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ABSTRACT Crowd monitoring is a primary function in diverse industrial domains, such as smart cities,
public transport, and public safety. Recent advancements in low-energy devices and rapid connectivity
have enabled the generation of real-time data streams suitable for crowd-monitoring applications. Crowd
forecasting is typically achieved using deep learning models that learn the evolving nature of data streams.
The computational complexity, execution time, and opaqueness are inherent challenges of deep learning
models that also overlook the latent relationships between multiple real-time data streams for improved
accuracy. To address these challenges, we propose the global ensemble echo state network approach for
explainable crowd forecasting using multiple WiFi data streams. This approach replaces the random input
mapping layer with a clustering layer, allowing the network to learn input projections on cluster centroids. It
incorporates an ensemble readout comprising a stack of reservoir layers that provide model explainability. It
also learns multiple related time series in parallel to construct a global model that leverage latent relationships
across the data streams. This approach was empirically evaluated in a multicampus, mixed-use tertiary
education setting. The results of which confirm the effectiveness and interpretability of the proposed approach
for industrial applications of crowd forecasting.

INDEX TERMS Artificial intelligence (AI), crowd forecasting, echo state networks, global forecasting
models, model explainability.

I. INTRODUCTION
Crowd monitoring is an increasingly important activity for
the operational efficiency, security, safety, and optimization of
industrial, social, and economical systems. Crowd monitoring
or the modeling of crowd dynamics spans across a num-
ber of subfields, such as people counting, density mapping,
crowd recognition, crowd characterization, crowd tracking,
and crowd forecasting [1]. Out of these subfields, crowd fore-
casting is crucial for the planning and preparation of smart
cities as well as safety and security protocols and policies of
related services. For instance, the injuries and loss of life due
to poor crowd control of mass gatherings in smart city set-
tings [2], [3], [4], could be mitigated with accurate and timely
predictions. Besides crowd safety, event scheduling, resource

allocation, and service optimization can also be enabled and
supported with such crowd forecasts [5].

The source data streams used for crowd monitoring tasks
are diverse. This includes static or manual-operated counters,
Bluetooth sensors, closed-circuit television (CCTV) cameras,
WiFi sensors, infrared sensors, and Internet-of-Things (IoT)
devices. The usage of Bluetooth sensors is prevalent in indoor
settings and large-scale events. These sensors are installed
in key locations, and a monitoring system generates a real-
time population estimation [6], [7], [8], [9]. With infrared
sensors [10], crowd count is determined indirectly by temper-
ature differences surrounding the sensors. The channel state
information (CSI) of WiFi-enabled IoT devices [11], [12] es-
timates crowd count by analyzing the strength of WiFi signals
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that devices in a certain region are sending out. Video feeds
from CCTV cameras have been widely used for monitoring
and surveillance [13], [14], [15]. However, the effectiveness
of such methods depends on face detection capability, and
require large training datasets to be accurate. In contrast, WiFi
data streams overcome this issue of obscured image frames, as
well as being a low-cost, widely deployed base communica-
tion technology [16], [17].

Despite the diversity of data streams, the process for crowd
monitoring use cases follows a consistent path. After the raw
data streams have been identified, acquired, preprocessed, and
staged, then the computational tasks of crowd monitoring are
initiated. Following our focus in this article on crowd forecast-
ing, we present an overview of such techniques that represent
the crowd counts as time-series forecasting. Although early
work consisted of statistical models, such as auto regression
integrated moving average (ARIMA) [18], Gaussian mod-
els [19], and Markov models [20], more recently, artificial
intelligence (AI) models have outperformed the conventional
approaches as they are able to better capture complex tem-
poral dynamics of crowd counts across geographical regions.
For instance, recurrent neural networks (RNNs) [21] and long
short-term memory (LSTM) [22] have been highly effective.
However, they also report on the complexity of the learning
process and the inability to learn efficiently under computing
constraints as limitations. Reservoir computing approaches,
such as echo-state machines (ESNs) [23], [24] and liquid state
machines [25], have been proposed as a viable alternative
that does not compromise the accuracy of capturing temporal
dynamics while also maintaining a lower computational load.
Noting the multiple, competing challenges of crowd forecast-
ing, such as weather, traffic, event format, and unpredictability
of human behaviors, ESNs are technically capable of address-
ing these challenges while also providing accurate forecasts as
they contain few parameters, which makes them less prone to
overfitting and more robust to changes in the underlying data
streams.

WiFi data, readily available in commercial settings,
presents an underutilized resource. Acknowledging the sig-
nificance of crowd forecasting and monitoring in averting
congestion, managing security risks, and optimizing resource
allocation, this data hold promise in approximating crowd
behavior [5], [26]. Leveraging this information for crowd fore-
casting seems pertinent, considering its intrinsic availability.
However, treating this as a time-series problem and employ-
ing conventional time-series models encounters challenges in
capturing the intricate temporal dynamics of human behavior.
Hence, the necessity for a model resilient to such complex
and erratic behavior fuels the use of echo state networks [27].
Yet, existing models, including echo state networks, lack in-
terpretability for evaluating the quality of crowd-forecasting
tasks. The attribution of the reasoning behind forecasts moti-
vates the development of an explainable AI model for improv-
ing the standard echo state network models. This development
aims to provide insight and understanding behind the fore-
casts, adding a layer of interpretability to the predictions.

Effectively leveraging WiFi data for crowd behavior es-
timation while safeguarding user privacy remains a pivotal
challenge in this domain. In addition, capturing the dy-
namic and often chaotic nature of human behavior within
crowded settings necessitates innovative methodologies ca-
pable of comprehending these intricate patterns. Finding the
balance between model accuracy and its interpretability is a
key challenge for explainability without compromising pre-
dictive capabilities. Moreover, ensuring the scalability and
applicability of these models [28] across various urban set-
tings and crowd behaviors presents an unresolved challenge in
this evolving field. Addressing these multifaceted challenges
stands as a crucial step toward enhancing the efficacy of crowd
behavior predictions.

In this article, we present a novel explainable AI approach
based on ESN, the global ensemble echo state network for
explainable crowd forecasting using WiFi data streams. The
key contributions are as follows.

1) A novel echo state network learning approach with a
clustering layer to replace the input mappings, multiple
reservoirs allocated to each cluster, and an ensemble
readout layer that completes the time-series forecasts.

2) Model explainability of this novel ESN learning ap-
proach that interprets the forecast and an explainability
metric that evaluates model performance quality.

3) Global model of this novel ESN learning approach that
is trained on multiple time series to enhance the predic-
tion accuracy by taking advantage of latent relationships
across the data streams.

The rest of this article is organized as follows. Section II
presents related research in crowd forecasting and the use
of echo state networks for similar use cases. The proposed
global ensemble echo state network is presented in Section III
followed by the experiments carried out on crowd forecasting
and results in Section IV. Section V concludes this article.

II. RELATED WORK
The global rise of smart cities showcases the integration of
AI, specifically machine learning (ML) and deep learning,
alongside the incorporation of IoT devices and their real-time
data streams. This integration significantly enhances various
aspects, particularly in ensuring safety, where dedicated ef-
forts combat cyber attacks. For instance, Eddin [29] proposed
an efficient multitask deep learning-based detector aimed at
thwarting electricity theft attacks on smart meters. Similarly,
Keliris et al. [30] introduced a novel ML-based intrusion
detection system tailored to combat cyber attacks on smart
grids. Magaia [31] examined the strengths and weaknesses of
security-related approaches utilizing deep learning methods,
shedding light on open issues and future directions in lever-
aging these techniques to fortify IoT security within smart
city applications. Liu et al. [32] presented a hybrid forecasting
method that combines TimeGAN for data expansion with a
CNN-enhanced LSTM network, addressing challenges asso-
ciated with sparse power load data. Throughout literature,
discussions on harnessing deep learning and ML approaches
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to bolster IoT, wireless devices, and smart city services have
been pervasive (Mohammadi et al. [33]; Ameer et al. [34];
Bellavista et al. [35]).

Despite the inherent limitations of extracting nonlinear tem-
poral dynamics, statistical models like ARIMA [18], Gaussian
models [19], and Markov models have been shown to be
effective approximations. Tan et al. [36] described a method
for estimating the population of a shopping centre using
WiFi sensors and forecasting future volume using an ARIMA
model. For tasks involving time-series prediction, the seasonal
autoregressive integrated moving average model (SARIMA),
an enhanced variant of the ARIMA model, has also been em-
ployed. A differential process is present in this model and is
utilized to continuously extract trend and period information.
Wu et al. [37] described how to use WiFi probe requests
to estimate the number of customers inside a business and
forecast using an SARIMA model. Modeled as a time-series,
crowd forecasting has been addressed using deep learning and
artificial neural networks methods. The use of RNNs [21],
LSTMs [22], and GRUs [38] are among the most widely
used. In [17], an LSTM model is used to predict crowd size
for a large public gathering. A variety of LSTMs, including
VLSTM, BiLSTM, EDLSTM, CNNLSTM, and ConvLSTM,
have been used to make predictions in this case. The crowd
size is approximated via WiFi probe requests. However, only
the crowd count is used as an input; other factors, such as the
weather and traffic updates, are not taken into account. Echo
state networks for crowd forecasting have been overlooked
despite its potential being demonstrated in several other ap-
plication domains of time-series forecasting. A clustered
complex echo state network has been proposed for predicting
mobile communication traffic with prior knowledge [39]. By
using the Fourier spectrum as the prior knowledge to create
several clusters within the reservoir, the prediction accuracy
of a traditional ESN is outperformed. In [40], authors pre-
sented another comparable example of using an ESN model
for forecasting network traffic. For both short- and long-term
forecasting, the standard ESN is evaluated against LSTM,
CNN, and SARIMA models in this study, which also draws
on the primary elements of the AI lifecycle [41]. Road traffic
forecasting is another application scenario modeled by echo
state networks. Del Ser et al. [42] presented a stacking ensem-
ble learning approach to an ESN model to predict road traffic.
Zhang et al. [43] suggested using an ESN in a similar method
where a fruit fly optimization algorithm is used to predict
the volume of traffic every five minutes with ESN. Global
models for time-series forecasting are a recent development
that simultaneously learns from several time series with re-
latedness properties. This single model with a set of global
parameters across many series is in contrast to local models, as
it trains on inter-series fluctuations using a smaller number of
parameters [44]. It has also been demonstrated that the com-
plexity of local, individual models increase as a new model is
trained for each series, unlike global models where the com-
plexity is invariable to the number of time series trained [45].
Global models have been used for energy consumption

forecasting [46]. ESNs maintain common properties for time-
series forecasting type problems, with application-level dif-
ference due to the nature of the entities and their movements.
For instance, data and network traffic vary temporally and not
spatially, road traffic has limited spatial variability, and crowd
movement varies both spatially and temporally.

With the proliferation of real-world AI applications, there
is a growing imperative to move beyond black box (opaque)
models that cannot justify decision-making processes. As a
response, significant research has delved into explainable AI.
Broadly, two major categories have emerged: 1) intrinsically
interpretable models and 2) model-agnostic approaches [47].
Models like linear regression and logistic regression fall un-
der the category of interpretable models due to their simple
equation-based nature, providing coefficients for each feature.
However, their limitation lies in their capacity to model only
linear relationships. On the other end, decision trees offer
interpretability by explicitly showcasing feature importance
based on the sequence of feature splits and a tree structure.
Features higher in the tree typically hold more influence in
predictions by contributing more to information gain or re-
ducing impurity.

While these models may not be suitable for complex
problems, model-agnostic methods have gained traction, sepa-
rating explanation from the ML model, thus ensuring compati-
bility with various models. Partial dependence plot (PDP) [48]
is one such method that offers a function dependent solely
on the plotted feature(s) by marginalizing over other fea-
tures, considering their interactions. PDP offers a clear and
causal interpretation by illustrating how changes in spe-
cific features affect predictions. Another method, individual
conditional expectation [49], differs from PDP by plotting
one line per instance, illustrating how a feature influences
prediction changes. While these approaches provide global
explanations regarding how specific features impact model
predictions, literature also features several local explainable
methods that offer explanations for individual predictions.
Local interpretable model-agnostic explanations [50] is one
such method, training an inherently interpretable model on
a new dataset formed by permuting samples and their corre-
sponding predictions from the opaque model. Shapely [51],
another local explanation approach rooted in the cooperative
game theory, fairly distributes feature importance among par-
ticipating features. Despite the existence of these approaches
in literature, as far as our knowledge extends, no proper ex-
plainable echo state network model has been proposed, and no
model-agnostic method has been applied. Therefore, our cur-
rent focus revolves around developing an interpretable echo
state network model.

III. PROPOSED METHOD: GLOBAL ENSEMBLE ECHO
STATE NETWORK
Echo state networks typically use reservoir weights and in-
put mapping weight matrices that are randomly initialized,
that carry the intrinsic advantage of random connections that
learn nonlinear temporal dynamics [52]. However, this also
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FIGURE 1. High-level architecture of the proposed global ensemble echo state network.

means that input mapping weights cause fluctuations (dimin-
ish or amplify) of the input itself during mapping to the
reservoir nodes. We attempt to address this by introducing
a premapping layer for clustering the inputs into segments
based on common properties. The centroids of these clusters
then become the weights for the mapping between inputs and
reservoir nodes. In contrast to a similar method proposed by
Steiner et al. [53] where there are restrictions placed on as-
signing inputs to particular nodes, in our method we generate
a unique reservoir network for each recognized cluster. Each
input is projected on to centroids, and the projections of the
inputs are then injected into reservoirs. By doing this, each
reservoir only receives information about input data projec-
tions that are pertinent to the cluster. A larger learning space
for the input patterns is offered by allocating the full reservoir
to each cluster, while the separation of reservoirs prevents
inputs from across different centroids. A readout layer fol-
lows each reservoir, which generates its output solely based
on learned patterns of relevant cluster projection. In order to
forecast the outcome, a second readout layer is trained based
on the predictions made by each reservoir. Fig. 1 illustrates
the high-level view of the proposed global ensemble echo
state network approach, which are further delineated in the
following subsections.

A. CLUSTERING LAYER
In contrast to typical echo-state networks that use random
weights to map inputs to a number of reservoir nodes, the
clustering layer groups the inputs into segments based on
common properties. Given that clustering aims to reduce the
workload on the reservoirs, the main selection criteria for a
suitable algorithm in time-efficiency. Therefore, we use the
k-means algorithm, which maintains a time complexity of
O(NTK), where N is the total number of data sets, K is the
total number of partitions, and T is the number of iterations.
The elbow approach selects the optimal number of clusters

from the range of [1, 20] while evaluating the quality of clus-
tering using the sum of the squared distances between points
in a cluster and the centroid.

The vector dot product between the input vectors and clus-
ter centroids is used to project the input to the reservoir
layers once the number of clusters k has been determined.
Let X = [x1, x2, x3, . . ., xn] be an input dataset with n data
points of m dimension. Let the set of cluster centroids be
C = [c1, c2, c3, . . ., ck] then, the portion of xi input received
to each of the reservoir nodes in the jth layer would be c j · xi,
as follows:

c j · xi = |c j ||xi| cos θ = |c j |
(
Projection of xi on c j

)
.

(1)

The input is transferred into the reservoir nodes (1), which
projects the input on to the cluster centroid. Although this is
compounded by an additional term called |c j|, it is constant
for all the inputs in the reservoir and offsets searching for input
patterns.

B. RESERVOIR NETWORK
Each cluster detected in the clustering layer is represented by
a reservoir in the reservoir network. An r number of randomly
connected recurrent nodes make up each reservoir. The reser-
voir acts as a higher dimensional space for inputs. The random
recurrent connections sustain past inputs and aid in exploiting
linear dependencies between outputs. In each training itera-
tion, the states of nodes are updated. The proportion of input
and proportion of already learned states of other nodes are
transferred to the node state based on the leaking rate(α). The
jth reservoir layer’s current state(ht, j) is updated as follows:

ht, j = (1 − α)ht−1, j + αtanh
(
Wres · ht−1, j + c j · xt

)
. (2)

The random weights that make up the Wres, r × r-
dimensional matrix in this case would determine the random
connections between reservoir nodes. To generate a final state
matrix H of dimension k × r × ttrain, the reservoir layer is fed
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FIGURE 2. Functional view of the proposed global ensemble echo-state network.

with all of the training inputs from (i = 1 to ttrain)

H =

⎡
⎢⎢⎢⎢⎣

h1,1 h2,1 . . . httrain,1

h1,2 h2,2 . . . httrain,2

. . .

. . .

h1,k h2,k . . . httrain,k

⎤
⎥⎥⎥⎥⎦ . (3)

The state matrix in (3) represents the learned input patterns
of input data in high-dimensional space. Furthermore, as is
the case with traditional ESN models, this state matrix can be
linearly related to the output values to complete the learning
process.

C. ENSEMBLE READOUT LAYER
The output of each reservoir layer is generated as follows:

yt, j = Wout, j · ht, j (4)

where yt, j is network output and Wout, j is the output weight
matrix. The values of Wout, j for each reservoir layer are deter-
mined by applying ridge regression as follows:

Wout, j = Ytarget · H ( j)T (
H ( j) · H ( j)T + βI

)−1
. (5)

Here, H ( j) represents the states responsible for the jth
layer and β is the regularization coefficient. The output gen-
erated by each reservoir layer is stacked to generate the input

Y ′ to the ensemble output layer

Y ′ =

⎡
⎢⎢⎢⎢⎣

y1,1 y2,1 . . . yttrain,1

y1,2 y2,2 . . . yttrain,2

. . .

. . .

y1,k y2,k . . . yttrain,k

⎤
⎥⎥⎥⎥⎦ . (6)

The combined final output is generated as follows:

y′
t = W ′

out · yt (7)

where y′
t, j is the final network output and W ′

out is the final
output weight matrix. The values of W ′

out are determined by
applying ridge regression as follows:

W ′
out = Ytarget · Y ′T (

Y ′ · Y ′T + βI
)−1

. (8)

At the end of the training, two weight matrices Wout and
W ′

out responsible for mapping the reservoir states into the final
output are learned and locked for the prediction phase.

A functional view of the proposed global ensemble echo
state network is presented in Fig. 2, which shows how the in-
puts propagate through the input mapping layer consisting of
cluster centroids, stacked reservoir layer, and the two readout
layers of that ensemble output from each reservoir to produce
the final output.
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D. EXPLAINABILITY LAYER
Traditional echo state network models often lack interpretabil-
ity due to their complex and random connections between
input nodes and reservoir neurons, limiting the ability to dis-
cern feature importance regarding predictions. The proposed
ensemble ESN model addresses this limitation by incorporat-
ing a clustered input mapping layer and an ensemble output.
The clusters generated represent the key feature groupings of
the data. Input data are then projected onto these clusters and
learned within allocated reservoir spaces, effectively isolating
their impact on the final prediction. The ultimate prediction
results from combining outputs from each reservoir, utilizing
the trained weights during the final ensemble readout layer,
as depicted in (8). Consequently, relevant feature importance
metrics can be derived from the weight matrix. This allows for
the calculation of the explainability value Ei,t of the reservoir
at timestamp t , as shown in (7). This equation helps to eluci-
date the interpretability of the model by associating specific
feature importance with reservoir behavior at distinct time
points

Ei,t = W ′
out[:, i] · yt . (9)

Here, W ′
out[:, i] is the ith column of the W ′

out matrix which
corresponds to contribution coefficient of the ith cluster.

IV. EXPERIMENTS AND RESULTS
The proposed global ensemble echo state network approach
was empirically evaluated on the real-world, multicampus,
mixed-use tertiary education setting of La Trobe University
in Victoria, Australia. The La Trobe Energy AI Platform
(LEAP), the core AI and data analytics technology stack in
La Trobe University’s “Net Zero Carbon Emissions Program”,
aims to reduce the University’s carbon footprint to net zero
emissions by 2029, alongside improved energy efficiency and
increased resource utilization [54], [55]. Crowd forecasting is
a critical factor in reducing energy costs and achieving this
net zero emissions goal. The experiments were designed to
evaluate the three main contributions, the novel ESN learning
approach with a clustering layer, multiple reservoirs, and an
ensemble readout layer for time-series forecasts, model ex-
plainability metrics, and the global ESN model that enhances
the prediction accuracy through latent relationships across the
raw data streams.

A. MODEL TRAINING AND HYPER PARAMETERS
The training dataset consisted of timestamp, WiFi sensor data
streams, 1-h interval weather data, and 15-min interval energy
consumption data collected, preprocessed, and stored in the
central data lake of the LEAP. Weather data significantly
influence people’s presence at various times and days, mak-
ing its integration crucial. We accessed weather data from
the Australian Bureau of Meteorology (BOM), utilizing the
closest weather station to our university network’s multiple
locations. The BOM records key parameters in 1-min granu-
larity, from which we extracted temperature, humidity, wind
speed, and wind direction information for our dataset. Date

TABLE 1 Overview of Meta Data

and time-related details, including holidays and academic cal-
endar specifics such as working, nonworking, semester days,
and exam periods, were also extracted. Each campus build-
ing is equipped with a separate smart meter, from which
we extracted the energy consumption data. More compre-
hensive information about our data collection and storage
mechanisms can be found in [55]. In addition to this, we
utilized WiFi requests from routers situated across university
locations to approximate crowd presence. Each WiFi request
contained a user ID, timestamp, and router location, allowing
us to estimate the number of WiFi connections within specific
buildings at a specific time as a representative measure of the
crowd or the number of individuals present. Before inputting
the data into the model, we employed a min-max scalar for
data normalization. Our model operates with a delayed input
of 24 time steps, forecasting 24 h. Moreover, an overview of
the dataset’s metadata is detailed in Table 1, and the gen-
erated dataset from this study is now publicly available on
GitHub [56].

The evaluated ensemble echo state network comprised three
reservoir network layers, based on the clustering layer’s out-
come with k = 3 clusters derived through the elbow method.
Consequently, the model architecture featured three stacked
reservoir layers, each containing 300 randomly connected
neurons. This was followed by a readout layer comprising
three output neurons, each randomly connected to the 300
neurons within its relevant reservoir. Finally, the ensemble
readout layer comprised a final output neuron connecting
to all three neurons from the readout layer. To determine
the optimal hyperparameters for the proposed ensemble echo
state network, a grid search methodology was employed. The
model parameters utilized during training were as follows:
A leaking rate of 0.56, spectral radius of 0.61, input scaling
of 0.6, and a regularization coefficient of 1 × 1e−5 for ridge
regression. The leaking rate plays a critical role in governing
the extent of information decay or retention within reservoir
neurons across time steps. It dictates how much of the prior
activation state persists or carries forward when neurons re-
ceive new input or process information. On the other hand,
the spectral radius serves as an amplification factor for signals
propagating through the reservoir. A spectral radius greater
than 1 tends to amplify signals, potentially inducing chaotic
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TABLE 2 Results of Experiment 1: RMSE and MAE for Local Models and Global Models

behavior. Conversely, when the spectral radius is less than 1,
signals tend to decay within the network. The input scaling
parameter, involves weighting the input connections entering
the reservoir layer of the ESN. This parameter holds signif-
icance in maintaining a balance between the importance of
incoming input signals and preserving the intrinsic dynamics
of the network, ensuring that the inputs do not overpower the
network’s inherent behavior.

The same hyperparameters were used in evaluation where
the metrics were root mean square error (RMSE) and mean
absolute error (MAE). For benchmark comparisons, we em-
ployed an LSTM model, a BiLSTM model, and a GRU model,
each configured with 50 hidden units. In addition, an ESN
model with identical parameters to the global ensemble ESN
model was included for comparative evaluation.

B. EXPERIMENT 1 - CROWD FORECASTING
The proposed method was used to generate crowd forecasts
for six building types: 1) the library, 2) lecture halls, 3) sport
facilities, 4) administration-only building, 4) student accom-
modation, and 5) a mixed-use building. We used a “3:1” split
of training and testing data, to build local models per building
and a global model trained all buildings simultaneously. The
results are shown in Table 2.

For most of the buildings, the global model outperformed
the local models. The prediction of the global model for the
library which in general has the highest crowd density is no-
tably improved with a 30% increase in RMSE value and a 25%
improvement in MAE value compared to the local model. The
global model’s forecast on the lecture halls, mixed-use, and
administration buildings were other noticeable improvements
from the local models. However, the local models outper-
formed the global model when trained on data from the sports
facilities and the accommodation building. This is due to in-
verse use of these buildings during off-peak and weekends,
compared to the others which are associated with work-hours
and workdays.

The crowd counts of three separate buildings for the cho-
sen time period were projected by the global model and the
local models, as shown in Fig. 3. The busiest days for all
the buildings represented in the model are Monday, Tuesday,
and Wednesday. Furthermore, Thursday and Friday are less
congested due to less classes. A peak can be seen in the library
and teaching building between 9–10 A.M., when work and

study begins. As expected, the library and lecture halls have
limited to no activity over the weekend, whereas the sports
facility sustains the same amount of activity on weekends as
weekdays.

To evaluate the model’s performance on peak values, sep-
arate forecasts specifically focused on these instances were
generated. Peak values were identified by employing a mov-
ing window of five values centered around each data point and
determining whether the data point was the maximum within
that window. Forecasts were then generated using both local
and global models specifically for these peak instances. The
resulting error metrics are summarized in Table 2. Both the
global and local models exhibited relatively minor increases in
error when predicting peak values for the library. Specifically,
the RMSE for peak value predictions in the library was 8.65
and 9.79, representing only a marginal increase of 2.85 and
3.33 compared to off-peak predictions, respectively. Across
other buildings, the increase in error for peak value predictions
compared to off-peak predictions remained within the range
of 0.28 to 1.54. This indicates a notably small deviation in
error metrics for peak values compared to off-peak values.
However, it is important to note that the relatively higher
error observed in the library building is likely attributed to
the presence of a high number of people.

Another experiment was conducted to assess the effective-
ness of clustered input mappings in the proposed ESN model,
comparing its performance with and without these mappings.
The results, outlined in Table 3, showcase the RMSE and
MAE values for each building. Interestingly, for most build-
ings, employing clustered input mappings yielded improved
results. Notably, the model without cluster mappings per-
formed relatively better in the sports centre. This anomaly
is attributed to the irregular pattern of crowd movement
and behaviors in the sports centre, leading to less effective
clusters.

Subsequently, another experiment compared the perfor-
mance of our proposed model against benchmark time-series
forecasting models: LSTM, BiLSTM, GRU, and traditional
ESN. Each model underwent training with the same dataset
encompassing six buildings utilized in prior experiments. The
resulting RMSE and MAE values for the test dataset are pre-
sented in Table 4. In most cases, our model outperformed the
benchmark models significantly. One key advantage of our
approach lies in training with a smaller amount of data due
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FIGURE 3. Crowd forecast of the global ensemble echo state network and local models for the library, teaching building, and sports centre.

TABLE 3 Results of Experiment 1: RMSE and MAE for ESN With and Without Cluster Mappings

TABLE 4 Results of Experiment 1: RMSE and MAE for Ensemble ESN With Benchmark Models

to fewer parameters, leveraging fixed weights in input map-
ping and reservoir. Conversely, RNN models, such as LSTM,
BiLSTM, and GRU tend to struggle due to their higher pa-
rameter counts, resulting in comparatively lesser performance.
Even when compared against the traditional ESN model, our
ensemble model demonstrated superior performance, under-
scoring the efficacy of the clustering layer and the ensemble
approach.

C. EXPERIMENT 2 - FORECAST ROBUSTNESS
The purpose of this experiment was to evaluate the robustness
of the forecasting models generated by the proposed global
ensemble echo state network. For both local and global mod-
els, we investigate the number of training data points needed
for acceptable performance as measured by RMSE and MAE.
As depicted by the results in Table 5, the prediction accuracy
increases with the number of the training points. Similar to the
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TABLE 5 Results of Global Model vs Local Model for Experiment 2

previous experiment, the global model’s ability to adapt to the
data from the sports facilities and accommodation was inferior
to that of the local model. However, the global model accu-
rately predicts the teaching and mixed-use buildings with just
100 data points, in contrast to the local models that required
training on 700 data points. This further validates that the
global model is robust because it learns the latent relationships
between similar time-series data streams.

D. EXPERIMENT 3 - FORECAST EXPLAINABILILTY
For the forecast model explainability experiment, clusters
from the initial layer were examined for the main input vari-
ables and values that each cluster represented. This depiction
of input variables and values represented by the discovered
clusters is shown in Fig. 4.

Fig. 4(a), (b), and (d) depict that no clusters are defined
based on the values of air temperature, relative humidity, and
crowd count. However, cluster-2(orange) depicts the morn-
ing hours while cluster-1(dark blue) represents the afternoon
hours. Plot (c) further indicates that cluster-0(light blue) is
created for weekends.

After labeling the clusters, we extracted the partial con-
tributions from each reservoir network in order to better
understand how each cluster’s respective reservoir network in-
fluenced the result. For the Library building, the explainability
values for each prediction were extracted using (9) and plotted
alongside the values of the input attributes that dominantly
represent the clusters (see Fig. 5).

It is noted that the afternoon cluster (cluster-1) has a sig-
nificant contribution for predictions made in the afternoon,

whereas the morning cluster has the opposing pattern (cluster-
2). In addition, the weekend cluster (cluster-0) has a higher
impact on weekend predictions. We also proposed an evalua-
tion metric called contribution quality (CQi) to determine the
impact of each cluster, as follows:

CQ0 =
n2

(∑n
i=0

5≤day≤6
CF

)

n1

(∑n
i=0

0≤day≤4
CF

) (10)

CQ1 =
n2

(∑n
i=0

0≤hour ≤10
CF

)

n1

(∑n
i=0

11≤hour≤23
CF

) (11)

CQ2 =
n2

(∑n
i=0

11≤ hour≤23
CF

)

n1

(∑n
i=0

0≤hour≤10
CF

) . (12)

Here, the n1 represents the number of data points captured
under the attribute of interest used to define the cluster and
n2 is the number of remaining data points. As an example,
for CQ0, n1 is the number of data points in which the day
attribute was 5 or 6 and n2 is the number of data points where
day values were equal or between 0 and 4. CQ1 is defined
for the morning cluster, hence the attribute of interest, hour
value is kept between 0 and 10. The opposite is true for the
afternoon cluster, hence the hour is kept between 11 and 23
to calculate CQ2. The metric “Contribution Quality” refers to
an assessment of how well a reservoir network assigned to
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FIGURE 4. Input variable by hour, with colour depicting cluster ID. (a) Relative humidity by hour. ( b) Air temperature by hour. (c) Day of the week by hour.
(d) Crowd count by hour.

TABLE 6 Results of the Contribution Quality (CQ) Metric

a cluster has contributed to the predictions when the input
attributes are within the cluster’s defined parameter values
versus when they are not. Since the metric is defined as a
ratio of contributions, a value more than 1 denotes that the
cluster’s reservoir network has performed better within the
boundaries of the defined input attribute values. Accordingly,
it can be inferred that the model’s explainability is compar-
atively high and that an accurate assessment of the model’s
decision-making process can be made using the explainability
values that were taken from the model.

Table 6 shows the calculated contribution quality values for
the data from each building. The results of Table 6 show that
the contribution quality values for all the buildings are greater

than 1 in most cases. Higher the value, the higher the con-
fidence in explainability. As an example, CQ0 of mixed-use
building value, 1.77 is the highest among other buildings. This
suggests that the predictions on weekends (related to cluster-
0) are more explainable for the mixed-use building than the
other buildings. Collectively, these results demonstrate the
explainability capability of the proposed method as well as
that different reservoir networks have based their learning on
the initial clustering method when searching input patterns for
attribute values.

For a quantitative analysis of the explainability of the pro-
posed ensemble ESN model, two additional experiments were
conducted. The first experiment assessed the fidelity [57] of
the model, which evaluates how well the explanation approxi-
mates the prediction of the opaque model. To quantify fidelity,
we compared our explainable model against a traditional ESN
model in a forecasting experiment, recording the RMSE/MAE
values. The results, detailed in Table 7, showcased relatively
higher forecasting MAE/RMSE values for each building in the
explainable ensemble ESN model compared to the traditional
ESN model without the explainable capability. Notably, this
suggests that even with explainable capabilities, our model
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FIGURE 5. For the library building, explainability values related to each cluster along with the primary contributing input.

TABLE 7 Results of Experiment 3: Fidelity Measures for Explainable Ensemble ESN Model Against Traditional ESN

The bold values are the lowest by metric, by category.

TABLE 8 Results of Experiment 3: Stability Measures for Explainable
Ensemble ESN Model

outperforms the opaque model (traditional ESN), indicating
a high fidelity level.

The second experiment aimed at evaluating the stabil-
ity [57] of the explainable approach. Stability refers to a
model’s ability to consistently produce same explanations
despite slight alterations or perturbations in the input. To
quantify stability, small noise values in the range of 0–5 were
introduced to the crowd count variable of each data point in
the test dataset used for the forecasting experiment. These
experiments were conducted five times for each building, and

the percentage agreement across each experiment in providing
the most explainable feature for the output of each data point
was recorded. The percentage agreement values, presented in
Table 8, indicate high stability, suggesting that the model is
robust against noise values and consistently provides the same
explanation for the prediction. Except for the administration
building, all other buildings demonstrated a percentage agree-
ment over 90%, indicating the high stability of our explainable
model. The inconsistent pattern of crowd movement in the
administration building resulted in less meaningful clusters,
lowering the explainable capabilities and justifying the lower
stability observed in this specific case.

V. CONCLUSION
In this article, we present the design, development, and evalua-
tion of the global ensemble echo state network for explainable
crowd forecasting using WiFi data streams. This is a novel
ESN learning approach with a clustering layer that replaces
the input mappings, multiple reservoirs allocated to each
cluster and an ensemble readout layer that completes the
time-series forecasts. It also consists of a model explainability
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feature for interpreting the forecast in terms of clusters and
corresponding input variables and an explainability metric
that evaluates model performance quality. The improved ac-
curacy and robustness of the global model that is trained on
multiple time series is a further contribution of the proposed
approach.

The proposed method was empirically evaluated on the
multicampus, mixed-use tertiary education setting of La Trobe
University, in the context of the LEAP, for reducing the
University’s carbon footprint to net zero emissions by 2029.
Crowd forecasting is a primary function in energy conser-
vation and optimized energy usage opportunities. The three
experiments reported in this article evaluated the performance
accuracy of the forecasts of both local and global models,
the robustness of the proposed method in situations where the
available data are limited and the forecast explainability using
the layer approach of clusters and input variables contributing
to the forecast generation.

When comparing the performance over crowd forecast-
ing between the global ensemble model and the local model
across buildings, the local model demonstrated an RMSE of
2.47, while the global model exhibited an RMSE of 2.16,
indicating a 12% reduction in error. At peak values, these
figures were 3.49 and 3.15 for local and global models, respec-
tively, still showing a 10% improvement in the global model.
Conducting experiments with and without cluster mappings
in the global model revealed a 4.5% decrease in error with
cluster mappings, underscoring the importance of the cluster
layer. Comparing the average performance across buildings
with benchmark models, such as LSTM, Bidirectional-LSTM,
GRU, and a traditional ESN, our model outperformed them by
22%, 21%, 25%, and 12%, respectively, based on RMSE. Fur-
ther experiments were carried out to evaluate the robustness of
the global ensemble echo state model concerning adaptability
with varying numbers of data points. The comparison between
the global and local models as the number of data points
increased from 100 to 700 demonstrated that the global model
could predict with fewer data points, showing an average
improvement of 28.5% in error (RMSE of 7.89 in the local
model; RMSE of 5.64 in the global model) across buildings
with just 100 data points compared to a 20.1% improvement
in error (RMSE of 4.71 in the local model; RMSE of 3.72 in
the global model) when utilizing 700 data points. Further
experiments were conducted to assess the explainability of the
proposed global ensemble ESN model. The fidelity metrics
based on RMSE across buildings for the proposed model av-
eraged 3.36, compared to an RMSE of 3.81 in the traditional
ESN model, indicating a 12% improvement. Stability mea-
sures based on percentage agreement demonstrated a 92.65%
agreement across buildings.

The results reveal that the proposed method achieves high
performance for the crowd forecasting task and that the global
model improves forecast accuracy compared to models that
are separately trained as it takes advantage of the latent rela-
tionships between the data streams. The global model is also
robust in comparison to local models. For explainability, the

results reveal how the proposed method is able to distinguish
contributing clusters and attributes, as well as a new metric
that assesses the model explainability with a qualitative ex-
planation of the values.

The main technical limitation of the proposed method is
in the lack of network optimization strategies due to the lay-
ered approach. The effectiveness of the clustering algorithm
influences model’s explainability. The inherent limitations of
echo state networks persist due to the random initialization
of reservoir weights, which are crucial for capturing com-
plex temporal dynamics. Consequently, careful selection of
hyperparameters and autotuning is necessary. In future work,
we aim to address these inherent limitations of echo state
networks and enhance the optimization and autotuning pro-
cedures to improve model training. Effective reservoir design
poses a significant challenge in echo state networks. While
our current approach involves stacked layers of reservoirs,
there is potential to explore alternative configurations with
a multitude of reservoirs connected in various ways. Thus,
future work will involve experimenting with reservoir design
to discover more optimal solutions for explainable echo state
networks. We also plan to extend beyond the crowd fore-
casting use case to more complex scenarios, such as crowd
tracking, hotspot identification, and movement predictions.
These applications predominantly involve analyzing crowd
movements over time, leveraging the temporal dependencies
learned in the reservoir nodes of echo state networks.
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