. IEEE Int. Conf. Commun.
Workshops., 2018, pp. 1–6.

[55] F. Holik, “Meeting smart city latency demands with SDN,” in Proc.
Asian Conf. Intell. Inf. Database Syst., 2019, pp. 43–54. [Online]. Avail-
able: https://doi.org/10.1007/978-3-030-14132-5_4

[56] J. Hiller, M. Henze, M. Serror, E. Wagner, J. N. Richter, and K.
Wehrle, “Secure low latency communication for constrained industrial
IoT scenarios,” in Proc. IEEE 43rd Conf. Local Comput. Netw., 2018,
pp. 614–622.

[57] Y. Liu, K. Akram Hassan, M. Karlsson, O. Weister, and S. Gong,
“Active plant wall for green indoor climate based on cloud and
Internet of Things,” IEEE Access, vol. 6, pp. 33 631–33 644,
2018.

VOLUME 2, 2021 167

https://kubernetes.io/
https://iot.ieee.org/conferences-events/wf-iot-2014-videos/56-newsletter/july-2019.html
https://dx.doi.org/10.1109/TII.2020.3022843
https://dx.doi.org/10.1109/Cybermatics_2018.2018.00055
https://www.sciencedirect.com/science/article/pii/S0360132320305837
https://www.eclipse.org/paho/
https://mosquitto.org/
https://doi.org/10.1007/978-3-030-14132-5_4

LIU ET AL.: PERFORMANCE EVALUATION OF CONTAINERIZATION IN EDGE-CLOUD COMPUTING STACKS

YU LIU received the B.Eng. degree in electronics
science and technology from the Harbin Institute
of Technology, Harbin, China, in 2014, the M.Sc.
degree in computer science from the University
of Trento, Trento, Italy, in 2016, the M.Sc. de-
gree in innovation in information and communica-
tion technology from the Technical University of
Berlin, Berlin, Germany, in 2017, and the Licen-
tiate of Philosophy in 2019 from the Department
of Science and Technology, Linköping University,
Linköping, Sweden, where he is currently working

toward the Ph.D. degree. His research interests include cloud-based Internet
of Things solution, ML or AI in IoT applications, embedded systems, and
wireless sensor networks. He was one of the recipients of the Swedish Em-
bedded Award in 2018 and an Invited Speaker in the Embedded Conference
Scandinavia, in 2019.

DAPENG LAN received the B.Eng. degree in
microelectronics from Sun Yat-sen University,
Guangzhou, China, in 2014, the M.Sc. degree
in ICT innovation from the KTH Royal Insti-
tute of Technology, Stockholm, Sweden, in 2016,
and the M.Sc. degree in innovation in information
and communication technology from the Technical
University of Berlin, Berlin, Germany, in 2017. He
is currently a Ph.D. Research Fellow on fog com-
puting with the Department of Informatics, Univer-
sity of Oslo, Oslo, Norway. In 2017, he was with

InnoEnergy, Stockholm, Sweden, about smart building energy management.
From January to September 2016, he was a Thesis Student with ABB Cor-
porate Research Center, Västerås, Sweden. His research interests include fog
computing, Internet of Things, and Distributed systems.

ZHIBO PANG (Senior Member, IEEE) received
the M.B.A. degree in innovation and growth from
the University of Turku, Turku, Finland, in 2012
and the Ph.D. degree in electronic and computer
systems from the KTH Royal Institute of Technol-
ogy, Stockholm, Sweden, in 2013. He is currently
a Senior Principal Scientist with ABB Corporate
Research, Västerås, Sweden, an Adjunct Profes-
sor with the University of Sydney, Sydney, NSW,
Australia, and an Affiliated Faculty and the Ph.D.
Supervisor with the KTH Royal Institute of Tech-

nology. He is the Co-Chair of the Technical Committee on Industrial Infor-
matics. He is currently an Associate Editor for the IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS, the IEEE JOURNAL OF BIOMEDICAL AND

HEALTH INFORMATICS, and the IEEE JOURNAL OF EMERGING AND SELECTED

TOPICS IN INDUSTRIAL ELECTRONICS. He is currently the Guest Editor of
the PROCEEDINGS OF THE IEEE, the IEEE INTERNET OF THINGS JOURNAL,
and the IEEE REVIEWS IN BIOMEDICAL ENGINEERING. He was an Invited
Speaker at the Gordon Research Conference on Advanced Health Informatics
(AHI2018), the General Chair of the IEEE ES2017, and the General Co-Chair
of the IEEE WFCS2021. He was the recipient of the 2016 and 2018 Inventor
of the Year Award by ABB Corporate Research.

MAGNUS KARLSSON (Member, IEEE) was
born in Västervik, Sweden, in 1977. He received
the M.Sc., Licentiate of Engineering and Ph.D.
degrees from Linköping University, Linköping,
Sweden, in 2002, 2005, and 2008, respectively.
In 2003, he joined the Communication Electron-
ics Research Group, Linköping University, where
he is currently an Associate Professor. Apart from
his broad interest in electronics system design and
microwave technology in particular, his main work
involves wideband transceiver and antenna tech-

niques, and wireless communication. The later includes high speed data
transmission and sensor networks and its associated applications.

SHAOFANG GONG (Member, IEEE) received
the B.Sc. degree in microelectronics from Fudan
University, Shanghai, China, in 1982, and the Li-
centiate of Engineering and Ph.D. degrees from
Linköping University, Linköping, Sweden, in 1988
and 1990, respectively. Between 1991 and 1999, he
was a Senior Researcher with the research institute
RISE Acreo, Gothenburg, Sweden. From 2000 to
2001, he was the Chief Technology Officer with a
spin-off company from the research institute. He
was an Adjunct Professor with Linköping Univer-

sity. Since 2002, he has been the Chair Professor of communication electron-
ics with Linköping University. His main research interests include communi-
cation electronics including radio frequency, microwave system design, high
speed data transmissions, and wireless sensor networks towards the Internet
of Things.

168 VOLUME 2, 2021

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

