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ABSTRACT The increasing prominence of concepts such as Smart Production and Industrial Internet of
Things (IIoT) within the context of Industry 4.0 has introduced a new set of requirements for the engineering
of industrial systems, including support for dynamic environments, timeliness guarantees, support for hetero-
geneity, interoperability and reliability. These requirements are further exacerbated at the network level by the
notable rise in the number and variety of devices involved. To stay competitive in this ever-changing industrial
landscape while boosting productivity, it is vital to meet those requirements, combining established proto-
cols with emerging technologies. Software-Defined Networking (SDN) is the forefront traffic management
paradigm that offers flexibility for complex industrial networks, enabling efficient resource allocation and
dynamic reconfiguration. Message Queuing Telemetry Transport (MQTT) is a low-overhead protocol of the
application layer that is gaining popularity in the scope of the IoT and IIoT. However, its Quality-of-Service
(QoS) policies do not support timeliness requirements. This article presents a framework that seamlessly in-
tegrates SDN and MQTT, enhancing network management flexibility while satisfying real-time requirements
found in industrial environments. It leverages the User Properties of MQTTv5 to allow specifying real-time
requirements. MQTT traffic is intercepted by a Network Manager that extracts real-time information and
instructs an SDN controller to deploy corresponding network reservations. MQTT traffic across multiple edge
networks is propagated by selected brokers using multicasting. Extensive experiments validate the proposed
approach, demonstrating its superiority over MQTT and Direct Multicast-MQTT (DM-MQTT) DM-MQTT
in latency reduction. A response time analysis, validated experimentally, emphasizes robust performance
across metrics.

INDEX TERMS Edge computing, industrial Internet of Things (IIoT), Internet-of-Things (IoT), message
queuing telemetry transport (MQTT), real-time (RT) communication, software-defined networking (SDN).

I. INTRODUCTION
In recent years, the rapid progress in technology has ushered
in a transformative era known as Industry 4.0 [1], which
seamlessly integrates physical entities, human interaction, and
intelligent machines into a sophisticated information network.
This evolution represents a shift toward a digitally driven
industrial landscape, contributing to the increasing popularity
of the Internet of Things (IoT). The widespread adoption of
the IoT has permeated a wide array of application domains,
including smart grids [2], medical systems [3], wearable

devices [4], agriculture [5], industrial automation [6], [7],
among others.

The diversity in these applications inevitably introduces an
increased complexity in requirements and demands for inter-
operability. Notably, the industrial Internet of Things (IIoT)
domain imposes stringent prerequisites for real-time (RT) per-
formance and reliability [8], necessitating a robust computing
and communication infrastructure. However, these stringent
requirements often clash with the capabilities of existing tech-
nologies and protocols. On the one hand, general-purpose data
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networks, such as Ethernet [9], and comprehensive frame-
works for network management, such as software-defined
networking (SDN) [10], prioritize throughput and resource
utilization optimization, often lacking support for determin-
istic RT services. On the other hand, industrial networks have
traditionally prioritized determinism and timeliness attributes,
such as low latency and jitter, at the expense of throughput and
flexibility.

Recently, the authors addressed this gap showing the effec-
tiveness of integrating SDN network management in tandem
with communication protocols, such as message queuing
telemetry transport (MQTT) [11], facilitating deterministic
RT data transmissions among heterogeneous IIoT end-nodes
while preserving flexibility and reliability. This has been
achieved through three main contributions as follows.

1) Developing an SDN-based resource management
framework along with proposing a set of RT exten-
sions to MQTT, referred to as RT-MQTT [12], [13].
This architecture empowers applications to specify RT
MQTT requirements, which are then translated into
SDN/OpenFlow (OF)-enforced network reservations to
establish RT channels.

2) Evaluating RT-MQTT system predictability and schedu-
lability through response time analysis [14], [15].

3) Enhancing the scalability of RT-MQTT with a new ar-
chitecture, known as multicast real-time MQTT (MRT-
MQTT) [16], that leverages multicast-based connec-
tivity across multiple edge networks that follow the
RT-MQTT architecture.

This article extends this body of research in several signifi-
cant ways as follows.

1) First, it revisits and clarifies the entire system formal
model.

2) Second, it introduces a response time analysis for the
MRT-MQTT architecture, leveraging both the holis-
tic approach (HA) [17] and the trajectory approach
(TA) [18] to establish the analyzability of this architec-
ture.

3) Finally, it evaluates the performance of MRT-MQTT
through a comprehensive set of case-study experiments
that underscore the robustness of this architectural
framework.

It should be remarked that MRT-MQTT [16] subsumes
RT-MQTT [13]. Particularly, MRT-MQTT reduces to RT-
MQTT when applied to a single edge network with a
single MQTT broker. This article provides the reference
work to this framework, introducing RT-MQTT and MRT-
MQTT for completeness and then delving in the specific
contributions referred previously, around the analysis of the
framework.

Both RT-MQTT and MRT-MQTT are based on commercial
off-the-shelf protocols, software, components and services,
relying on prescribed extension mechanisms to implement the
additional features. This way, RT services can be deployed in
existing systems as an add-on, without impacting existing ap-
plications and end-nodes, as the additional software modules

are transparent to traffic not related with the RT extensions.
Furthermore, the use of multicasting in MRT-MQTT adds
support to edge-networks, efficiently handling increased data
volumes and thus providing horizontal scalability.

The rest of this article is organized as follows. Section II
provides background on MQTT, SDN, multicast routing
schemes and schedulability analysis methods. Section III of-
fers an overview of the most relevant state-of-the-art research
within the scope of this article. Section IV introduces RT-
MQTT that adds RT extensions to MQTT, followed by the
unveiling of an extended RT MQTT system designed for large
networks (MRT-MQTT) in Section V. Section VI presents a
set of schedulability analyses, evaluating both the RT-MQTT
and MRT-MQTT architectures. A comprehensive assessment
of the proposed architectural approaches is presented in Sec-
tion VII. Finally, Section VIII concludes this article.

II. BACKGROUND
This section briefly introduces the features of MQTT, SDN,
data multicasting techniques, and schedulability analysis that
are relevant to this article. The section ends with a short
discussion on the implications of security aspects.

A. MESSAGE QUEUING TELEMETRY TRANSPORT
MQTT [11] is a popular protocol designed specifically for
efficient communication between machines, particularly those
with limited resources. Its simplicity, scalability, small foot-
print, and effective publisher–subscriber model are key rea-
sons for its widespread adoption. MQTT typically operates
over TCP/IP networks, which inherently provide reliable, or-
dered, and bidirectional data transfer. In addition, MQTT
offers three quality-of-service (QoS) levels to control message
delivery guarantees. QoS 0 (send once) is the most basic
level, with messages sent without confirmation or guarantees
of delivery, depending only on the underlying TCP protocol
for reliability. QoS 1 (deliver at least once) ensures at least
one delivery, but duplicates may occur due to retransmis-
sions. Finally, QoS 2 (deliver exactly once) guarantees that
each message is received exactly once by its receiver. MQTT
latest version, V5.0 [19], introduces user properties that are
a valuable extension mechanism. This feature allows for the
inclusion of user-defined information using UTF-8 key/value
pairs within MQTT messages. This extension mechanism is
adopted in this work to convey the topics RT requirements set
by end-nodes.

B. SOFTWARE-DEFINED NETWORKING
SDN [10] stands as a pivotal technology, instrumental in the
efficient management of complex and dynamically evolving
networks. The core concept behind SDN is the separation
of the data plane, where SDN switches handle packet for-
warding, from the control plane, overseen by a logically
centralized controller. This logic separation enables the cre-
ation of networks that are both flexible and easy to manage.
The centralized controller establishes communication with
network switches through the southbound interface, thereby
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gaining a comprehensive understanding of the network status,
including device inventory, device attributes, network topol-
ogy, and resource utilization.

The OF protocol [20] serves as the primary SDN south-
bound interface protocol. It enables OF-controllers to dynam-
ically configure and oversee OF-switches, instructing them
on how to process incoming data packets. OF-switches, in
turn, consist of flow tables housing prioritized flow rules with
filters to identify, and actions to process, packets. A successful
match triggers the specified action, while unmatched packets
follow a default action, including forwarding to the controller,
routing to a group table, or dropping. Group tables serve
similar functions to flow tables but with a more limited scope
of instructions. OF is standardized by the open networking
foundation.

C. DATA MULTICAST TECHNIQUES
Data multicast techniques efficiently deliver data from one
sender to a group of selected receivers within a network, mak-
ing it an intermediate approach between unicast (one-to-one)
and broadcast (one-to-all) communication. This approach is
valuable for the simultaneous distribution of identical data to
multiple recipients, being especially beneficial to save net-
work bandwidth.

In this context, protocol independent multicast sparse mode
(PIM-SM) [21] is a branch of the PIM multicast routing proto-
col [22] designed for one-to-many communication scenarios.
In this protocol, a single data packet is transmitted from a
source and efficiently received by multiple recipients through
a shared multicast tree. PIM-SM is particularly well-suited
for situations with limited bandwidth, as it optimizes network
usage by delivering traffic only to requested receivers. This
protocol operates within two distinct domains: the source do-
main and the receiver domain. Within these domains, routers
take on various roles, including the designated router (DR),
rendezvous point (RP), and bootstrap router (BSR). These
roles collaborate to facilitate the distribution of multicast traf-
fic to IP multicast receivers. The DR serves as an intermediary,
forwarding multicast traffic from unicast sources to the RP,
which is responsible for disseminating the requested multicast
traffic to the multicast receivers. The BSR plays a pivotal role
in informing all routers within the PIM-SM domain about
the currently assigned RP for each known multicast group,
either through manual configuration or dynamic election via
the BSR process.

The multicast source discovery protocol (MSDP) [23]
complements PIM-SM by enabling interdomain multicast
connectivity. MSDP enables routers across different network
domains to share information about active multicast sources.
This is achieved through a network of connected MSDP peers,
each maintaining a local database of learned sources from
other peers. This information is then used to build a com-
prehensive multicast distribution tree that seamlessly spans
across domain boundaries. To ensure loop-free forwarding
of multicast packets, MSDP leverages the reverse path for-
warding mechanism, which verifies the direction of incoming

multicast data by comparing the source IP address with the
internal routing table. If the source is reachable through the
interface where the traffic arrived, it is forwarded onwards. In
addition, MSDP allows for granular control by enabling the
use of access control lists to filter unwanted multicast traffic.
By combining the strengths of PIM-SM with MSDP, network
operators can create efficient and scalable multicast services
capable of reaching a large user base across diverse network
domains.

D. SCHEDULABILITY ANALYSIS METHODS
Timely and predictable execution of actions are two funda-
mental requirements of RT systems. Accurate predictions of
timing behavior are essential for guaranteeing that actions
are successfully completed within their designated deadlines,
making schedulability analysis of paramount relevance [24].
Worst-case response-time (WCRT) analysis applied to RT
multihop networks can be categorized into three main groups:
HA, TA, and network calculus (NC).

The HA [17], which is tailored for distributed systems,
focuses on determining the minimum and maximum response
times for both the tasks and the messages they generate. It
takes a conservative approach, considering the worst-case sce-
nario on every node (even if unlikely to occur), leading to
simple implementation and fast execution. However, this can
lead to overestimation of actual response times.

The TA [18], on the other hand, offers more accurate
results. It calculates the latest possible starting time for a
message at its final destination and then retraces its path
backwards, identifying factors that impact its latency at each
previous node. While more precise, TA is computationally
expensive and complex to implement, particularly in dynamic
routing environments. Recent advancements have optimized
TA by considering the impact of multiple message streams
sharing the same link, leading to tighter estimations of end-
to-end response times [25], [26].

The NC [27] operates by characterizing network elements
and incoming flows using service curves and arrival curves,
respectively. With this information, NC facilitates the calcu-
lation of the maximum delay each flow may encounter at
network elements, the maximum queue sizes, and correspond-
ing departure curves. While NC provides deterministic results,
it necessitates determining arrival and service curves, often in
the form of conservative bounds that introduce some level of
pessimism. Despite the existence of techniques to reduce this
pessimism [28], NC is generally more pessimistic than TA and
of similar complexity when applied to individual flows, thus
we use TA in this work. Moreover, we also use HA since it
is response-time oriented similarly to TA and offers a tradeoff
between accuracy and simplicity.

E. ESSENTIALS AND ISSUES IN NETWORK SECURITY
The increasing interconnectivity of devices in the realm of
industrial automation, spurred by the advent of paradigms,
such as IIoT and Industry 4.0, underscores the paramount
importance of security in industrial network deployments.
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This pervasive connectivity significantly broadens the attack
surface, heightening security risks across multiple facets, from
data integrity to equipment and process control.

Within factory automation, time-sensitive (TS) processes,
such as cell control and synchronization, are commonplace.
These processes often demand RT protocols, typically over
physical cabled media, especially when stringent timing re-
quirements are in play. However, when extending these RT
processes to broader contexts, such as production lines or
groups of cells, security considerations become increasingly
relevant. The incorporation of security mechanisms, though
crucial, can introduce overhead that must be carefully man-
aged to avoid conflicts with the stringent timing requirements
aforementioned.

Historically, inner segments of factory networks have been
considered relatively safe from physical security threats. Con-
sequently, security mechanisms were often omitted from
these segments, with a focus on fortifying security at net-
work boundaries, such as routers or gateways. However, the
evolving trend of tightly integrating industrial networks with
the broader Internet necessitates the inclusion of security
mechanisms, even if this entails some tradeoffs in timeliness
and predictability. As a result, application-layer messaging
middleware protocols, such as MQTT and AMQP often in-
corporate security-related protocols, with SSL/TLS being the
prevalent standard for secure communication. Nevertheless,
RT extensions or adaptations of these messaging systems
often introduce an intermediary node, such as a network man-
ager or controller, which requires access to clear-text traffic
for control purposes. This introduces a challenge, commonly
referred to as the man-in-the-middle scenario, as it is in-
herently incompatible with SSL/TLS. Numerous mechanisms
have been proposed to reconcile this apparent incompatibility,
drawing parallels with network monitoring systems on the
Internet, which often require clear-text access to payloads, in-
cluding deep packet inspection beyond packet metadata. Such
a class of approaches can be adapted and incorporated into
the framework presented in this article, allowing nodes with
management functionality to have clear-text access to MQTT
traffic. Thus, although security is left out of this article, there
are security mechanisms that can be applied to the proposed
framework and which we will consider in future work.

III. RELATED WORK
This section reviews the literature on two primary areas as
follows. i) Exploring the RT performance enhancement from
information technology (IT) and operational technology (OT)
convergence in the industrial landscape. ii) Leveraging edge
computing to improve RT communication.

A. TECHNOLOGIES FOR IT AND OT CONVERGENCE
In this section, we examine three pivotal domains, namely
MQTT RT performance, utilization of SDN to enhance RT
services, and enhancement of RT communication through pro-
tocol integration. We aim at highlighting the most pertinent

contributions and cutting-edge research that have emerged
over the years.

1) ON THE TIMELINESS OF MQTT
While MQTT eventually became one of the most widely
adopted application-layer protocols for IoT and IIoT, its na-
tive QoS mechanisms lack RT guarantees. This limitation has
prompted an extensive research, focusing in distinct aspects.
For example, broker-centric approaches address the timing
behavior within the MQTT broker itself, like Tachibana
et al. [29] priority control with registration, prioritized data
exchange, and release phases. The process starts with the
registration phase, in which end-nodes communicate their
QoS requirements to the broker and ends with the release
phase, which closes the application connection. While the
connection is active, the sending time and rate of end-nodes
is controlled by the priority broker. While demonstrating re-
duced latency and improved delivery success, these solutions
remain confined to the broker, not encompassing the entire
network. Another class of approaches are message-centric,
i.e., introduce priority fields within the MQTT message
header, offering varying levels of importance. Kim et al. [30]
used a two-bit field for four priority levels (no priority to
urgent), while p-MQTT [31] employ a three-component ar-
chitecture with classification, virtual queues, and control for
emergency events. While effective, these solutions primarily
rely on software modifications within the MQTT protocol
and lack explicit control over network behavior, limiting
their RT performance potential. Other works explore tailoring
MQTT services for specific applications to achieve bounded
latency [32], [33], [34]. However, these approaches primar-
ily focus on software-level adjustments within MQTT itself,
lacking direct control over network-related aspects that in-
fluence RT performance. Therefore, a key challenge remains
in developing solutions that go beyond software-centric ap-
proaches and delve into network-level control mechanisms to
address RT communication requirements within the MQTT
framework for both IoT and IIoT applications.

2) ENHANCING RT SERVICES THROUGH SDN
SDN has emerged as a promising technology for enabling RT
communications in the industrial domain, with the scientific
literature reporting several contributions that explore its po-
tential in this context.

Egilmez et al. [35] proposed the OpenQoS framework,
which leverages an OF controller to manage multimedia
delivery with guaranteed end-to-end latency. It differenti-
ates between regular data and multimedia traffic, routing
the latter with specified maximum delay constraints. HiQoS
(Yan et al.’s work [36]) builds upon the OpenQoS framework
by incorporating multipath routing. In addition, it utilizes the
queuing mechanisms of SDN switches to offer varying band-
width guarantees on each chosen path. Tomovic et al. [37]
adopted an approach similar to the IntServ model, offering
hard QoS guarantees for specific flows. Bandwidth reservation
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and admission control mechanisms ensure these guarantees
are met. Dwarakanathan et al. and Sharma et al. ([38], [39])
proposed a two-queue QoS framework, segregating high-
priority traffic from best-effort traffic. Bandwidth reservation
is used for the high-priority queue, ensuring stable perfor-
mance. Guck et al. and Kumar et al. ([40], [41]) presented
SDN-based frameworks that also employ flow segregation and
bandwidth reservations to achieve bounded end-to-end delays.
The PrioSDN-resource manager resource management frame-
work, by Leonardi et al. [42], combines SDN and network
virtualization to manage varying workload and flow priori-
ties. It utilizes admission control and a priority-based runtime
bandwidth distribution mechanism to allocate resources effi-
ciently.

This review provides a brief summary of the diverse ap-
proaches explored in the literature for utilizing SDN to
support RT communication in the industrial domain. Each
framework offers unique strengths and addresses specific
challenges, showcasing the potential of SDN in this critical
area.

3) RT COMMUNICATION WITH PROTOCOL INTEGRATION
Prior research has explored enhancing either the RT per-
formance of MQTT or the capabilities of SDN. However,
a crucial gap remains in providing integrated solutions that
bridge the gap between application-level RT requirements and
effective network reservations. Recent scientific contributions
have started to address this challenge, although each offers
distinct approaches with specific strengths and limitations.

DM-MQTT (Park et al.’s work [43]) exhibits some overlap
with the architecture presented in this article through its inte-
gration of MQTT and SDN. However, its primary objective is
to minimize bandwidth usage in large-scale IoT deployments
by implementing a multicast mechanism that bypasses the
MQTT broker. While this offers potential benefits, it does
not address essential aspects, such as traffic prioritization,
admission control, or RT guarantees. RT-MQTT (see Sec-
tion IV) takes a different approach, targeting more confined
settings, such as factory automation and focusing on providing
dynamic and deterministic RT channels with traffic prioriti-
zation. By addressing timeliness requirements effectively, it
presents a complementary approach to DM-MQTT.

RT extensions for MQTT-SN (Fontes et al.’s work [44])
build upon MQTT-SN, a sensor network-specific version of
MQTT, to enable online specification of RT requirements at
all levels. This approach offers enhanced flexibility in re-
source management through the assignment of attributes to
topics and network interface configuration based on impor-
tance. However, it relies on specific MQTT-SN mechanisms
not present in the current MQTT V5.0 standard, limiting its
broader applicability.

These diverse contributions collectively highlight the on-
going efforts to bridge the gap between application-level RT
needs and network capabilities. While each approach offers
unique advantages and addresses specific challenges, further

research is necessary to develop comprehensive solutions that
are broadly applicable across diverse scenarios and compat-
ible with evolving standards. This continued exploration has
the potential to unlock the full potential of RT communication
in various domains, including the IoT and industrial automa-
tion.

B. ENHANCING TIMELINESS USING EDGE COMPUTING
The increasing demand for RT communication in IoT and
IIoT applications has increased the interest in leveraging edge
computing. This approach strategically distributes computing
resources to the network edge, enabling efficient and timely
data processing, particularly for latency-sensitive applica-
tions. Two recent advancements, MI-SDN and DM-MQTT,
show the advantages of combining MQTT and SDN to en-
hance RT performance in edge environments.

Tamri et al. [45] proposed MI-SDN, which utilizes a
multicast-based SDN solution designed for efficient MQTT
data exchange across multiple edge networks. This architec-
ture employs a master–slave broker structure. Slave brokers
manage device groups within each edge network, while a
central master broker, residing within the SDN controller,
aggregates information from them. The master broker then
leverages the SDN controller’s capabilities to disseminate
MQTT data via multicast across edge networks. This ap-
proach effectively reduces transmission delays compared to
traditional MQTT, making it suitable for RT applications re-
quiring low latency. DM-MQTT, introduced by Park et al. [43]
and already mentioned in the previous section, takes a dif-
ferent approach. It integrates MQTT and SDN to minimize
latency for TS data transfer between edge networks. Unlike
our proposed MRT-MQTT approach (presented in Section V),
DM-MQTT utilizes a redundant master broker solely for data
collection from edge networks. This information is then used
by the SDN controller to determine optimal data paths, result-
ing in reduced transmission delay and improved bandwidth
utilization in IoT deployments. While DM-MQTT introduces
a multicast mechanism to bypass brokers within edge net-
works, its primary focus lies on minimizing latency and
bandwidth consumption, without explicitly addressing traffic
prioritization or providing RT guarantees.

In summary, both MI-SDN and DM-MQTT showcase the
potential of edge computing to enhance RT communica-
tion through integrated MQTT and SDN architectures. While
each approach offers distinct advantages, MI-SDN empha-
sizes efficient data dissemination across edge networks, while
DM-MQTT prioritizes minimizing latency and bandwidth
consumption.

Other edge-relevant technologies have been used in IIoT
settings, such as DDS [46] or more recently Zenoh [47]. While
DDS has explicit support for a myriad of QoS parameters,
including some related to RT, Zenoh offers enhanced time-
liness via low overhead. Streaming technologies have also
been used, such as IGMP leveraging IP-level multicasting,
and more recently, Kafka [48], both supporting multimedia in-
dustrial use cases. None of these offer RT guarantees, though.
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Moreover, MQTT is incomparably more prevalent in IoT and
IIoT settings and for this reason, as explained in the “Intro-
duction” section, it is the focus of this work. Carrying out an
extensive comparison among all edge technologies applicable
to the industrial domain is beyond the scope of this article and
is left for future work.

C. NOVELTY OF THIS ARTICLE
From the above-mentioned discussion, we can conclude that
both RT-MQTT and MRT-MQTT frameworks, addressed in
this article, advance the state-of-the-art in several aspects,
including the following.

1) Providing RT extensions to MQTT.
2) Integrating MQTT with SDN providing dynamic RT

communication channels.
3) Offering WCRT analyses.
This article extends previous work in the scope of RT-

MQTT and MRT-MQTT frameworks in three main directions.
First, it revisits the existing system formal model to make it
more concise and amenable to the development of schedula-
bility tests for MRT-MQTT. Then, it introduces two response
time analyses, namely HA and TA that are both response-time
oriented and present different compromises between com-
plexity and tightness, and shows their adaptation so they can
be applied to MRT-MQTT. Finally, this article presents a
comprehensive set of experiments that aim at verifying the
correctness of the implementation, validating the schedula-
bility tests, and also evaluating the performance gains with
respect to DM-MQTT, which is the protocol that more closely
approaches MRT-MQTT.

IV. RT-MQTT FRAMEWORK
The aim of RT-MQTT [12], [13] is to provide RT guarantees
to TS MQTT flows, while keeping full compliance with the
standard. To this end, the RT requirements associated with a
particular TS topic are conveyed within the user properties of
MQTT messages. This information is captured and processed
by a network manager module, which subsequently takes ap-
propriate actions to reserve RT communication channels for
these flows. In this article, we implement the network manager
using SDN/OF technology to establish and enforce network
reservations. However, other networking technologies capable
of providing bandwidth reservations and traffic prioritization,
such as IEEE TSN [49] or HaRTES [50], could potentially be
employed for the same purpose.

A. RT-MQTT REFERENCE ARCHITECTURE
Fig. 1 illustrates the architecture of the RT-MQTT system,
which consists of the following.

1) OF-switches: network devices that route data based on
OF rules.

2) OF-controller: central entity that manages the OF-
switches and configures their flow tables.

3) IoT devices (MQTT clients): devices that generate and
consume data using the MQTT protocol.

FIGURE 1. High-level RT-MQTT system architecture.

FIGURE 2. Proposed OF-controller architecture.

4) MQTT broker: node that acts as a central hub for MQTT
communication, relaying messages between clients.

5) Real-time network manager (RT-NM): key component
that resides between clients and the broker, acting as a
gatekeeper for RT requests.

The RT-NM plays a crucial role in enabling RT communi-
cation. It intercepts all MQTT messages sent to the broker. If a
message contains RT requirements encoded in the user prop-
erties field, the RT-NM extracts these attributes, processes
them, and updates the OpenFlow database (OF-DB) within the
OF-controller. Based on this information, the OF-controller
dynamically modifies the flow tables of the OF-switches,
creating dedicated channels that guarantee specific RT perfor-
mance criteria for the associated data flow.

The centralized OF-controller, as illustrated in Fig. 2, com-
prises four main components: a traffic monitoring module,
a dynamic multipath routing module, a queue configuration
module, and the OF-DB, which is responsible for managing
the TS flows’ RT requirements. This controller is based on
the RYU framework [51], an open-source software platform
specifically designed for simplifying the development of SDN
applications.

Currently, OF-switches are instances of the Open vSwitch
(OVS) soft switch. OVS is a virtual switch purpose-built
for SDN environments, operating through the open vSwitch
database management protocol (OVSDB-MP) [52], as illus-
trated in Fig. 3. OVS provides adaptable and programmable
switching capabilities suitable for virtualized and cloud-based
settings. It can be deployed on physical servers and virtualized
platforms, including hypervisors and container systems. OVS
empowers network administrators to define and manage vir-
tual networks, connect virtual machines and containers, and
exercise control over network traffic flow within and between
these virtualized environments.
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FIGURE 3. OVS architecture [53].

B. RESERVATION MECHANISM
The OF protocol grants the central OF-controller with com-
prehensive network oversight thanks to its direct connections
with all OF-switches. This enables the controller to gather
detailed topological information, including the identification
of all OF-switches, their connected ports, and the links that
interconnect them. In addition, OF-switches are configured to
transmit PacketIn messages to the controller whenever pack-
ets encounter unknown flow rules. These messages contain
essential information, such as the source and destination IP
addresses, along with the originating switch port, allowing
the controller to maintain a comprehensive RT view of the
network for subsequent routing decisions.

This work adopts the depth-first search (DFS) algo-
rithm [54] for RT routing. Key factors such as transmission
delay and maximum available bandwidth along potential
paths between source and destination nodes are combined into
a weighted function to determine link costs. The choice of
DFS stems from its memory efficiency and its ability to deliver
low jitter and round-trip time (RTT) for the optimized path.

As a recursive algorithm, DFS starts at the network’s root
node and systematically explores all possible paths until com-
pletion. These paths are maintained in a stack, organized in
descending order based on the minimum distance between
nodes. This structure ensures that the shortest path, occupy-
ing the final position, is readily identified. Since DFS itself
does not incorporate path weight considerations, we lever-
age (1), derived from [55], to compute the minimum path
distance using the open shortest path first (OSPF) technique
([56]). The widespread adoption and maturity of OSPF in
interior gateway protocols and large enterprise networks make
it a compelling choice. Its additional strengths include load
balancing through equal-cost routes, unlimited hop count ca-
pabilities, and swift convergence, solidifying its suitability for
our RT routing goals

0 ≤ bw(L) < 10

bw(L) =
(

1 − pw(L)∑i<n
i=0 pw(i)

)
× 10. (1)

In (1), L represents a path composed of a set of links crossed
by data flows, bw represents the bucket weight and pw the
path weight, while n represents the total number of possible
paths. For illustration, consider the example depicted in Fig. 4,
in which host h1 wants to publish data to host h2.

FIGURE 4. Architecture example showcasing the path selection algorithm.

TABLE 1. Shortest Path Selection Algorithm

Each available path (Li) from h1 to h2 has a duplet
l = 〈x, y〉 that represents a link l between node/switch x and
node/switch y, as follows.

L1 = {〈h1, s1〉, 〈s1, s2〉, 〈s2, h2〉}.
L2 = {〈h1, s1〉, 〈s1, s3〉, 〈s3, s2〉, 〈s2, h2〉}.

Table 1 shows the result of OSPF for this example, where
it can be seen that the shorter path (lower pw) is assigned to a
higher bucket weight.

Upon identifying the shortest path, the controller
dynamically configures the flow tables of all OF-switches
constituting the path. This ensures consistent forwarding of
subsequent packets belonging to the same data stream within
the data plane.

It is typically challenging or even impossible to establish
exclusive paths for each TS MQTT flow, therefore these pack-
ets will potentially share network links with other TS and
nontime-sensitive (NTS) MQTT flows, as well as with other
generic data sources. Consequently, without specific mecha-
nisms in place, the potentially unpredictable behavior of NTS
flows and other data sources could impact the timeliness of
TS MQTT flows. To tackle this issue, MQTT clients involved
in TS flows, both publishers and subscribers, convey their RT
requirements via the MQTT user properties field. RT-MQTT
employs a subset of attributes commonly found in RT systems,
including

F TS
i = {Ci, Pi, Ti, Di, BWi} (2)

where:

i : flow index;
Ci : message transmission time (including overheads);
Pi : flow priority;
Ti : period or minimum inter-arrival time between two

successive publish messages (by the publisher);
Di : message deadline, with Di ≤ Ti;
BWi : maximum link bandwidth use.

These RT attributes are placed in the variable header of the
MQTT message, following the message structure of MQTT
V5.0. The structure of the message is depicted in Fig. 5.
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FIGURE 5. Message structure used in RT-MQTT.

The RT-NM module functions as a transparent intermedi-
ary, intercepting and analyzing all communications exchanged
between the MQTT broker and its connected clients. This
comprehensive analysis enables the RT-NM to extract and
store critical RT requirements associated with each individual
message flow, denoted as F TS

i . This extracted information is
then compiled and maintained within the system real-time
requirements table (SRT), a dedicated component residing
within the OF-DB. In addition to the RT requirements, the
SRT table also stores both the source (publishers) and desti-
nation (subscribers) addresses associated with each message
flow. These critical addresses are acquired by the RT-NM
module through its interception of the standard MQTT mes-
sages exchanged during the initial connection establishment
phase, ensuring a complete and accurate representation of the
communication network’s RT demands. Formally, the SRT is
defined as follows:

SRT = {
(F TS

i , SRCi, DSTi,k,L〉, ni ) i = 1. . .N
}

(3)

where:

SRCi : source node address;
DSTi,k : set of k destination node address;
Li : set of ni links crossed by flow F T S

i ;
ni : number of links that F T S

i crosses, i.e. ni = |Li|;
N : number of TS flows.

The information within the SRT, together with the network
topology data collected by the OF-controller, is used to con-
figure RT channels for the links along the path, including both
the segments from the publisher to the broker, and from the
broker to the subscriber(s). This fundamental architecture can
be augmented with additional control services if necessary.
For instance, adjusting the RT attributes of a specific flow
might be restricted to a subset of trusted nodes, with requests
from other sources being ignored. Similarly, resource alloca-
tion for each flow may be confined within predefined limits.
These topics are out of the scope of this work and are left to
possible future work.

The RT-NM module serves as the cornerstone of the RT
extension functionality. This component acts as a transparent
intermediary, intercepting all communication exchanged be-
tween MQTT clients and the broker. By intercepting these
messages, the RT-NM module gains access to RT attributes
associated with TS traffic flows. As illustrated in Fig. 6, when
the RT-NM module receives a message from an MQTT client,
it performs a thorough inspection of the message content

FIGURE 6. RT-NM operation flow diagram.

FIGURE 7. Network configuration process.

to identify the presence of an RT reservation request. Upon
successful identification, the module extracts the relevant RT
information and incorporates it into the OF-DB.

As depicted in Fig. 7, the RT-NM transmits RT information
to the OVSDB-server using the OVSDB-MP [52]. Upon re-
ceiving an update from the RT-NM, the server processes the
request and commits the pertinent data to a designated shared
memory space, and then the OF-DB is updated accordingly.
When updates occur in the OF-DB, the ovs-vswitchd daemon,
responsible for managing and controlling OVS switches, re-
trieves RT information. It collaborates with the OF-controller
to analyze the registered RT attributes, subsequently up-
dating the flow tables of the OF-switch and establishing
the necessary data paths. In addition, the ovs-vswitchd dae-
mon communicates with the kernel module of the respective
node through netLink (a tool to transfer information be-
tween the kernel and user-space processes), to carry out the
actions corresponding to the processing of each received
packet.

The RT information associated with a topic is dynamic
and subject to continuous modification by connected MQTT
clients. Clients possess the ability to register or update RT
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FIGURE 8. Message set up sequence diagram in RT-MQTT.

attributes directly within the OF-DB for a specific topic. This
attribute modification can occur during the initial connection
phase through the CONNECT message or can be realized dy-
namically at a later stage, such as when a client publishes data
via the PUBLISH message. Conversely, subscribers can also
specify their own RT requirements during the connection or
subscription process using the SUBSCRIBE message. Fig. 8
presents the sequence diagram for these actions, including
connecting, publishing, and subscribing. The RT-NM has the
role of receiving and validating the messages’ attributes. Once
validated, the RT-NM executes the necessary network con-
figurations to fulfill the specified requirements. Finally, the
broker acknowledges the successful operation by sending a
confirmation message back to the client. A technical descrip-
tion of RT-MQTT services is publicly available.1

V. EXTENDED FRAMEWORK FOR EDGE NETWORKS
When multiple end-nodes require a specific MQTT topic,
the broker generates one distinct unicast transaction per
subscriber [43]. This replication of data transmissions signifi-
cantly amplifies overall network traffic, especially in networks
with many devices, such as edge networks. These networks
follow a distributed computing paradigm that places com-
putation and data storage in close proximity to the network
edge with the goal of minimizing latency and increasing
performance by reducing RTT and network traffic [57]. In
such scenarios, whenever devices attached to different edge
networks subscribe to the same topic, network congestion
escalates, ultimately leading to predictability and timeliness
issues, which are crucial considerations in IIoT applications.

To tackle this challenge, we extend RT-MQTT to combine
RT services and multicast capabilities, thus allowing RT and
scalable communication in IIoT edge networks, resulting in
a framework called MRT-MQTT [16]. In this framework ap-
plications running on edge networks can also define their RT
requirements explicitly, as in RT-MQTT. In turn, the SDN/OF
resource manager reads these requirements and establishes
the corresponding RT channels within and between edge net-
works. MRT-MQTT also prioritizes TS data flows over NTS

1[Online]. Available: https://new-rt-mqtt-extension-api.readthedocs.io/en/
latest/

FIGURE 9. High-level MRT-MQTT system architecture in edge networks.

ones, providing RT guarantees to TS data. However, contrast-
ing to its predecessor, MRT-MQTT employs multicast routing
between edge networks. This option reduces the load in the
network and leads to lower latency and jitter of RT data com-
munications while improving scalability.

A. MRT-MQTT REFERENCE ARCHITECTURE
Fig. 9 shows the high-level architecture of MRT-MQTT,
which encompasses a network of OF-switches interconnected
to a central OF-controller. This controller (see Fig. 2) is
extended with an additional module for managing PIM-SM
multicast routing in conjunction with MSDP. Furthermore,
the design incorporates multiple edge networks that leverage
MRT-MQTT, several (I)IoT devices as MQTT clients, and a
pair of MQTT broker plus an optimized real-time network
manager (ORT-NM) per edge network. Each ORT-NM is re-
sponsible for collecting the corresponding edge information,
sending it for analysis to the OF-controller and establishing
data transmission paths between edge networks. This network
manager is strategically positioned between the MQTT clients
and the broker in each network, with a preference for co-
deployment on the same node as the broker for reducing the
communication overhead.

MRT-MQTT extends the flow set definition inherited from
the RT-MQTT protocol by introducing the incorporation of
the flow topic (FTi) and MQTT QoS level (Qi) within the RT
attributes, defined as follows:

F TS
i = {Ci, Pi, Ti, Di, BWi, FTi, Qi} . (4)

All messages exchanged between the broker and clients in
each edge network are intercepted by the corresponding ORT-
NM module that extracts the RT requirements associated with
each TS flow, and communicates this information to the OF-
controller, which stores it within the SRT. Consequently, the
SRT is extended as follows, to include the addresses of the
corresponding broker nodes (BAi):

SRT = (F TS
i , SRCi, DSTi,k, BAi,Li, ni ) i = 1. . .N . (5)
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FIGURE 10. ORT-NM operation flow diagram in the proposed system.

The edge information contained within the SRT, when
combined with the topological insights gathered by the OF-
controller, is instrumental in establishing RT channels for
all connections traversing MQTT components across multi-
ple edge networks. When a single network is involved, then
RT-MQTT can be employed. When subscribers are located in
different edge networks, then MRT-MQTT uses the ORT-NM
nodes to leverage multicast groups and routes using OVSDB-
MP [52] to communicate with the OF-DB. The ORT-NM
closely mirrors the operation of the RT-NM, extending it with
multicast routing.

Fig. 10 provides a visual representation of ORT-NM’s oper-
ational workflow. It starts when an MQTT client publishes on
a topic instantiated in its broker. The local ORT-NM intercepts
the respective message and searches in its contents for RT
attributes. If the search is successful, the relevant information
is extracted and the OF-DB updated. Then, the OF-controller
processes this information and creates paths according to the
subscribers location and specified QoS level.

Fig. 11 illustrates the scenario where MQTT subscribers
in edge networks B and C (designated as Sub.2 and Sub.3)
subscribe to topics α and β. The publishers of these topics
are Pub.1 and Pub.2, respectively, both in edge network A
but each with a different priority level. Initially, the ORT-
NM in edge network A gathers data from Pub.1 and Pub.2
and forwards this information to the OF-controller. Then, the
controller generates an SRT containing the publishers RT re-
quirements, their addresses as well as that of the broker in

FIGURE 11. Data flow operation of MRT-MQTT in edge networks for
QoS 0.

FIGURE 12. Data flow operation of MRT-MQTT in edge networks for QoS
1 and 2.

edge network A. When MQTT clients in edge networks B
and C subscribe to topics α and β through their respective
brokers, the associated ORT-NMs extract the subscribers RT
requirements, their addresses and those of the respective edge
brokers. Once compiled, this data is also sent to the OF-
controller that updates the SRT accordingly and determines
communication paths between edge network A and edge net-
works B and C. Considering that subscribers are spread across
multiple edge networks, the OF-controller creates one mul-
ticast group per topic maintaining their respective priority
levels for data reception. For each multicast group a path tree
is defined and the OF-switches configured accordingly. The
actual paths for topics α and β is contingent on the QoS level
specified by the subscribers. If the QoS level is 0, the data are
transmitted directly from the publishers in edge network A to
the subscribers in edge networks B and C (see Fig. 11).

Conversely, for QoS levels 1 and 2, which may trigger
message retransmissions, the message destination is set to the
brokers in edge networks B and C (see Fig. 12). These brokers
join the respective multicast groups to obtain the data, which
they relay to the subscribers in their respective networks. In
cases where nodes within edge network A also subscribe to
topics α or β, such intraedge network communication is fa-
cilitated by the local broker, adhering to the RT requirements
defined by RT-MQTT.
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FIGURE 13. Message set up sequence diagram.

Fig. 13 demonstrates the data transfer process from edge
network A to edge networks B and C, using MRT-MQTT for
QoS levels 0 and 1/2.

B. MULTICAST MECHANISM
As previously mentioned, the MRT-MQTT protocol uses mul-
ticast to efficiently distribute data to subscribers residing in
different edge networks. This multicast traffic delivery mech-
anism is based on the PIM-SM protocol and encompasses
three key phases. First, the protocol collects edge information
from the publisher side. Second, it collects corresponding
edge information from the subscribers’ side. The information
collected in both of these phases is registered in the SRT
alongside the group table, effectively linking clients subscrib-
ing to the same topics. Finally, the protocol sets a multicast
tree for each topic, encompassing the respective publisher and
its subscribers. The root of this tree is a designated OF-switch
that will act as an RP (see Section II-C), receiving the pub-
lisher multicast traffic and forwarding it to the subscribers.
The RP designation is done by the OF-controller considering
the shortest average delay between each candidate RPs and
subscribers [58]. The OF-controller monitors the multicast
tree continually, dynamically adapting it as needed to maintain
an optimal multicast traffic delivery.

The distribution of MQTT messages from a publisher
within edge network A to subscribers in edge networks B and
C (such as Sub.2 and Sub.3) employing QoS 0 (see Fig. 11)
involves the assignment of a multicast group IP address de-
rived from the topic. The publisher initiates individual TCP
connections with each subscriber, sending a request for their
participation in the multicast group. Subsequently, each sub-
scriber requests their respective local edge OF-switch to join
the multicast group. After joining the multicast group, sub-
scribers transmit an acknowledgment message to the publisher
through their TCP connections, indicating their preparedness

to receive data. Subsequently, the publisher can start sending
data to the multicast group address on the RP, knowing that
all subscribers are ready to receive it. Using MSDP, the RP
maintains the multicast distribution tree and routes multicast
group messages to the subscribers. Upon receiving data, sub-
scribers acknowledge it to the publisher via their individual
TCP connections. This process can occur concurrently for
multiple publishers (such as Pub.1 and Pub.2 in this setup),
each allocated its own multicast group determined by the
associated topic and its priority level. When the topic QoS
level is configured as 1 or 2 (see Fig. 12) the procedure re-
mains unchanged, albeit with a small difference: the publisher
modifies the destination addresses to communicate with the
brokers of the target edge networks B and C, rather than
the actual subscribers. After the brokers successfully receive
the multicast data and acknowledge it to the publisher, the
subscribers in edge networks B and C subscribe to the topics
in their respective brokers, receiving the respective data.

VI. SCHEDULABILITY ANALYSIS
Although RT computing systems have found extensive use in
industrial domains [59], [60], analyzing the worst-case timing
behavior of communication protocols can be a challenging
endeavor. This section firstly refines the prior analytical ap-
proach for TS flows within the RT-MQTT architecture [15],
with a focus on enhancing system analyzability and pre-
dictability. Then it introduces the adaptation of HA and TA
to the MRT-MQTT architecture, enabling to derive end-to-
end timeliness guarantees for TS flows in edge networks.
The choice of TA was motivated by its tightness, but due to
its increased complexity in implementation and validation,
especially in the context of unconstrained routing schemes
where flows can cross multiple times, a simpler, yet more
pessimistic, HA-based analysis was also included. The results
obtained through both approaches are subsequently validated,
through experimental methods, and their performance is com-
pared (see Section VII).

A. MESSAGE MODEL
Considering the message flow set, or for simplicity, the mes-
sage set as defined in (2), we consider single-packet messages,
which is a common approach in RT applications. It is assumed
that client nodes are equipped with an operating system that
supports RT capabilities. This allows them to concurrently
generate both TS and NTS traffic including standard MQTT
messages and general background traffic.

In MQTT, data exchanges are primarily conducted through
unicast transactions, where a single data stream is transmitted
directly from one sender to one receiver [43]. This unicast
approach characterizes the analysis of the RT-MQTT archi-
tecture, focusing on individual, point-to-point data streams.
When addressing scenarios with multiple subscribers, the
framework extends this model, applying a similar unicast-
based analysis to each separate broker-to-subscriber connec-
tion. In contrast, the MRT-MQTT architecture introduces a
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FIGURE 14. SD in an OF-switch [62].

hybrid approach, initially employing unicast for the transmis-
sion of data from the source to an RP node, and then shifting
to multicast for broader distribution. Here, the unicast stream,
upon reaching an RP node, undergoes replication for efficient
multicasting to multiple subscribers across edge networks.
This dual-phase approach necessitates a more comprehensive
analysis in MRT-MQTT, encompassing both individual and
group data transmission methods, thereby enhancing network
efficiency and scalability.

B. SCHEDULING MODEL
Due to the inherent characteristics and capabilities of current
OF-switches, both the RT-MQTT and MRT-MQTT architec-
tures use nonpreemptive fixed-priority scheduling with first-in
first-out (FIFO) within each priority level. Based on the pri-
ority level of a specific message mi, we define the following
message subsets.

1) hpi = {∀m j j∈[1,N], Pj > Pi}, subset of messages with
priority strictly higher than that of mi.

2) spi = {∀m j j∈[1,N], j �=i, Pj = Pi}, subset of messages
with same priority as mi but excluding mi.

3) lpi = {∀m j j∈[1,N], Pj < Pi}, subset of messages with
priority strictly lower than that of mi.

Upon arrival at a switch ingress port, a message mi is
pushed through the OF-pipeline and then forwarded to a des-
ignated output port queue according to its path and priority.
The packet processing within the OF-pipeline at each switch
incurs in a delay that we define as switching delay (SD) and
it impacts all messages traversing a switch. This delay can
be decomposed into three main components (see Fig. 14) as
follows.

1) Time to manage the input queues (essentially memory
operations).

2) Time to process the flow tables.
3) Time to execute the action set.
The actual value of SD is variable and depends on factors,

such as the switching hardware, input load, the number of
flow tables, and the complexity of the action set. Therefore,
in practice a conservative bound for SD is determined experi-
mentally and subsequently used in the analysis. SD is seldom
constant, though, and its variability, the SD jitter, is denoted
as JSD

i .
After the OF-pipeline, a message arrives at an output port

queue. Here, message mi may suffer two types of delay as
follows.

� Blocking delay: this delay occurs when a lower priority
message lpi is already in transmission, and preemption
is not supported.

� Interference delay: this delay is caused by the presence
of messages belonging to hpi (due to priority scheduling)
and to spi (due to FIFO ordering at each priority level).

To ascertain both the SD and jitter, network traffic is cap-
tured at both the ingress and egress points of the OF-switches
using tcpdump [61], a widely used command-line tool favored
for its efficiency and lightweight operation, and timestamps
for both the sending and receiving of MQTT messages are
recorded. The SD is then calculated by subtracting the send
time from the receive time for each message, thereby pro-
viding a measure of the time taken for messages to traverse
the network. Furthermore, switching jitter is calculated by
analyzing the variations in time delays and computing the
standard deviation of these observed delays to represent the
bounded switching jitter.

Finally, note that this article does not delve into the message
setup phase, assuming that all resources are preconfigured and
the system remains in a static state. Although both RT-MQTT
and MRT-MQTT accommodate dynamic updates for RT traf-
fic, the analysis of the updating response time is outside the
scope of this article.

C. RESPONSE TIME ANALYSIS FOR RT-MQTT
In RT-MQTT, the response time of an RT message can be
broken down into three parts as follows.

1) The time taken to travel upstream from the publisher to
the broker.

2) The processing time at the broker.
3) The time taken to travel downstream from the broker to

a given subscriber.
The first and third parts of the response time are communi-

cation delays, while the second part is a computational delay.
The response time analysis for the upstream and downstream
segments is computed in the same way, as the scheduling and
forwarding mechanisms are the same, being only necessary to
set the source and destination nodes properly. For this reason,
and without loss of generality, we will focus the analysis
on the upstream segment. The literature reports numerous
approaches to tackle the RT behavior of MQTT brokers, as
evidenced in [63] and [64]. These approaches can be seam-
lessly integrated with the analysis presented in this article, to
compute the overall delay in publisher–subscriber communi-
cation and, for this reason, will not be further considered in
this article.

1) RESPONSE TIME ANALYSIS USING THE HA
HA [65] is based on the accumulation of delays and jitter on
a given path Li extending from the source to the destination
nodes. Delay and jitter computation is carried out for each
individual link and switch in the path, with the total response
time being the sum of the response times for all the constituent
links. The calculation of link delay includes interference,
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blocking, switch delays, and the cumulative impact of jitter
throughout the path. In order to maintain compatibility with
standard nodes within the network, NTS traffic is intentionally
left unreported within the RT-MQTT framework, because its
characteristics and inherently unknown. The only possible
impact of NRT on TS traffic is blocking, as NRT traffic is
handled in the background, having the lowest priority level.
As such, its worst-case impact can be accounted for simply via
a blocking term that matches the link maximum transmission
unit (MTU).

In each link, whether it is a source node or an OF-
switch output, incoming messages are forwarded to prior-
itized queues. As previously mentioned, messages within
each queue or priority level follow a FIFO discipline and
are transmitted nonpreemptively. This model lends itself to
analysis using a well-established method for response time
without preemption in uniprocessors, known as the cumula-
tive delays method [65]. Moreover, a crucial aspect of this
analysis involves identifying the critical instant, defined as
the message release pattern that leads to the worst-case inter-
ference a message can encounter. In this context, the critical
instant for message mi occurs when it is released imme-
diately after a lower priority message with the maximum
size, thus maximizing the blocking delay. Simultaneously,
it is released immediately after all messages of the same
priority and concurrently with all higher priority messages,
considering their maximum release jitter to ensure maximum
interference.

Nonpreemptive transmissions can suffer from the push-
through effect, a phenomenon in which a specific instance
of a message mi is delayed by its own previous instance.
Consequently, the WCRT for mi at a given output port may
manifest in instances beyond its initial release during a critical
instant, within the so-called occupied period. The number
of instances following the critical instant that requires exam-
ination to determine the WCRT can be computed as Qi =
�(wi + Ji )/Ti	 where Ji is the release jitter, and wi corre-
sponds to the length of the level-i busy period. This period can
be computed with a fixed-point iterative method as outlined in
(6). A possible initial value is given by w0

i = Bi + Ci, where
Bi signifies the blocking delay resulting from NTS and l pi

messages, and concludes when wn+1
i = wn

i

wn+1
i = Bi +

∑
j∈hpi∪spi

⌈
wn

i + Jj

Tj

⌉
.Cj . (6)

The level-i occupied period starts at the critical instant
and ends at the onset of the subsequent level-i idle period.
This occupied period arises when the queues for priorities Pi

and above at the output port have been completely drained.
Determining the worst-case delay for each of the Qi message
instances occurring within the level-i occupied period requires
an individual computation to account for the load introduced
by the preceding q instances. Equation (7) provides an upper
bound for these delays, denoted as vi(q). It can be solved
iteratively using a fixed-point iteration approach, potentially

Algorithm 1: WCRT Calculation: HA for RT-MQTT.

initialized with v0
i (q) = Bi + qCi. The iteration continues un-

til one of two conditions is met: either vn+1
i (q) = vn

i (q) or
when vn+1

i (q) + Ci − qTi > Di − Ji, at which point the dead-
line cannot be guaranteed

vn+1
i (q) = Bi + qCi +

∑
j∈hpi∪spi

(
�vn

i (q) + Jj

Tj
� + 1

)
.Cj .

(7)
The WCRT for an instance that precedes q instances can be

calculated using RTi(q) = vi(q) + Ci − qTi. This equation, as
represented by (8), provides us with the maximum response
time for message mi

RTi = maxq=0,1...Qi−1(vi(q) + Ci − qTi ). (8)

To compute the WCRT for a specific message mi in the
RT-MQTT, Algorithm 1 is utilized. This algorithm takes into
account the complete path from the source to the broker,
considering both the network topology and the set of messages
as its inputs.

The algorithm uses two accumulators that track the ac-
cumulated response time (RTTotal

i ) and release jitter (Jacc
i )

over the successive links along the message path. Initially
(part A), it is processed the output link of the source node
(k = 1), which involves computing the initial value for
the response-time [ResponseTimeCalc(i, 1), by applying (8)],
and the initial value of the accumulated output jitter (J1 plus
JQP

i,1 ). While the primary one is the maximum release jitter
of tasks and the queuing effect of the interface card at the
source node, the other significant element is the response time
jitter. The response time jitter is calculated by subtracting the
best-case response time (BCRT) from the WCRT. The BCRT
represents the optimal scenario of the message fastest possi-
ble transmission time in the absence of external delays. The
BCRT calculation assumes the analysis without interference
from messages of higher or equal priority, no blocking delay
from lower priority or non-RT traffic, and zero jitter.

Part B of the algorithm closely resembles part A but also ac-
counts for the SD upper bound introduced by the switch under
analysis and the additional jitter it may induce. This process
is repeated for links from the second to the final link in the
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path of mi. The SD and jitter are determined experimentally,
as discussed in Section VI-B.

2) RESPONSE TIME ANALYSIS USING TA
TA [66] entails the identification of messages within the net-
work that result in the postponement of a specific message
mi generated at time t . These delaying messages are situ-
ated along the path Li that mi traverses from the source to
the destination node. The analysis evaluates their impact on
response times, considering the links visited by mi, starting
from the last link and progressing backward to the source
link. At each link, the identified messages create a so-called
busy period. The response time for message mi emerges from
the cumulative addition of these busy periods plus the overall
transmission delay across the network.

Considering fixed-priority nonpreemptive scheduling, the
processing of a message cannot experience any further de-
lays once initiated. Therefore, TA [66] is employed for the
recursive determination of the latest starting time of message
mi on its last visited switch lasti (9). The notation (1 + �x�)+
stands for max(0; �x�). In addition, within this context, the
terms first j,i (representing the first switch visited by message
m j on path Li), last j,i (referring to the last switch visited by
m j on the same path), slow j,i (indicating the slowest switch
visited by m j on path Li), and prei(sw) (representing the
switch visited immediately before the switch sw by mi) play
significant roles. In turn, Smaxsw

i denotes the maximum time
required by mi to travel from its source switch to switch
sw. On the other hand, Sminsw

j (in relation to m j) represents
the minimum time for the journey from its source switch
to switch sw, while Smaxsw

j indicates the maximum travel
time for the same journey. Finally, A j,i can be defined as

Smax
first j,i
j − M

first j,i
i + Jj . The term M

first j,i
i is used to de-

note the minimum time necessary for a message to traverse
the path from the source of mi to switch first j, i, as defined
in (10)

W lasti
i,t =

∑
j∈hpi

⎛
⎝1+

⎢⎢⎢⎣W
last j,i

i,t − Smin
last j,i
j + A j,i

Tj

⎥⎥⎥⎦
⎞
⎠

+

.SD
slow j,i
j

+
∑
j∈spi

⎛
⎝1+

⎢⎢⎢⎣ t + Smax
first j,i
i − Smin

first j,i
j + A j,i

Tj

⎥⎥⎥⎦
⎞
⎠

+

.SD
slow j,i
j

+
∑

sw∈Li
sw �=slowi

max
j∈hpi∪spi

{SDsw
j } + (|Li|.Ci ) + BTA

i − SDlasti
i

(9)

M
first j,i
i =

prei (first j,i )∑
sw=firsti

(
min

j∈hpi∪spi

{SDsw
j } + Ci

)
. (10)

Algorithm 2: WCRT Calculation: TA for RT-MQTT.

In W lasti
i,t , the first two terms account for the maximum inter-

ference experienced by message mi due to packets with higher
and same priority, respectively. The third term corresponds
to the SD of messages with same or equal priority at each
switch along path Li, except the slowest one. The fourth term
indicates the maximum transmission delay on links that mi tra-
verses within the path Li. The term BTA

i denotes the blocking
delay due to nonpreemption, as defined by

BTA
i =

(
max
j∈lpi

{SDfirsti
j } − 1

)+
+

∑
sw∈Li

sw�=firsti

×

⎛
⎜⎝
⎛
⎜⎝ max

j∈lpi
sw=first j,i

{SDsw
j }−1

⎞
⎟⎠ ;

⎛
⎜⎝ max

j∈lpi
sw �=first j,i

{SDsw
j }−SDsw−1

i

⎞
⎟⎠
⎞
⎟⎠

+

.

(11)
The final term in the equation is computed considering the

start time of message mi transmission at the output port lasti.
Consequently, (12) provides the WCRT for mi given by TA

RTi = W lasti
i,t + SDlasti

i − t . (12)

Algorithm 2 outlines the method for determining the
WCRT of a message mi in the RT-MQTT framework, employ-
ing the TA. This calculation takes into account the complete
path from the source to the broker, and it is conducted based
on key inputs such as the network topology and the set of
messages.
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The algorithm comprises two distinct parts. In the first part
(A), the computation is centered around determining the value

of Smax
first j,i
j (sw) (specifically for sw = 1) for any message

m j within the set (hpi ∪ spi ) that traverses mi. This value
serves as the initialization step for the subsequent iterative
process aimed at calculating the overall response time for the
entire route (RTTotal

i ). The second part (B) marks the begin-
ning of the iterative computation for the WCRT of mi. Within
this phase, the algorithm considers all messages m j from the
set (hpi ∪ spi ) to identify scenarios that could lead to the most
unfavorable conditions for mi. It involves the determination
of the latest starting time [LatestStartTimeCalc(sw, i) as de-
scribed in (9)] at the last switch visited and subsequently
calculates the WCRT for mi [ResponseTimeCalc(i) in accor-
dance with (12)]. The termination condition for the algorithm
is met when there exists a message for which the end-to-end
response time surpasses its predefined end-to-end deadline.

D. RESPONSE TIME ANALYSIS FOR MRT-MQTT
The analysis of MRT-MQTT aligns with that of RT-MQTT,
as detailed in Section VI-C, encompassing scenarios from
publisher to subscriber(s) or publisher to broker(s), depending
on whether brokers are involved. This approach mirrors the
methodology used in RT-MQTT, similarly omitting the broker
processing time in the analysis. A key distinction arises, how-
ever, in the nature of the data streams. Initially, these streams
are unicast from the source to the RP switch. Beyond this
point, the unicast streams are replicated and transition into
multicast streams directed toward the destination nodes. These
nodes can be either subscribers or brokers on the subscription
side, depending on the QoS level. This transformation enables
the efficient handling of multiple, simultaneous subscriber re-
quests, marking a key difference in the data handling between
RT-MQTT and MRT-MQTT systems.

In multicast scenarios, the functions and responsibilities of
RP switches encompass critical tasks, such as establishing
and overseeing multicast groups, duplicating messages, and
keeping track of multicast group memberships along with the
distribution trees. These RP switches serve as pivotal branch-
ing points where these additional operations lead to increased
latency. Therefore, this extra time incurred should be factored
into the overall SD. Consequently, the SD uniquely associ-
ated with the RP switches for a message mi is represented
as SDRP

i . Furthermore, the implementation of multicasting
mechanisms such as join/prune messaging for multicast group
management introduces variability in packet delivery times,
which contributes to additional jitter Jmc. This specific delay
and jitter are also empirically determined, as discussed in
Section VI-B.

1) RESPONSE TIME ANALYSIS USING THE HA
In MRT-MQTT, the previously conducted HA analyses are
adopted to calculate delays and jitter for a path Li from
source to destination. This involves summing response times

of individual links and switches, considering factors, such
as interference, blocking, and cumulative jitter impact. NTS
traffic still is modeled by the MTU.

Considering the branching effects of the multicast tree, the
critical instant still accounts for the release of messages with
lower, equal, or higher priority, each factoring in its maximum
release jitter. Accordingly, the number of instances following
the critical instant is calculated by Qi = �(wi + Ji + Jmc)/Ti	,
and the length of the level-i busy period can be extended as
follows:

wn+1
i = Bi +

∑
j∈hpi∪spi

⌈
wn

i + Jj + Jmc

Tj

⌉
.Cj . (13)

This period is determined using a fixed-point iteration akin
to the previous analysis, starting with w0

i = Bi + Ci and end-
ing when wn+1

i = wn
i .

To encapsulate multicast effects, (14) is also adjusted to cal-
culate an upper bound for the accumulated delays vi(q). The
resolution proceeds via a fixed-point iteration approach, com-
mencing with an initial value v0

i (q) = Bi + qCi. The process
halts when either vn+1

i (q) = vn
i (q) or when vn+1

i (q) + Ci −
qTi > Di − (Ji + Jmc), indicating that the deadline assurance
is untenable

vn+1
i (q) = Bi + qCi

+
∑

j∈hpi∪spi

(
�vn

i (q) + Jj + Jmc

Tj
� + 1

)
.Ci. (14)

Consequently, the WCRT for an instance is RTi(q) = vi(q) +
Ci − qTi and the WCRT for mi can now be repeated as follows:

RTi = maxq=0,1...Qi−1(vi(q) + Ci − qTi ). (15)

Algorithm 3 presents a method for calculating the WCRT
of a message mi in MRT-MQTT, from source to destination. It
takes the network topology and message set as inputs for this
computation.

The algorithm has three parts. The first two parts calcu-
late the response times from a source node to the RP node
which considers unicast streams, while the third part calcu-
lates the response times of multicast streams originating from
the RP node to multiple destinations. The first part, labeled
A, mirrors part A of Algorithm 1. The second part (B) is
similar to the first one, involving the bounded SD and the
additional jitter it may cause. This part is repeated from the
second to the last link that mi crosses to reach the RP node,
with Dup representing the depth of the unicast path. The
SD and jitter are measured experimentally, as discussed in
Section VI-B.

The last part of the Algorithm (C) focuses on calculat-
ing delays and jitters for switches that multicast message mi

from the RP node to the intended destination nodes. For each
path li � Li from the RP to each specific destination, the
Algorithm determines the cumulative delay and jitter across
every link in that path. The process begins right after the

VOLUME 5, 2024 229



SHAHRI ET AL.: SCALABLE REAL-TIME SDN-BASED MQTT FRAMEWORK FOR INDUSTRIAL APPLICATIONS

Algorithm 3: WCRT Calculation: HA for MRT-MQTT.

RP and calculates the SD SDRP, and then the response time
for each multicasting link [MulticastResponseTimeCalc(i, 1)
according to (15)], subsequently updating the accumulated
jitter and total response time. Once the computations for a path
are complete, the total response time RTTotal

i for that specific
path (li) is returned for later use. This procedure repeats for
all routes leading from the RP to their respective destination
nodes.

2) RESPONSE TIME ANALYSIS USING THE TA
In MRT-MQTT, the TA analysis conducted on RT-MQTT is
also adaptable for identifying network messages that delay a
specific message mi, by tracking its path Li from the source to
the destination.

As described before, adapting the TA response time anal-
ysis for multicast scenarios involves incorporating additional
delay and jitter specific to multicast communication. Accord-
ingly, the latest starting time of message mi on its last visited

switch (W lasti
i,t ) defined in (9) can be adopted as follows:

W lasti
i,t

=
∑
j∈hpi

⎛
⎝1 +

⎢⎢⎢⎣W
last j,i

i,t − Smin
last j,i
j + A j,i

Tj

⎥⎥⎥⎦
⎞
⎠

+

· SDmpt
j,i

+
∑
j∈spi

⎛
⎝1 +

⎢⎢⎢⎣ t +Smax
first j,i
i −Smin

first j,i
j 1+ A j,i

Tj

⎥⎥⎥⎦
⎞
⎠

+

· SDmpt
j,i

+
∑

slow,RP∈Li
slow �=RP

min
j∈hpi∪spi

{SD
slow j,i
j , SDRP

j,i }

+ (|Li|.Ci ) + BTA
i − �SDlasti

i (16)

where A j,i and M
first j,i
i are defined as follows:

A j,i = Smax
first j,i
j − M

first j,i
i + (Jj + Jmc

j ) (17)

M
first j,i
i =

prei (first j,i )∑
sw=firsti

(
min

j∈hpi∪spi

{�SDsw
j } + Ci

)
. (18)

The �SDsw is defined in (19) to adjust the delay for a switch
based on whether it is the RP or not. If it is the RP (δRP = 1),
then the RP-specific delay is included. If not (δRP = 0), the
SD is equal to SDsw

i

�SDsw = δRP · SDRP
i + (1 − δRP) · SDsw

i . (19)

The SDmpt
j,i denotes the switch passed message m j in path

Li that takes the maximum processing time by compressing
the slowest switch and RP switch, as follows:

SDmpt
j,i = max

j∈hpi|spi

{
SD

slow j,i
j , SDRP

j,i

}
. (20)

The blocking delay BTA
i directly attributed to the nonpre-

emptive effect is determined as follows:

BTA
i =

(
max
j∈lpi

{�SDfirsti
j } − 1

)+

+
∑

sw∈Li
sw�=firsti

⎛
⎜⎝
⎛
⎜⎝ max

j∈lpi
sw=first j,i

{�SDsw
j }−1

⎞
⎟⎠ ;

⎛
⎜⎝ max

j∈lpi
sw�=first j,i

{�SDsw
j }

−�SDsw−1
i

⎞
⎟⎠
⎞
⎟⎠

+

. (21)

The final term of W lasti
i,t is deducted, accounting for the start

time of message transmission for mi at the output port lasti.
Consequently, (22) provides the WCRT for mi through the

use of TA

RTi = W lasti
i,t + �SDlasti

i − t . (22)
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Algorithm 4:. WCRT Calculation: TA for MRT-MQTT.

Algorithm 4 outlines the process for determining the
WCRT of mi in MRT-MQTT, from source to destination using
the TA, based on network topology and message set inputs.

This algorithm closely resembles Algorithm 2, with the
primary distinction being its assessment of whether a switch
is an RP to determine the bounded SD (�SDsw

i ). In part (A),
it computes Smaxfirst j,i

j (sw = 1), considering the RP status.
Subsequently, part (B) begins an iterative process to calculate
the WCRT for mi, as defined in (22). This involves determin-
ing the latest starting time using LatestStartTimeCalc(sw, i),
as specified in (16).

VII. VERIFICATION AND PERFORMANCE ASSESSMENT
This section details an empirical study conducted through
the Mininet emulation framework, encompassing various
scenarios differentiated by their complexity and load lev-
els. The primary objective is to validate the accuracy and
evaluate the relative performance of the analyses proposed
for the MRT-MQTT protocol. The experimentally obtained
values are subsequently juxtaposed against the analytically
computed response times, derived using both HA and TA.
Furthermore, the conducted experiments entail a thorough

FIGURE 15. Network topology used in MiniNet.

comparison of the MRT-MQTT protocol with its counterparts,
namely standard MQTT and DM-MQTT as the most com-
parable architecture, highlighting the performance advantages
of MRT-MQTT. The analysis for the foundational RT-MQTT
protocol has been previously proposed and validated in [13]
and [15]. For the sake of consistency, the analysis and ex-
periments focus on the upstream path delay, only. This delay
spans from the moment of writing to the respective socket on
the publisher side to the corresponding reception at the broker.
A similar analysis can be directly applied to the downstream
path delay.

A. EMULATION SETUP
The experimental results were obtained using the Mininet vir-
tual network emulator, version 2.3.0d6,2 in conjunction with
the Eclipse Mosquitto [67] (v2.0.10) and the Eclipse Paho
MQTT library for establishing MQTT clients and brokers.
The Mininet framework was deployed on a laptop equipped
with a 4.9 GHz Intel Core i7 processor and 16 GB of RAM.
In addition, the RYU OF-controller3 served as the SDN con-
troller, running on the same laptop.

The impact of retransmissions on RT traffic response time
falls beyond the scope of this article, so the analyses and
emulation assume no transmission errors. Nevertheless, to
emulate realistic scenarios, in which often it is important to
have delivery guarantees, the experiments were designed with
the QoS for all MQTT messages set to 1 (delivery at least
once).

The experimental setup involved a network topology, as de-
picted in Fig. 15. This topology comprises eight OF-switches
(labeled s1 to s8), connected to three edge networks (EN.A,

2[Online]. Available: http://mininet.org/
3[Online]. Available: https://ryu-sdn.org/
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EN.B, and EN.C), and includes an OF-controller (c0). The
setup features nine nodes (h1 to h3, h6 to h8, and h11 to
h13) in each edge network, designated as MQTT publish-
ers. These nodes periodically publish messages on distinct
topics. Specifically, nodes h3, h8, and h13 are assigned to
publish normal MQTT traffic (NTS), while the others han-
dle TS traffic. Each edge network contains one subscriber
located at nodes h4, h9, and h14, respectively, to subscribe
to these publications. The broker and the ORT-NM are hosted
on nodes h5, h10, and h15 within each edge network. To
emulate diverse data exchanges typical of industrial scenarios,
various applications are used: the distributed Internet traffic
generator (D-ITG)4 generates TCP packets from node h3;
VLC media player sends audio/video from node h8; and
vsftpd manages file transfer protocol5 from node h13, all
to the corresponding receiver nodes in all broker locations.
The bandwidth for non-MQTT traffic sources was limited
to 10 Mbit/s for D-ITG, 6 Mbit/s for VLC, and 4 Mbit/s
for vsftpd. This setup reflects common industrial application
settings, with the link speed set at 100 Mbit/s.

In this topology, three load levels are established, namely
Low, Medium, and High. Under the Low load level, each
publisher node functions as a gateway and comprises 20 pub-
lishers, transmitting MQTT messages on the same topic. For
the Medium and High load levels, the number of publish-
ers per node increases to 40 and 60, respectively. MQTT
publications are asynchronous, occurring at nominal periods
randomly generated within the range of [15 20]ms, affected by
a release jitter also randomly generated and comprised in the
interval [0 0.4]ms, leading to varying interference patterns.
The publications used a single Ethernet packet of maximum
size (1500 bytes), resulting in a transmission time of approxi-
mately 123 μs.

In the designed scenario, the experiments involve three
edge networks (EN.A, EN.B, and EN.C). Each network pub-
lishes two unique, TS topics, which are then requested by
all subscribers across these three networks, generating intra-
and internetwork traffic. The RT-MQTT protocol supports
data transmission within edge networks, and in this case
the ORT-NM performs essentially as an RT-NM. Conversely,
communications involving subscribers located in different
edge networks are managed through multicast groups and
routes orchestrated by the MRT-MQTT protocol, with the
extended services provided by ORT-NM being used.

To keep the amount of results manageable, and without loss
of generality, only edge traffic between edge network A and
edge networks B and C is included in the evaluation. The nota-
tion LXY is used to denote the routes taken by topics published
in edge network X to reach brokers in edge network Y, while
hEN.A denotes the publisher nodes in EN.A, h1 and h2, each
publishing a distinct topic, α and β, respectively, distributed to

4[Online]. Available: http://traffic.comics.unina.it/software/ITG/
5[Online]. Available: https://linuxconfig.org/how-to-setup-and-use-ftp-

server-in-ubuntu-linux

TABLE 2. Topic Priority Distribution

FIGURE 16. Analytical RTHA
i and RTTA

i versus observed RTExp
i WCRT(s)

obtained using MQTT, DM-MQTT, and MRT-MQTT in load level Low.

all brokers, specifically h5, h10, and h15. Therefore, messages
under evaluation transverse the following paths.
� LAA ={〈hEN.A, s1〉, 〈s1, h5〉}.
� LAB ={〈hEN.A, s1〉, 〈s1, s4〉, 〈s4, s2〉, 〈s2, h10〉}.
� LAC ={〈hEN.A, s1〉, 〈s1, s4〉, 〈s4, s5〉, 〈s5, s3〉,

〈s3, h15〉}.
To ensure timely handling of various topics, TS ones are

evenly distributed across two distinct classes in each edge
network, with each class assigned a specific deadline and
priorities determined based on the deadline monotonic policy,
as shown in Table 2.

To guarantee the comparability of results, the same con-
figuration is employed for both emulation and analysis. The
tcpdump tool is utilized for measuring jitter and SDs, follow-
ing the methodology described in Section VI-B. To reduce
the impact of platform-induced perturbations, timestamps are
temporarily stored in memory until all simulation runs are
complete.

B. EXPERIMENTAL RESULTS
The evaluation considered three load levels {Low,
Medium, High} as previously described. For each load
were executed 1000 iterations, with publishers dispatching
a minimum of 100 messages in each iteration. For every
iteration, data were collected and analyzed to ascertain the
WCRT of all messages. In addition, the WCRT for each
configuration in MRT-MQTT was calculated using both HA
and TA, presented in Algorithms 3 and 4, respectively.

Figs. 16–18 display the WCRT distribution for TS MQTT
flows transmitted from the publishers of EN.A (i.e., node h1
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FIGURE 17. Analytical RTHA
i and RTTA

i versus observed RTExp
i WCRT(s)

obtained using MQTT, DM-MQTT, and MRT-MQTT in load level Medium.

FIGURE 18. Analytical RTHA
i and RTTA

i versus observed RTExp
i WCRT(s)

obtained using MQTT, DM-MQTT, and MRT-MQTT in load level High.

and h2 associated with topics α and β, respectively) to sub-
scribers in all edge networks A, B, and C (i.e., nodes h5, h10,
and h15, respectively), using standard MQTT, DM-MQTT,
and MRT-MQTT, all in QoS level of 1 and at the three load
levels. When the publishers and subscribers are all in the
same network, namely EN.A, then MRT-MQTT reduces to
RT-MQTT and the corresponding analyses apply. We include
this case as a baseline to show the impact of scaling the
dispersion of publishers and subscribers across multiple edge
networks. For this reason, we use the new analyses in the new
cases, only, i.e., with publishers and subscribers in different
edge networks, for which the prior RT-MQTT analyses do not
apply.

The bar charts clearly show how multicasting techniques
reduce response times for MRT-MQTT and DM-MQTT with
respect to standard MQTT, with MRT-MQTT exhibiting su-
perior performance relatively to DM-MQTT for TS traffic, as
expected, since it provides traffic prioritization. The effect of

traffic prioritization provided by MRT-MQTT is also notice-
able with β topic messages, which have higher priority than α

topic messages, showing a lower latency.
For interedge traffic, DM-MQTT reserves bandwidth,

which reduces response times with respect to standard MQTT.
However, inside a single edge network, DM-MQTT lacks
such bandwidth reservations, performing similarly to standard
MQTT. Fig. 18 illustrates this point in line with our expecta-
tion, showing comparable WCRT for messages of topics α

and β in both standard MQTT and DM-MQTT, without one
dominating the other, when sent via path LAA (i.e., directed
to h5—single edge network case). For standard MQTT, the
measured WCRT distribution does not reveal any consistent
difference between the topics α and β, as expected, since
the network treats all flows equally, regardless of their time
sensitivity. This is observed across all load and distribution
levels.

Regarding the WCRT analyses of MRT-MQTT when there
are multiple edge networks involved, Figs. 16–18 reveal that
the WCRT values computed using TA and HA are higher than
those measured experimentally, aligning with expectations.
TA (RTTA

i ) more closely approximates the experimental val-

ues (RTExp
i ) than HA (RTHA

i ), as expected, too. The maximum
deviation for TA is at most +7.3%, +8.5%, and +9.7% for
the low, medium, and high load levels, respectively, while for
HA, it reaches +32.7%, +34.9%, and +36.8%. As expected,
the degree of pessimism in HA, compared to TA, increases
with longer path lengths or lower priority, since HA allows for
more improbable interference scenarios. For example, Fig. 18
shows a higher WCRT for messages of topic α compared to
those of topic β, sent through the same path, due to the lower
priority of α. This observation confirms the expected trend
that HA’s pessimism escalates for lower priority messages.
Moreover, messages with the same priority traversing path
LAC (i.e., directed to h15) exhibit higher response times than
those on path LAB (i.e., directed to h10), as the former path
includes an additional hop.

As seen previously, TA attains tighter schedulability bounds
than HA, but this improvement is obtained at the expense
of higher complexity. To confirm and quantify the impact in
terms of processing time overhead, we measured the analy-
ses average execution time over 200 iterations for each of
the load scenarios. The results for HA were 262, 308, and
345 ms while for TA we achieved 964, 1140, and 1346 ms
for low, medium, and high load levels, respectively. These
values confirm our expectations, with HA showing an overall
average execution time of just 26.5% of that taken by TA.
Furthermore, the cyclomatic complexity (CC) of both algo-
rithms was evaluated using the Lizard checking tool [68],
being obtained a CC number of 4.6 for HA and 11.5 for TA,
further confirming the higher complexity of TA.

Overall, these results validate our claims. First, using mul-
ticasting reduces the WCRT when publishers and subscribers
are distributed across multiple edge networks. This is visible
comparing MRT-MQTT with MQTT in the three load levels
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and in the two cases where publishers and subscribers are
placed in different edge networks (broker in h10 and in h15).

Second, using traffic prioritization MRT-MQTT is capable
of segregating TS traffic and providing adequate timing QoS.
This is visible in the reduction of WCRT associated to both
topics α and β when compared to DM-MQTT and MQTT.
It is also visible in the lower WCRT associated to α (higher
priority) compared to the higher WCRT of β (lower priority).

Finally, the WCRT of MRT-MQTT is analyzable with RT
approaches as opposed to DM-MQTT and MQTT. In partic-
ular, we showed how two existing analyses, namely HA and
TA, can be adapted to MRT-MQTT. This is visible in the safe
(higher) WCRT estimates that they generate, which are con-
sistently above but close to the observed WCRT values in all
applicable cases. This result validates the main contribution of
this article, which is the adaptation of the said analysis to the
MRT-MQTT framework. Moreover, the analyses based on HA
and TA offer a tradeoff of accuracy against complexity. This
is visible in the WCRT estimates provided by both analyses
and their complexity measurements.

C. LIMITATIONS OF THE FRAMEWORK
As referred earlier in this article, MRT-MQTT deals exclu-
sively with communication, leaving out the delays associated
to the MQTT broker operation. For end-to-end operation and
analysis, we need to integrate such delays. Fortunately, as ex-
plained in the related work section, there is a myriad of works
on the MQTT broker RT behavior, most of which applicable
to our system. Adding this component to enforce end-to-end
RT behavior is left for future work.

VIII. CONCLUSION
MQTT is becoming increasingly popular in IoT and IIoT
applications, however, its applicability is limited due to its
inadequate support for timeliness requirements, which are
crucial in RT industrial settings. To address this shortcoming,
the authors have shown that combining SDN network man-
agement with the MQTT communication protocol presents a
viable solution for fulfilling the stringent RT requirements of
industrial applications. The authors have developed a frame-
work named RT-MQTT that effectively integrates SDN and
MQTT. This integration not only increases the flexibility of
network management but also meets the RT demands preva-
lent in industrial environments by introducing a set of RT
extensions to MQTT. Moreover, the framework is further
enhanced with multicast-based connectivity, termed MRT-
MQTT, paving the way for optimized network performance,
greater scalability, and improved resource efficiency. For com-
pleteness, this article includes a summary of both RT-MQTT
and MRT-MQTT and then introduces a novel schedulability
analysis for the TS traffic in MRT-MQTT using both TA- and
HA-based approaches, extended to encompass edge comput-
ing scenarios. While TA was selected for its precision, the
inclusion of the simpler, yet more conservative, HA-based
analysis acknowledges TA’s complexity of implementation
and validation. We believe this is the first WCRT analysis

provided for an MQTT-based protocol. Comprehensive em-
ulation experiments validate the effectiveness of the proposed
architecture and its key attributes, as well as the proposed
timing analysis. Future research will consider as follows.

1) Adding broker-backed multicasting to enhance effi-
ciency.

2) Assessing end-to-end response times including broker
processing time.

3) Comparing the whole architecture with emerging IoT
technologies.

4) Exploring security features within this framework.
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