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ABSTRACT Integrating machine learning into Automated Control Systems (ACS) enhances decision-
making in industrial process management. One of the limitations to the widespread adoption of these
technologies in industry is the vulnerability of neural networks to adversarial attacks. This study explores the
threats in deploying deep learning models for Fault Detection and Diagnosis (FDD) in ACS using the Ten-
nessee Eastman Process dataset. By evaluating three neural networks with different architectures, we subject
them to six types of adversarial attacks and explore five different defense methods. Our results highlight the
strong vulnerability of models to adversarial samples and the varying effectiveness of defense strategies. We
also propose a new defense strategy based on combining adversarial training and data quantization. This
research contributes several insights into securing machine learning within ACS, ensuring robust FDD in
industrial processes.

INDEX TERMS Adversarial attacks, automated control systems (ACS), defense methods, fault detection and
diagnosis (FDD), Tennessee Eastman Process.

I. INTRODUCTION
Automated Control Systems (ACS) operate with a variety of
digital and analog signals received from sensors and control
mechanisms. An example is a chemical plant where a set
of sensors reflect the condition of an industrial process. A
common task is Fault Detection and Diagnosis (FDD), where
one needs to predict and/or classify a failure based on sensors
data. Such methods play a pivotal role in monitoring di-
verse industrial processes, ranging from chemical processes to
electromechanical drive systems. The classification proposed
by [1] categorizes these methods into three groups: Those
based on: 1) expert knowledge; 2) mathematical models; and
3) data-driven approaches. The latter one includes various ap-
proaches in machine learning, including neural networks [2],
[3], [4]. Machine learning algorithms show themselves better

than traditional methods based on rules and become more
widespread in the area [5]. Recent studies demonstrate the
success for FDD of various neural network architectures:
Multilayer Perceptrons, Recurrent Neural Networks, and Con-
volutional Neural Networks [6], [7].

However, another challenge appears: Modern neural net-
works are vulnerable to adversarial attacks [8]. The idea is that
the attacker slightly changes the input data (unnoticed) such
that the FDD model prediction changes to incorrect. Such
attacks are modeled in the literature [9], [10], but it remains
unclear if there exist defense strategies good against a wide
range of attacks. In order to address this challenge we bench-
mark attacks and defenses on the Tennessee Eastman Process
dataset [11] where the task is the FDD in a chemical process.
We consider three various deep learning models—Multilayer
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Perceptron (MLP), model based on Gated Recurrent Units
(GRU), and Temporal Convolutional Network (TCN). We
subject these models to six different types of adversarial
attacks and explore five defense methods. We analyze the suc-
cess of these protective measures1. Then, a novel protection
strategy is proposed, which employs several various defense
methods.

Our contributions are as follows.
1) We benchmark popular attack and defense methods on

the TEP dataset which shows that existing universal de-
fense methods greatly reduce models quality on original
data.

2) To address this issue, we suggest a new defense ap-
proach based on adversarial training and data quanti-
zation and demonstrate its average effectiveness against
various attacks.

3) We discuss benchmark results and conclude that au-
toencoders have a potential to be a universal defense
methods but they need more research.

The rest of this article is organized as follows. Section II
gives a review on attacks and defense approaches in the area.
Section III describes methods of attacks and defenses used in
our work. In Section IV, we describe experiments and discuss
them in Section V. Finally, Section VI concludes this article.

II. REVIEW
The operating principles of modern machine learning methods
contain vulnerabilities that can be used to carry out various
attacks on models. Different methods and areas of application
require different adaptations and modifications of an attack
developed in one domain area when used in another. Major
research into machine learning attack vectors began around
2014 [12]. Over the past five years, this area has advanced very
far and many different attack options have been developed.

A. CLASSIFICATION OF ATTACKS ON MACHINE
LEARNING MODELS
Attacks on machine learning models are typically categorized
into several types, which vary based on the capabilities of
the attacker in relation to the target and its characteristics
throughout the model’s lifecycle. These attack types include
evasion attacks [13], [14], [15], poison attacks [16], [17], [18],
and exploratory attacks [19], [20], [21]. In addition, some of
these attack categories have further subgroups. Furthermore,
attacks are segmented into three groups based on the level
of information available about the model’s architecture and
access to its internal parameters and/or requests: White-box,
black-box, and gray-box attacks.

In evasion attacks (often called adversarial examples) [13],
[14], [15], an attacker interacts with a trained machine learn-
ing model and manipulates its behavior by perturbing input
samples during testing. The term “evasion” implies that the

1The source code to reproduce our results is available at https://github.com/
AIRI-Institute/fdd-defense.

attacker not only aims to cause the model to behave incor-
rectly but also seeks to evade detection by both human and
automated defense mechanisms.

Poison attacks [16], [17], [18] are a complex term in the
literature. Typically, it refers to injecting poisoned samples
into the training dataset with the aim of distorting the training
process (so-called data poison attacks). Exploratory attacks
involve sending queries to the model to understand its prin-
ciples of operation. Such attacks can pursue various goals:
Stealing the model [22], [23], conducting membership infer-
ence attacks [19], [20], [21], and others. In this article, the
main focus was on evasion attacks, as they pose the greatest
threat due to not requiring an insider attacker and directly
impacting the model’s predictions.

In white-box attacks [24], [25], the attacker possesses com-
plete information, enabling them to execute any operations on
their instance of the deployed model (e.g., obtaining gradients,
accessing output data from any layer) to construct perturbed
samples. In the presence of defense mechanisms, these mech-
anisms are also susceptible to attack by the adversary.

Black-box attacks [26], [27], [28] assume that the at-
tacker can only make a limited number of requests (L, where
1 ≤ L < ∞) to the deployed model. The models provide the
attacker with predictions such as label class or probability,
semantic map segmentation, etc.

Gray box (or semiwhite box) [29], [30] attacks represent
an intermediate state between white-box and black-box sce-
narios. They involve the imposition of certain restrictions that
provide some information about the learning model/process,
albeit incomplete.

B. MOST COMMON METHODS OF ATTACK AND DEFENSE
In the literature, there are numerous articles that explore is-
sues akin to those addressed in this study. However, these
methods are either examined on different datasets or pertain to
disparate domain areas, necessitating adaptation for our pur-
poses. Notably, many initial attacks were devised for image
analysis models, and not all methods have been fully tai-
lored for the domain area under our investigation. Therefore,
in this review, we also consider these aspects. Articles such
as [31], [32], [33], [34], and [35] delve into the impact of
attacks on various image datasets like CIFAR-10, CIFAR-100,
ResNet-20, and MNIST. These articles also discuss various
protective measures. Key attack methods include L-BFGS,
FGSM, PGD, C&W, and DeepFool. While identifying the
most prevalent defense methods can be challenging, several
key approaches emerge, notably Defense-GAN and Adversar-
ial Training. Moreover, articles such as [9], [10], [36], [37],
[38], [39], and [40] discussed attacks and defense methods
on datasets like TEP and/or similar domain areas such as
CARLA, Electra, SWaT, BATADAL, and WADI. Many at-
tack and defense methods in these articles share operational
principles with those used in computer vision.

In white-box adversarial attacks, access to gradients is a
primary tool. Attackers exploit gradients by calculating the
gradient of the loss function concerning the input. Then, they
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perturb the input in the direction of the gradient to maximize
the loss. The mathematical details of the attack algorithms
that will be used in this article are outlined in the next section
(Section III).

The Fast Gradient Sign Method (FGSM), proposed by [41],
generates adversarial examples with a single gradient step. It
updates the input based on the direction of increasing loss,
using a small multiple of the sign of the gradient. While
FGSM is fast, its success rate for adversarial examples is low.

To improve the success rate of FGSM, [42] introduced the
Projected Gradient Descent (PGD) method. Unlike FGSM,
PGD takes multiple smaller steps in the gradient direction and
clips the result by a specified value. Although PGD is more
effective than FGSM in finding adversarial examples closer
to the model’s decision boundary, it is computationally more
expensive due to requiring multiple iterations.

For untargeted attacks, [43] proposed the DeepFool method
optimized for the L2 distance metric. It assumes the linearity
of the decision boundary in neural networks and finds the min-
imum adversarial perturbation needed to fool the classifier.
DeepFool iteratively identifies the direction that maximally
changes the current prediction of the neural network and takes
a small step in that direction until finding a true adversarial
example.

A more sophisticated white-box attack, the C&W attack
by [44], was applicable under various distance metrics: L0,
L2, and L∞. This attack optimizes a loss function considering
the distance between the original input and the adversarial
example, along with the classifier’s prediction confidence. The
optimization includes a constraint on the perturbation size,
making the resulting adversarial example more realistic and
challenging to detect.

Adversarial training [31], [45], [46] is a widely used
defense technique aimed at making neural networks more
resilient to adversarial attacks. Instead of relying solely on
traditional training data, adversarial training incorporates ex-
amples with adversarial biases into the training process.
Adversarial training has been shown to be effective in im-
proving the robustness of neural networks to various types of
adversarial attacks, including both white-box and black-box
attacks. Despite some problems, adversarial training remains
one of the most effective methods for protecting against ad-
versarial attacks and is widely used in practice to improve the
security and reliability of neural networks.

C. INTERACTIONS AMONG DEFENSE METHODS
While the literature offers many different methods for de-
fending machine learning models, there are few studies that
explore building models combining multiple defense meth-
ods. In the paper [47], the authors examine the possibility
of combining the most popular defense methods against eva-
sion and poisoning attacks. The research concludes that many
methods, at the level of algorithmic ideas, are incompati-
ble, demonstrating this through practical examples. Therefore,
constructing models that combine defense methods is a com-
plex and underexplored task.

D. SUMMARY OF THE REVIEW
Since the main objective of the article is to create a bench-
mark, we pay particular attention to the most common
methods described in the literature. This research focuses on
analyzing vulnerabilities and implementing protection strate-
gies within ACS. The following section elaborates on the
mathematical aspects of the methods employed in this re-
search.

III. METHODS
A. FAULT DIAGNOSIS METHODS
Fault detection and diagnosis (FDD) methods, are widely
used in monitoring industrial processes, such as chemical
processes [48] and electromechanical drive systems [49]. The
authors of [1] divided FDD methods into three groups: 1) data-
driven; 2) model-based; and 3) knowledge-based approaches.
In our work, we investigate the properties of data-driven
methods.

Data-driven FDD problem is formulated as follows. Let
there be a sequence of observations X1, . . . , Xn, where Xt ∈
Rd are the values of sensors at time t . Thus, X1, . . . , Xn form
a multivariate time series. Also, let there be a sequence of
labels y1, . . . , yn where yt ∈ {0, 1}m defines the type of fault
at time t . If arg max(yt ) = 0, the process is in the normal state,
otherwise arg max(yt ) determines the fault number. Then for
a sliding window of width k, we need to find such a function
f : Rd×k → [0, 1]m that

f = arg min
f

1

n − k

n∑
t=k

l (yt , f (Xt−k+1, . . . , Xt ))

where l is some loss function, most commonly cross-entropy,
also known as Log Loss. The function f can be found using
machine learning methods.

In recent years, many deep learning methods based on
different neural network architectures were proposed to solve
FDD problem. The simplest one is MLP that was applied to
FDD in [6], [50], [51], and [52]. Multivariate time series is
converted to a vector of concatenated observation, and then
processed by MLP to predict the process state. TCN is an-
other popular architecture for FDD [53], [54], [55]. TCN is
a modification of a 1-D convolutional network with causal
and dilated convolutions [56] that helps to process sequen-
tial data with long-term dependencies. In addition, GRU is a
type of recurrent neural networks that shows SOTA results of
FDD on many datasets including Tennessee Eastman Process
[7], [57].

B. ADVERSARIAL ATTACKS
During the attack, an adversarial sample X ′

t is created such
that: f (X ′

t ) �= f (Xt ), where X ′
t = Xt + N and N ∈ Rd×k is a

perturbation matrix. Strength of an attacks is defined by the
maximal shift ε as follows: ‖Xt − X ′

t ‖∞ ≤ ε.
When choosing types of attacks, we proceeded from the

assumption that the attacker has access to either only input
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and output data or all information about the data and model ar-
chitecture. Two black-box (Random noise, FGSM distillation)
and four white-box attacks (FGSM, PGD, DeepFool, Carlini,
and Wagner) were implemented.

1) RANDOM NOISE
Random noise is the simplest black-box attack based on
adding random values to the input data

x′ = x + εz

where ε limits the magnitude of noise values and z is dis-
tributed according to Bernoulli’s principle with parameter
p = 0.5 on the sample space of elementary events {−1, 1}.

2) FAST GRADIENT SIGN METHOD (FGSM)
FGSM [41] is a white-box attack based on the gradient of
the loss function calculated for the input data. The signs of
obtained gradient vector indicate the direction in which the
input data should be changed to increase the probability of
model error. The attack consists of shifting each value of the
data by a step of size ε, with a sign corresponding to the
gradient

x′ = x + ε sign[�l ( f (x), y)].

3) FGSM DISTILLATION
Distillation can be used to create a black-box adversarial at-
tack as proposed in [58]. Based on the input and output data
of the model, a neural network classifier with an arbitrary
architecture can be trained. Adversarial samples are obtained
by attacking the resulting model by any white-box attack. In
our study, we used MLP architecture and FGSM attack.

4) PROJECTED GRADIENT DESCENT (PGD)
PGD [42] is an iterative modification of the FGSM white-box
attack method. The main difference is that the data shift is
done in several steps. After each step, the gradient signs are
recalculated

x′
i+1 = Clipε{x′

i + α sign[�l(f(x), y)]}
where x′

i denotes the changed input data since the previous
iteration, Clip{} limits the resulting data shift to no more than
ε, and α denotes the shift step size at each iteration.

5) DEEPFOOL
DeepFool [43] is a white-box attack which minimizes the
difference between the elements of the output vector f (x) that
correspond to the correct and incorrect fault type. Among all
possible incorrect types, the closest in absolute value of the
difference is selected. Minimization occurs in several steps,
each defined as follows:

x′
i+1 = xi + |D(xi )|

||�D(xi )||1�D(xi )

where D(x) = f (x)false − f (x)true. f (x)false is the value of the
output vector corresponding to the nearest incorrect fault type,

which is selected independently at each step. After each itera-
tion, the total adversarial vector x′

i+1 is limited by ε value.

6) CARLINI AND WAGNER (C&W)
C&W [44] is a white-box attack that minimizes the sum of the
shift value over the distance metric D and the value of some
auxiliary function g. Function g takes negative values in case
of incorrect classification. This optimization problem can be
represented as

minηD(x, x + η) + g(x + η)

where g(x) = ReLU(arg max(y) − arg max( f (x))) and D is
Chebyshev distance. Minimization is performed by the
stochastic gradient descent method or its analogues. For com-
parison with other attack methods, we constrain η according
to the selected ε value.

C. DEFENSE METHODS
Another goal of the study was to find out how defense meth-
ods behave under attacks with different strengths and for
different neural network architectures. The five most pop-
ular strategies were implemented: Adversarial training, Au-
toencoder, Quantization, Regularization, and Distillation. We
also proposed to protect models by combination of defense
methods.

1) ADVERSARIAL TRAINING
Adversarial training method [41] consists of adding adversar-
ial samples to the training set. The training loss function is
given as follows:

L = l ( f (x), y) + λl ( f (x′), y)

where x′ is adversarial sample and λ is adversarial training
coefficient.

2) DEFENSIVE AUTOENCODER
Autoencoder can be used to reconstruct attacked data as pro-
posed in [59]. During its training, the following loss function
is minimized:

L = ||xAE − x||1
where xAE = autoencoder(x + ε) is a reconstructed data and
ε is added noise.

3) DATA QUANTIZATION
Quantization is a preprocessing method that converts continu-
ous values into a set of discrete values on a uniform grid [60].
This approach reduces the quality of the input data but can
neutralize the impact of adversarial attacks. The fault diagno-
sis model must be retrained on quantized data.

4) GRADIENT REGULARIZATION
The fault diagnosis model can be protected by training using
gradient regularization [61] of the loss function over the input
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data

L = l ( f (x), y) + λ

(
1

h2n
|| f (z) − f (x)||22

)

where

z = x + h
�l ( f (x), y)

||�l ( f (x), y)||2 ·

h is a quantization step and λ is a regularization coefficient.

5) DEFENSIVE DISTILLATION
Distillation defense method [62] refers to the process of cre-
ating a copy of the original neural network model that is more
resistant to adversarial attacks. The original neural network
is called the teacher, and the new neural network is called
the student. When teaching a student, so-called smooth labels
are used, which are obtained using the activation function
softmax(x, T ) on the last layer of the teacher

softmax(x, T )i = exi/T∑
j ex j/T

where T is a temperature constant. At T = 0, the function
converges to a maximum and at T → ∞, the function con-
verges to a uniform distribution.

6) ADVERSARIAL TRAINING ON QUANTIZED DATA
In recent years, a lot of research has been carried out to
develop new defense methods against adversarial attacks.
New ideas emerge that are superior to previous approaches
in certain conditions. However, there is still no ideal defense
method capable of protecting against all types of threats. The
vulnerability of protected neural networks is reduced only
under certain types of adversarial attacks; in other cases, the
accuracy of the models drops noticeably.

In this article, we propose to use a combination of adver-
sarial training and data quantization. As was shown in [60],
quantization allows to clean the input from adversarial pertur-
bation due to the grid alignment of discrete values. However,
the size of the grid (quantization frequency), has an important
role in this type of protection. If the grid is too wide, it reduces
the quality of fault diagnosis, if the grid is too narrow, only a
fraction of the data can be effectively recovered. On the other
hand, adversarial training provides high model robustness, but
reduces the quality of diagnosis. This happens because during
training, the data contains many adversarial examples that
degrade the model’s ability to generalize important dependen-
cies in the data that help diagnose faults. Thus, at high values
of ε in adversarial training, the quality of the model drops
significantly, otherwise it does not provide a sufficient level of
protection.

We propose to use adversarial training on the data after
quantization. Thus, during training, we attack the data with
an adversarial attack such as FGSM. We then quantize this
data and feed it into the input of the model as a training set.
Quantization allows to reduce the strength of the attack, which
in turn allows the model to generalize better during adversarial

training. As a result, quantization helps the model to achieve
better quality in adversarial training.

An additional advantage of this approach is that it does not
require a separate model, as is the case with the distillation
method or the autoencoder. It is also quite efficient in terms
of computational time and memory, since quantization takes
place in linear time and requires no additional memory, while
adversarial training has the same complexity as training a
model on the original data and also requires no additional
memory.

D. DATASET
The Tennessee Eastman Process is a very popular dataset for
benchmarking fault detection and diagnosis methods. It de-
scribes the operation of a chemical production line, where the
process smoothly transitions from a normal state to a faulty
one. In our study, we used a version of the TEP extended by
Reinartz et al. [48] that contained significantly more sensor
data than the original (5.2 GB versus 58 MB). This version
includes 100 simulation runs for each of the 28 fault types.
Each run consists of 52 sensor values for 2000 timestamps,
and thus the input samples are in the form of matrices X k×52,
where k is the sliding window size. All data in our experiments
were standardized by removing the mean and scaling to unit
variance.

IV. EXPERIMENTS
In our study, we wanted to find out how adversarial attacks
affect FDD models based on neural networks with different ar-
chitectures and what defense methods can be used. To analyze
the impact of adversarial attacks on fault diagnosis models, the
accuracy metric was chosen. This metric well reflects changes
in the quality of models when the data is attacked.

The description of our experiments is divided into four
subsections. The FDD models subsection describes the train-
ing process of neural networks with different architectures.
The next subsection shows how the accuracy of the mod-
els changes under different types of attack. Further, various
methods for protecting models and their properties are shown.
Finally, on the basis of the results of experiments, we also pro-
posed and evaluated an approach consisting of a combination
of two defense methods. All final results can be found in Fig. 7
and Tables 6–8.

A. FDD MODELS
For our experiments, we used three models of neural networks
with different architectures. To make the models differ from
each other more, they contain different numbers of parameters
and were trained for different numbers of epochs. The first
model is a multilayer perceptron (MLP) consisting of two
linear layers and containing 3 452 949 parameters. The second
one is based on gated recurrent units (GRU) and containing
204 565 parameters. We also used TCN with 151 935 pa-
rameters. Data were standardized with a standard deviation
of 1. Sliding window size was 32, which is a compromise
between the accuracy of the models and the duration of the
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TABLE 1 Accuracy of Unprotected Models on Normal Data

FIGURE 1. Accuracy drop of unprotected models under six different types
of attacks depending on the strength of an attack ε.

experiments. All models were trained on the TEP dataset for
20, 5, and 10, epochs for MLP, GRU, and TCN, respectively.
The accuracy metrics for fault diagnosis on nonattacked data
are presented in Table 1. Combinations of the number of
parameters and training epochs are selected on the validation
set.

The selected neural network architectures showed similar
accuracy and can effectively solve the fault diagnosis task.

B. ATTACKS ON FDD MODELS
At the next stage, unprotected models were attacked by six
types of attacks with different ε. For ε values, 20 points were
selected in the range from 0 to 0.3 with a step of 0.015. We
consider this range to be reasonable given that the data is
scaled to a unit variance and the attack should not be detected
by both human and automated defense mechanisms. Fig. 1
shows how the model’s accuracy degrades depending on the
type and strength of the attack. It decreases significantly with
small shifts in the attacked data for ε values less than 0.05.

To cause potential harm, an attacker does not always need to
have access to model architectures and use white-box attacks.
Experiments have shown that to create a strong adversarial

FIGURE 2. Accuracy of the TCN model protected by adversarial training
with different settings: (a) training on FGSM samples with fixed ε = 0.1;
(b) training on FGSM samples with set of ε values from the range (0, 0.3);
(c) training on PGD samples with fixed ε = 0.1; (d) training on PGD
samples with set of ε values from the range (0, 0.3).

attack, it is enough to have access to the input and output data
of the FDD system. This data can be used to train an arbitrary
neural network architecture on the basis of which adversarial
samples will be created. The distillation FGSM attack showed
a similar effect on the accuracy of models as white-box attacks
in our study. This type of black-box attacks seems to be the
easiest to carry out and potentially the most dangerous.

C. PROTECTION OF FDD MODELS
All three neural network architectures have proven to be
highly vulnerable to adversarial attacks and require protection
methods. The defense methods studied in our research have
many variations and parameters for selecting. It is not possible
to conduct experiments for all combinations of settings and
models in an adequate period of time. Therefore, we took only
the TCN model, which has the fastest inference, to select more
optimal settings for defense methods adjustment. Experiments
conducted for each type of protection are described in follow-
ing subsections. After setting up, the defense methods were
applied to all FDD models and the final results are presented
in Fig. 7 and Tables 6–8.

1) ADVERSARIAL TRAINING
In our study we used equal amounts of normal and attacked
data for adversarial training method. Experiments have shown
a strong dependence of the model robustness on the set of
adversarial samples during the training process. As an exam-
ple the model trained on attacked data with ε value 0.1 is
not protected from attacks with ε values 0.05 and 0.2. Fig. 2
shows changes in the TCN model’s accuracy after adversarial
training with different options. The first one is the training
with FGSM adversarial samples and fixed ε value equal to
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TABLE 2 Accuracy of the TCN Model Protected by Adversarial Training on
Normal Data

FIGURE 3. Accuracy of the TCN model protected by autoencoder:
(a) model was trained on the original data; (b) model was trained on the
data obtained at the output of autoencoder.

TABLE 3 Accuracy of the TCN Model Protected by Autoencoder on Normal
Data

0.1. Then, the number of ε values was expanded to the set
with range from 0.015 to 0.3 (ε values were randomly selected
from the set for every data sample). The same measurements
were made for training with PGD adversarial samples.

Adding more different perturbed data to the training pro-
cess increases the average robustness of the model to adver-
sarial attacks. But the quality with normal data decreases.
Table 2 shows the accuracy of the TCN model on nonattacked
data before and after adversarial training. Training with PGD
adversarial samples showed better robustness from all attack
types but worse quality in nonattacked mode. We used this
setting for the final comparison of all defense methods.

2) DEFENSIVE AUTOENCODERS
During the experiments, we trained a simple autoencoder
with linear layers in the encoder and decoder parts. There
are two options for using it in conjunction with the models.
The model can be trained on the original dataset data or
on autoencoder output data. Both approaches are shown in
Fig. 3 using the TCN model as an example. Experiments have
shown that when using an autoencoder, a model trained on
its output shows better quality and robustness to adversarial
attacks. This setting was chosen for the final comparison for
all models.

Accuracy metrics on nonattacked data can be seen in Ta-
ble 3. It is significantly lower than on unprotected model, but
there is an opportunity to experiment with advanced autoen-
coder architectures in further research.

FIGURE 4. Accuracy of the TCN model protected by quantization:
(a) model is under FGSM attack and n indicates the number of discrete
values during the quantization process (2n); (b) model is protected by
quantization with n = 5 under six types of attacks.

TABLE 4 Accuracy of the TCN Model Protected by Quantization With
Different Parameter n on Normal Data

3) DATA QUANTIZATION
Quantization converts continuous input data into a set of dis-
crete values. To select the number of discrete values in the
set, we used different values n for powers of two (from 22

to 28). The left part of Fig. 4 shows the accuracy of the
TCN model protected by quantization method with different
sets of discrete values. The attacks where made by FGSM
adversarial samples. The remaining types of attacks on the
model protected by quantization with n = 5 are presented on
the right side of the picture.

Table 4 shows the accuracy of the TCN model protected
by quantization with different numbers of discrete values on
nonattacked data.

For the final comparison, the setting with n = 5 was chosen
as a tradeoff between the model’s robustness to attacks and
the accuracy on normal data.

4) GRADIENT REGULARIZATION
The parameters for tuning the regularization method did not
show a significant impact on the effectiveness of the pro-
tection. Fig. 5(a) shows the change in the accuracy of the
protected TCN model after all types of attacks. The quanti-
zation step parameter h and regularization coefficient λ were
equal to 0.001 and 1, respectively. Regularization turned out
to be useful just for small ε values. However, it well improves
robustness against random noise.

5) DEFENSIVE DISTILLATION
Distillation is a gradient masking technique that protects mod-
els against gradient-based adversarial attacks. Changing the
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FIGURE 5. Accuracy of the TCN model protected by: (a) regularization
defense method; (b) distillation defense method.

FIGURE 6. Accuracy of the TCN model protected by combination of FGSM
adversarial training (ε = 0.1) and: (a) quantization having 25 discrete
values; (b) quantization having 28 discrete values.

temperature constant parameter T does not significantly af-
fect the effectiveness against other types of attacks. Fig. 5(b)
shows the accuracy of the TCN model protected by distillation
defense method with parameter T = 100. The results confirm
good protection against gradient-based FGSM and PGD ad-
versarial attacks. However, other threats remain relevant when
using this protection method.

6) ADVERSARIAL TRAINING ON QUANTIZED DATA
The experimental results showed that various defense methods
can be effective against some types of attack and not against
the others. This fact suggests the idea of using several defense
approaches together. In our study, we used a combination of
adversarial training and quantization defense methods.

For the adversarial training setting we chose attack with
FGSM samples and ε = 0.1 [Fig. 2(a)]. We combined it with
the quantization having 25 discrete values [Fig. 4(a)]. The re-
sults of this combination significantly exceed the effectiveness
of these methods separately [Fig. 6(a)]. Moreover, we tried
to change the quantization defense setting by increasing the
number of discrete values to 28. Its combination with FGSM
adversarial traning are shown in Fig. 6(b).

Quantization defense method having 28 discrete values is
more vulnerable to adversarial attacks than the one having
25 values. But its combination with adversarial training gives
partially better results, especially on normal, nonattacked data
(Table 5).

V. DISCUSSION
Our experiments confirmed the vulnerability of fault diagno-
sis models based on different neural networks to adversarial
attacks. We implemented six types of attacks and all of them

TABLE 5 Accuracy of the TCN Model Protected by Combination of
Adversarial Training and Quantization Defense Method on Normal Data

lead to a significant decrease in accuracy of FDD methods.
However, a good defense method should be effective against
any type of adversarial attack. At the same time, the accuracy
of defended models should not drop significantly on normal,
nonattacked data. The ε parameter, which limits the maximum
shift in the attacked data, is common to all types of attacks.
The choice of ε value range when creating protection for mod-
els depends on many factors (such as additional systems for
detecting adversarial attacks) and is the subject of discussion.
In our work, we investigated five types of defense methods
against adversarial attacks with ε values in the range (0, 0.3).
We also proposed a combination of adversarial training and
quantization defense methods.

Adversarial training with PGD samples and defense by
autoencoder can be considered as universal methods against
adversarial attacks over a wide range of ε values. The dis-
advantage of these approaches is a significant decrease in
accuracy on normal nonattacked data. Adversarial training can
be done against the attack with a specific ε value without
losing accuracy on normal data but will be ineffective for
attacks with other ε values. Adding more variety to adversarial
samples degrades the overall accuracy of the model.

The accuracy of the model protected by autoencoder on
nonattacked data has noticeably decreased, but was stable
after most types of attacks. This approach seems to have
great potential and requires further research with different
autoencoder architectures. In addition, the vulnerability of the
autoencoders themselves should be studied. The disadvantage
of this method is the need for additional computing resources.

Other methods such as quantization, regularization, and
distillation have shown high protection against some types
of attacks and poor results against the others. To address the
limitations of individual defense methods, we explored the
possibility of combining them. In our study, we combined
FGSM adversarial training and quantization defense method.
This approach provides good protection against most types of
attacks (except for PGD adversarial examples with large ε val-
ues) with small losses in quality. It is computationally efficient
and does not require additional memory. Other combinations
of various defense methods can be explored in further
research.

VI. CONCLUSION
This study confirmed that adversarial attacks can greatly
reduce the quality of FDD models. Such attacks can be quite
feasible if attackers have access to the data exchange system.
Therefore it is important to know the robustness of models
used in real systems to adversarial samples. There are many
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TABLE 6 Accuracy of Protected and Unprotected MLP Model After Adversarial Attacks With Different ε Values

TABLE 7 Accuracy of Protected and Unprotected GRU Model After Adversarial Attacks With Different ε Values

types of attacks and quite a few universal defense methods
capable of protecting against all of them simultaneously. Also
universal defense methods significantly reduce the accuracy
of the models on normal nonattacked data. Here, it seems that
autoencoders can be improved in further research through the
use of more advanced architectures. Many of defense methods
protect against certain types of adversarial attacks with a good
efficiency. Such methods can be combined into one more

powerful defense system, like our experiment with adversarial
training and quantization.

APPENDIX A.
COMPARISON OF ALL METHODS
In this section, we present the final comparison of all combi-
nations of models, attacks, and defenses (Tables 6, 7, and 8
and Fig. 7).
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FIGURE 7. Accuracy of protected and unprotected models after adversarial attacks.
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TABLE 8 Accuracy of Protected and Unprotected TCN Model After Adversarial Attacks With Different ε Values
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