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ABSTRACT With the wide applications of industrial wireless network technologies, the industrial control
system (ICS) is evolving from wired and centralized to wireless and distributed, during which eavesdropping
and attacking become serious problems. To guarantee the security of wireless and distributed ICS, this
article establishes an end-edge collaborative lightweight secure federated learning (LSFL) architecture
and proposes an LSFL anomaly detection strategy. Specifically, we first design a residual multihead self-
attention convolutional neural network for local feature learning, where the variability and dependence of
spatial-temporal features can be sufficiently evaluated. Then, to reduce the wireless communication cost
for parameter exchange and edge federal learning, we propose a dynamic parameter pruning algorithm
by evaluating the contribution of each parameter based on the information entropy gain. Furthermore, to
ensure the parameter security during wireless transmission in the open radio environment, we propose an
adaptive key generation algorithm for parameter encryption. Finally, the proposed strategy is experimentally
validated on representative datasets, including Smart Meter, NSL-KDD, and UNSW-NB15. Experimental
results demonstrate that the proposed strategy achieves 99% accuracy on different datasets, where at least
89.6% wireless communication cost is reduced and tampering/injecting attacks are defended.

INDEX TERMS Industrial control system (ICS), anomaly detection, federated learning, convolutional neural
network (CNN).

I. INTRODUCTION
Industrial control system (ICS) plays an irreplaceable role in
key fundamental infrastructures, such as manufacturing facto-
ries, power systems, and nuclear power plants [1]. However,
ICSs are facing more and more serious security and privacy
problems when they are interconnected by the open Internet.
Thus, anomaly detection becomes critical in protecting the
security of ICSs. By detecting abnormal behaviors, potential
attacks can be detected in advance, further guaranteeing the
reliability of ICSs.

Existing anomaly detection strategies are mainly based on
machine learning algorithms including support vector ma-
chine, random forest, and decision tree [2]. Zhou et al. [3]
proposed a variational long short-term memory (LSTM)
learning network for intelligent anomaly detection based on
reconstructed feature representation. Kaur et al. [4] proposed
the Bayesian method for the convolutional neural network
(CNN) integration, where Bayesian component was used to
distinguish network physical intrusion from normal events
in binary and multiclass events, while the CNN was used
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to process high-dimensional feature space before intrusion
classification task. Ahakonye et al. [5] proposed an agnostic
Chi-square feature selection and prepruned decision tree for
intrusion detection in SCADA systems. Chen et al. [6] pro-
posed an adaptive method of information-enhanced counter-
measure domain, and constructed a feature extractor through
CNN and bidirectional LSTM architecture. These strategies
are mainly oriented toward centralized ICSs and can achieve
high-accuracy detection when there is enough training data.
However, when a single node in the centralized ICS is at-
tacked and fails, there will be serious privacy leakage and
data security problems, which could significantly reduce the
performance of anomaly detection and impact the security and
reliability of ICS.

As a consequence, a distributed anomaly detection strat-
egy is gaining popularity in fault tolerance, scalability, and
privacy protection for distributed ICSs [7]. Rather than rely-
ing on a single centralized algorithm, the distributed strategy
employs multiple interconnected nodes that cooperatively per-
form anomaly detection. Liu et al. [8] designed a CNN based
on attention strategy and a LSTM network for distributed
anomaly detection, where the gradient is compressed. Li
et al. [9] proposed a distributed anomaly detection strategy
based on the CNN and gated cyclic unit network, and de-
signed a secure communication protocol based on the paillier
cryptosystem to protect the security and privacy of network
parameters. Huong et al. [10] proposed a hybrid network
based on variational autoencoder and LSTM to deal with dis-
tributed anomaly detection of time-series data. Zhai et al. [11]
proposed a distributed intrusion detection method based on
the CNN and gated recurrent unit (GRU) under the federated
learning architecture. Khan et al. [12] proposed a distributed
intrusion detection system combined with simple cycle unit.

In particular, federated learning is emerging as a promising
distributed strategy that has gained wide attention and appli-
cations in academia and industry [13], [14]. With federated
learning, nodes only share parameters rather than raw data or
intermediate results. Therefore, the risk of data leakage can be
effectively reduced. However, most federated learning-based
anomaly detection strategies simply transmit the raw parame-
ters, and do not fully consider the features and importance of
parameters. In this way, the communication cost for parameter
exchange is still ignorable, especially for the wireless ICS
whose communication resources are always limited. More
importantly, when the parameters are wirelessly exchanged
in an open radio environment, eavesdroppers and attackers
are more easy to intrude and destruct the wireless ICS. If a
trusted third party is employed, more communication costs
will be introduced to the wireless ICS and further reduce the
performance of anomaly detection. Thus, how to design an
effective federal learning strategy with low communication
cost and high security remains a hot topic. Motivated by this,
this article proposes an end-edge collaborative lightweight
secure federal learning (LSFL) anomaly detection strategy for
the wireless ICS.

The major contributions are summarized as follows.

1) A novel lightweight secure collaborative federal learn-
ing architecture: We establish an end-edge collaborative
LSFL architecture for the wireless ICS, where multiple
end devices perform local feature learning and share
parameters with an edge server for federal learning.

2) Enhanced CNN for feature learning: We design a
residual multihead self-attention convolutional neu-
ral network (RMS-CNN) for spatial-temporal features
learning. Herein, we employ multihead self-attention
network to learn the dependence among features and use
a residual connection to retain and integrate variability
features at different layers. In this way, we can obtain
more comprehensive information with fewer layers, and
thus, enhance the detection capability.

3) Dynamic parameter pruning for lightweight wireless
communication: We develop a dynamic parameters
pruning algorithm based on information entropy gain.
Herein, we evaluate the contribution of each param-
eter by calculating the information entropy gain, and
dynamically set the pruning threshold. In this way,
we can prune the parameters and reduce the wireless
communication cost for parameter exchange.

4) Adaptive key generation for secure parameter ex-
change: We propose an adaptive key generation algo-
rithm to encrypt the pruned parameters. Herein, end
devices together with edge server dynamically generate
different key pairs, adaptively adjust keys by multiple
Hash operations and encrypt the pruned parameters by
the advanced encryption standard (AES) algorithm. In
this way, we ensure the parameter security during wire-
less transmission in open radio environment.

5) Extensive experiments: We perform extensive experi-
ments on representative datasets including Smart Meter,
NSL-KDD, and UNSW-NB15, and compare the pro-
posed strategy with two benchmark strategies. The
experimental results demonstrate that the proposed
strategy achieves 99% accuracy on different datasets,
while reducing at least 89.6% communication cost and
ensuring the security.

The rest of this article is organized as follows. Section II
presents the end-edge collaborative LSFL architecture. Sec-
tion III specifies the LSFL anomaly detection strategy in
detail. Section IV evaluates the performance of the proposed
strategy by extensive experiments, and finally, Section V
concludes this article.

II. END-EDGE COLLABORATIVE LSFL ARCHITECTURE
The ICS contains an edge server and I end devices denoted
as EDi (i = 1, 2, . . ., I). The edge server, which has sufficient
computation resources, is responsible for end-edge collabora-
tive task scheduling and data training. End devices, which are
task customized with limited computation resources, can be
sensors, controllers, and actuators distributed along the pro-
duction process. Each end device continuously collects local
data, e.g., monitoring information and control command.
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FIGURE 1. End-edge collaborative LSFL architecture for anomaly detection.

The edge server and end devices are wireless connected by
a high-reliable and strong-realtime industrial wireless network
such as industrial 5G [15]. Due to the limited spectrum re-
sources, the data volume transmitted by the wireless ICS is
limited. Moreover, the transmitted data maybe eavesdropped
since the radio environment is open to everyone. In this way,
attackers can send invalid requests and malicious data to the
wireless ICS, and further interpolate the data to compromise
end devices. This may cause serious problems, such as pro-
duction interruptions and device failures preventing industrial
production lines from running normally.

To ensure the security of the wireless ICS, we propose
the end-edge collaborative LSFL architecture as Fig. 1. End
devices first perform feature learning with the raw data col-
lected locally, then prune the parameters to reduce the wireless
communication cost, encrypt the pruned parameters for secure
wireless communication, and finally, transmit the encrypted
pruned parameters to edge server for federal learning. Specif-
ically, the process of end-edge collaborative LSFL is given as
follows.

A. RAW DATA COLLECTION
Each end device first collects raw data and form local dataset
Xi (i = 1, 2, . . ., I) for training. Due to the limited compu-
tation resource, each end device collects the same length of
sequence. Thus, the local dataset Xi with M sequences, where
each sequence is with the same length and N features, is given
as

Xi =

⎛
⎜⎜⎜⎜⎝

xi
1,1 xi

1,2 · · · xi
1,N

xi
2,1 xi

2,2 · · · xi
2,N

...
...

. . .
...

xi
M,1 xi

M,2 · · · xi
M,N

⎞
⎟⎟⎟⎟⎠ =

[
xi

m,n

]
M×N

(1)

where xi
m,n denotes the nth feature of the mth sequence of the

local data by EDi.

B. PARALLEL FEATURE LEARNING
With the collected raw data, all end devices perform parallel
training for feature learning by the following proposed RMS-
CNN, where the input training data of EDi is Xi. The initial
training models of all end devices are the same, and the initial
training parameter set of EDi is denoted as Yi (i = 1, 2, . . ., I).
In detail, Yi, which contains J parameters, is given as

Yi =
(

yi,1 yi,2 · · · yi,J

)
(2)

where yi, j denotes the jth initial training parameter of EDi.
Then, according to the local training results, each end de-

vice updates Yi into a new parameter set Ỹi (i = 1, 2, . . ., I),
which also contains J parameters and is given as

Ỹi =
(

ỹi,1 ỹi,2 · · · ỹi,J

)
. (3)

By training, the parameter set of EDi is updated as

Yi ← Ỹi. (4)

C. PARAMETER PRUNING
To reduce the wireless communication cost for parameter
exchange and realize lightweight federal learning, each end
device further prunes the parameter by the following proposed
dynamic parameter pruning algorithm. The parameter set Yi

is pruned as Zi (i = 1, 2, . . ., I) with J parameters, which is
given as

Zi =
(

zi,1 zi,2 · · · zi,J

)
(5)

where zi, j denotes the jth parameter.

D. PARAMETER ENCRYPTION AND SECURE
TRANSMISSION
To avoid being eavesdropped and attacked during wireless
communication in the open radio environment, all pruned
parameters are encrypted for secure transmission. The encryp-
tion key for Zi is denoted as Ki, which is generated by the
following proposed adaptive key generation algorithm. Then,
each end device encrypts the pruned parameters and transmits
the encrypted parameter to edge server for federal learning.

E. PARAMETER AGGREGATION
With the encrypted pruned parameter sets from I end devices,
the edge server decrypts each pruned parameter set and aggre-
gates the pruned parameters to get a new parameter set with J
parameters. Herein, the new parameter z̄ j is calculated as the
weighted mean of the parameters uploaded by I end devices,
namely

z̄ j =

I∑
i=1
αi, j zi, j

I
, j = 1, . . ., J (6)

where αi, j ∈ [0, 1] indicates the importance of the pruned
parameter zi, j .
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FIGURE 2. Proposed RMS-CNN structure.

In this way, we formulate a new parameter set

Z̄ =
(

z̄1 z̄2 · · · z̄J

)
. (7)

F. PARAMETER UPDATE
With the new parameter set Z̄ , the edge server sends it to all
end devices, and each end device updates its parameter set for
the next-round training, namely

Yi ← Z̄, i = 1, . . ., I. (8)

With multiround interactions for parameter exchange and
training, we can obtain an accurate model for anomaly detec-
tion. After completing the offline anomaly detection training,
the end devices are ready for online anomaly detection.

III. LSFL ANOMALY DETECTION STRATEGY
With the established end-edge collaborative LSFL architec-
ture, we further specify the LSFL anomaly detection strategy
in this section. In detail, we first design RMS-CNN for fea-
ture learning to enhance the capability of anomaly detection.
Then, we propose the dynamic parameter pruning algorithm
to reduce the wireless communication cost for parameter
exchange. Finally, we propose the adaptive key generation
algorithm for parameter encryption and secure transmission
in the open radio environment.

A. RMS-CNN FOR LOCAL FEATURES LEARNING
To enhance feature learning capability for anomaly detection,
we design RMS-CNN for adequately extracting, integrating,
and capturing the variability and dependence of spatial-
temporal features. The RMS-CNN structure is illustrated in
Fig. 2.

1) SPATIAL-TEMPORAL FEATURE EXTRACTION
In the wireless ICS, both normal and abnormal protocol data
are collected cyclically for training, most of which are spatial-
temporal sequences. To fully extract the spatial features of
sequences, we employ 1-D CNN (1D-CNN) to extract the
local information according to the length of input data. Thus,
we have

X spatial
i = f

(
Xi ∗Wi,l +Vi,l

) = [xi,spatial
m,n

]
M×N

(9)

Herein, Xi and X spatial
i are the input sequence and the output

feature of the convolution layer, respectively; f (·) is the acti-
vation function; ∗ denotes the convolution operation; Wi,l and
Vi,l are the weight factor and bias factor at the lth (1 ≤ l ≤ L)
convolution kernel in the convolution layer with a total of L
convolution kernels.

After spatial feature extraction, the dimension of X spatial
i

should be very high. Thus, it is necessary to reduce the redun-
dant information. We apply two pooling layers after 1D-CNN
to reduce the feature dimensions while retaining important
spatial feature information. Specifically, we divide each line
of X spatial

i into N̂ = �N/S� parts, where �� is the ceiling func-
tion. In this way, each part is with S features and denoted

as
[
xi,spatial

m,s

]
1×S

. It is first input to the maximum pooling to

obtain the maximum value of every S features, i.e.,

X max
i =

((
max

s=1,...,S

[
xi,spatial

m,s

])
1
, . . .,

(
max

s=1,...,S

[
xi,spatial

m,s

])
N̂

)

=
[
xi,max

m,n̂

]
M×N̂

(10)

where xi,max
m,n̂ denotes the n̂th feature of the mth data. In this

way, a sequence with N dimensions is shortened to a new
sequence with N̂ dimension.

Then, X max
i is input to the global average pooling to obtain

the average value of features, i.e.,

X avg
i =

N̂∑
n̂=1

xi,max
m,n̂

N̂
=
[
xi,avg

m,n̂

]
M×1

(11)

where xi,avg
m,n̂ denotes the n̂th feature of the mth data. In this

way, a sequence with N̂ dimensions is shortened to that with
only one dimension.

Furthermore, to learn the temporal features of X avg
i , we

apply GRU to extract long-memory dependencies with unique
memory property, i.e.,

X temporal
i = g

(
X avg

i

)
(12)

where g(·) denotes the activation function used in GRU.
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2) FEATURE DEPENDENCE CAPTURE
In order to reduce information loss during spatial-temporal
feature extraction, we further capture the dependence of
spatial-temporal features by multihead self-attention. To
maintain the relative consistency of the original spatial-
temporal features, we first add a residual connection after
the spatial-temporal feature extraction, wherein the residual
connection integrates the features extracted by 1D-CNN and
GRU. In this way, both the enhanced features and unmodi-
fied original input features provided by 1D-CNN and GRU
are fully considered. Mathematically, the extracted features
X spatial

i and X temporal
i from 1D-CNN and GRU are added

together, i.e.,

X res
i = X spatial

i + X temporal
i . (13)

Then, we capture the dependence in X res
i by calculating

the importance of each location with respect to other lo-
cations. Specifically, we map the input features to different
subspaces by multiple times linear transformations to obtain
more different information. Furthermore, by calculating mul-
tiple attention heads and paying attention to different location
information and dependencies in parallel, we can get more
comprehensive and accurate global information.

Mathematically, X res
i is linearly transformed by a learnable

parameter matrix to obtain query vector Qi, key vector Ki and
value vector Vi. Each vector is further divided into H numbers
of attention heads. Then, the self-attention of hth (1 ≤ h ≤ H)
head is calculated as

X attn
i,h = softmax

(
Qi,h • KT

i,h√
d

)
Vi,h, h = 1, . . .,H (14)

where Qi,h = X res
i U Q

i,h, Ki,h = X res
i U K

i,h, and Vi,h = X res
i UV

i,h
are the hth query vector, key vector, and value vector, re-
spectively; U Q

i,h, U K
i,h, and UV

i,h are the learnable parameter
matrix for linear transformation; softmax(·) is the normaliza-
tion function;

√
d is the dimension of Qi,h and Ki,h; and • is

the dot product.
To get all features captured through multihead self-

attention, we connect the output of each attention head to form
a large matrix, which is then multiplied by the weight matrix
for final linear transformation. That is

X mattn
i = c

(
X attn

i,1 ,X attn
i,2 , . . .,X attn

i,H

) ·U O (15)

where c(·) is the connection function; and U O is the learnable
parameter matrix.

After calculating the multihead self-attention matrix, the
output feature X mattn

i together with the original X res
i is again

used to learn the enhanced features denoted as X mres
i , i.e.,

X mres
i = X res

i + X mattn
i . (16)

Finally, we use the general flatten layer and fully connected
layer to obtain the parameters and perform anomaly detec-
tion. Note that the initial or updated parameters are utilized
throughout the aforementioned process for training.

B. DYNAMIC PARAMETER PRUNING FOR LIGHTWEIGHT
FEDERAL LEARNING
As a large number of parameters are generated after RMS-
CNN training, the wireless communication cost for parameter
exchange of federal learning increases dramatically. However,
the communication resources (e.g., bandwidth and transmit
power) are very limited in the industrial wireless network,
which certainly cannot support the massive parameter ex-
change frequently. Thus, we propose the dynamic parameter
pruning algorithm to reduce the wireless ICS. Specifically, at
the end of each training round, each end device dynamically
prunes its parameters by fully considering the features and
contributions of parameters.

1) PARAMETER CONTRIBUTION EVALUATION
To evaluate the contribution of the parameter after training,
we propose to calculate the information entropy gain. First,
we make the parameter yi, j discrete as

yi, j =
{

1, yi, j > 0
0, yi, j ≤ 0.

(17)

Then, we calculate the information entropy of each parameter
as

ei, j = −p(yi, j ) log p(yi, j ) (18)

where p(yi, j ) is the ratio of parameter yi, j to the total pa-
rameter set Yi. Similarly, the parameter after training ỹi, j can
also be discrete and the information entropy is calculated as
ẽi, j = −p(ỹi, j ) log p(ỹi, j ).

Then, we calculate the information entropy gain of each
parameter as

�ei, j = ei, j − ẽi, j . (19)

With the information entropy gain, we can evaluate the con-
tribution of each parameter, where the greater the information
entropy gain, the higher the contribution of the parameter. In
this way, we can enhance the training performance.

2) DYNAMIC PARAMETER THRESHOLD SETTING
To further measure the volatility of the parameters and ensure
the reliability of the contribution, we further calculate the
standard deviation of the information entropy gain as

�i =

√√√√√
J∑

j=1
(�ei, j − ēi )2

J
(20)

where ēi =
∑J

j=1 �ei, j

J is the average value of information en-
tropy gain.

As different parameters have different contributions, we set
the parameter pruning threshold based on �i. In this article,
we mainly consider the parameters with respect to weight,
bias, and gradient since they significantly impact the training
performance. Specifically, the parameter pruning thresholds
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are calculated as

�
weight
i = �iϕ (21)

�bias
i = �iζ (22)

�
grad
i = �iψ (23)

where �weight
i , �bias

i , and �grad
i are the pruning thresholds

with respect to weight, bias, and gradient. ϕ, ζ , and ψ are
weight factor, bias factor, and gradient factor, respectively.
In this way, we can select different thresholds for parameter
pruning.

3) PARAMETER PRUNING AND RECONSTRUCTION
With the parameter pruning threshold calculated based on the
information entropy gain, we prune the parameters dynami-
cally. Specifically, according to the parameter characteristics
with respect to weight, bias, and gradient, we prune the pa-
rameters according to (21)–(23), respectively. If a parameter is
larger than the calculated threshold, the parameter is reserved;
Otherwise, the parameter is pruned to be 0, namely it is in-
active. In this way, we reduce the data volume of redundant
parameters with low contributions.

However, after parameter pruning, the value range of pa-
rameters is compressed, which may influence the performance
of federal learning. Thus, we further enlarge the value range of
parameter. The scaling factor is defined as the ratio of the sum
of the parameters’ absolute values before and after pruning,
namely

zi, j ←

J∑
j=1
|yi, j |

J∑
j=1
|zi, j |

zi, j . (24)

Then, we multiply the parameters by (24) to enhance the spar-
sity of parameter’s value range. In this way, we reconstruct the
pruned parameters for federal learning.

C. ADAPTIVE KEY GENERATION FOR PARAMETER
ENCRYPTION
When the pruned parameters are exchanging between end
devices and edge server for federal learning, the risk of attack
increases substantially in the open radio environment. Thus,
to avoid being eavesdropped and attacked, we propose the
adaptive key generation algorithm to encrypt parameters for
secure wireless communication.

1) KEY NEGOTIATION
The key is generated by each communication pair, namely
end device and edge server, and we do not use third party for
the distributed ICS. Hence, in order to establish the secure
transmission channel for each communication pair, we ran-
domly generate key pairs for all communication pairs. Each
key pair includes a private key K r

i and a public key Ku
i . K r

i is a
random number, while Ku

i is generated based on K r
i where Ku

i

TABLE 1. Encryption Algorithm Comparison

is a point on the elliptic curve y2 = x3 + ax + b subjecting to
4a3 + 27b2 	= 0.

Then, the communication pair retains the private key K r
i

and exchanges the public key Ku
i to each other to ensure

that they are the only participants who can decrypt them.
With the received Ku

i , the communication pair performs key
negotiation. Specifically, EDi and the edge server negotiate
on their own K r

i to obtain a shared key Ks
i , where Ks

i = K r
i Ku

i
is calculated by the communication pair and should be the
same. By key negotiation, the two participants over the same
communication channel have the same key Ks

i , while those
over different communication channels have different keys.

2) KEY CONVERSION
To ensure the security of parameter exchange, we employ the
widely used AES algorithm to encrypt the pruned parameters.
We first prepare the input key material Km

i by adding a random
number Ri to Ks

i , namely Km
i = c(Ks

i ,Ri ). However, Km
i can-

not be directly applied to encrypt the pruned parameters since
the length of Km

i is much longer than the length supported by
the AES algorithm. Thus, we need to covert the format of Km

i
to make its length is supported by AES algorithm.

As Hash function maps the key with any length to that with
a fixed length, we employ Hash function to convert the format
of the key. Meanwhile, we can also enhance the security of the
key as Hash function is one way, namely the output is unique
and irreversible, and the attacker cannot obtain the original
key by calculating the Hash value reversely. Furthermore, to
increase the complexity of the key, we execute multiple times
of Hash operations as

Khash
i,Ti
= HASH(Km

i ,Ti ) (25)

where HASH(Km
i ,Ti ) is the Hash function indicating Ti times

Hash operation for Km
i . Ti is calculated as

Ti =
⌈

Li

Lhash
i

⌉
(26)

where Li is the length supported by the AES algorithm (i.e.,
128 bits, 192 bits, or 256 bits), and Lhash

i is the output length
by the Hash function.

Then, we connect the output of each Hash operation to
obtain the key until the length is supported by the AES al-
gorithm, i.e.,

Ki = c
(

Khash
i,1 ,Khash

i,2 , . . .,Khash
i,Ti

)
. (27)
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TABLE 2. Dataset Characteristics

TABLE 3. Confusion Matrix Classification Results

In this way, we obtain the key for parameter encryption.

3) PARAMETER ENCRYPTION
As the volume of industrial data is generally very large, we
employ CounTeR (CTR) in AES to split the large data into
small blocks quickly and encrypt parameters. Specifically,
CTR generates the key stream based on a counter and Ki,
and performs the exclusive OR operation with the plaintext
parameters to obtain the encrypted parameters. The decryp-
tion process is on the contrary. It is worth noting that with
CTR mode, multiple parameter blocks can be encrypted and
decrypted simultaneously, which speeds up the encryption
process.

Table 1 makes a comparison on the proposed algorithm
with the basic AES algorithm. Obviously, by dynamically
generating different key pairs for parameter exchange, the pro-
posed algorithm is more secure than the basic AES algorithm
even with some complexity enhancement.

D. SUMMARY OF THE PROPOSED STRATEGY
With the aforementioned proposed RMS-CNN, dynamic pa-
rameter pruning, and adaptive key generation algorithms,
we summarize the LSFL anomaly detection strategy as
Algorithm 1 corresponding to the process depicted in Fig. 1.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENT SETTINGS
All experiments are conducted on TensorFlow-GPU-2.7.0
with Python 3.9 running on Intel i7-11700 CPU and NVIDIA
RTX4060-16 G GPU. To fully evaluate the proposed strategy,
we select three typical datasets for experimental validation,
namely Smart Meters [16], NSL-KDD [17], and UNSW-
NB15 [18]. The fundamental characteristics of these datasets
are described in Table 2. The data are divided into two parts:
80% of one dataset is used for training, while the remaining
20% is used for testing.

Furthermore, the proposed LSFL anomaly detection strat-
egy with RMS-CNN, denoted as RMS-CNN-LSFL, is com-
pared with two benchmark strategies denoted as CNN-FL and

Algorithm 1: LSFL anomaly detection strategy.

MLP-FL. Herein, CNN-FL is a distributed federal learning
anomaly detection strategy based on 1D-CNN with GRU [11],
while MLP-FL is a similar strategy based on the MLP
network [16].

To evaluate and compare the performances of different
strategies, we calculate four performance metrics, namely Ac-
curacy, Precision, Recall, and harmonic mean F-score, which
are calculated as follows:

Accuracy = T P + T N

T P + T N + FN + FP
(28)

Precision = T N

T N + FP
(29)
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FIGURE 3. Accuracy versus communication round for different strategies with different numbers of devices.

TABLE 4. Performance Evaluations of Different Strategies At Different Datasets

FIGURE 4. Running time of RMS-CNN-LSFL with and without dynamic
parameter pruning on different datasets.

Recall = T N

T N + FN
(30)

F − Score = 2 · Precision · Recall

Precision+ Recall
(31)

where true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) are defined in Table 3.

Obviously, Accuracy indicates the proportion of all cor-
rectly detected samples to the total samples as given by (28).
The higher of the accuracy, the more effectiveness of the
anomaly detection strategy. Precision indicates the propor-
tion of true abnormal samples among the predicted abnormal
samples as given by (29). Recall indicates the proportion
of abnormal samples correctly detected in true abnormal

FIGURE 5. Comparison of communication costs on different datasets.

samples as given by (30). Harmonic mean F-Score compre-
hensively measures precision and recall as given by (31). The
higher of the precision, recall, and harmonic mean, the lower
probability of false alarm by the anomaly detection strategy.

B. PERFORMANCE COMPARISON
Fig. 3 first verifies the effectiveness of the three federal
learning strategies on the Smart Meter dataset by evaluat-
ing the accuracy versus communication round (i.e., the times
for parameter exchange). We can observe that the accuracy
increases with the increase of communication rounds, and
finally, remains invariability. That is to say, all strategies can
converge, indicating that the proposed strategies are effective.
Herein, the accuracy of RMS-CNN-LSFL remains higher than
those of CNN-FL and MLP-FL, indicating the advantage of
the proposed RMS-CNN-LSFL.
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FIGURE 6. Accuracy for tampering attack on different datasets.

FIGURE 7. Accuracy for injecting attack on different datasets.

Moreover, the convergence speed of RMS-CNN-LSFL
is more quickly than those of CNN-FL and MLP-FL for
different numbers of end devices. This is because the combi-
nation of multihead self-attention and residual connection in
RMS-CNN-LSFL speeds up the process of feature learning.
Meanwhile, the residual connection can make the model eas-
ier to optimize by mitigating the gradient vanishing problem.
Therefore, RMS-CNN-LSFL can converge more quickly and
stably.

More specifically, Table 4 comprehensively compares the
performance with respect to accuracy, precision, recall, and
F-score for different strategies with different numbers of end
devices. Obviously, when I = 4, the accuracy, precision, re-
call, and F-score of the proposed RMS-CNN-LSFL strategy
on the Smart Meter dataset are 99.982%, 99.981%, 99.983%,
and 99.982%, respectively. These performance values are
much better than those of CNN-FL with 98.031%, 97.972%,
97.634%, and 97.800%, and those of MLP-FL with 97.801%,
97.815%, 97.778%, and 97.796%. Similarly, the performance
evaluations on NSL-KDD and UNSW-NB15 also indicate that
RMS-CNN-LSFL achieves much better accuracy, precision,
recall, and F-score than CNN-FL and MLP-FL. In detail, the
accuracy of RMS-CNN-LSFL is above 99%, while those of
CNN-FL and MLP-FL are generally below 99%. The main
reason is that the proposed RMS-CNN-LSFL with multi-
head self-attention network can capture more spatial-temporal
features for the data with long-term dependencies.

Fig. 4 compares the runtime of the proposed RMS-CNN-
LSFL strategy with and without dynamic parameter pruning
on different datasets. Note that the running time include all

the time for feature learning, parameter pruning, encryption,
and exchange as described in Section III. We can observe
that, with dynamic parameters pruning, the runtime is reduced
by 21.2%, 15.6%, and 13.7% on the three datasets. This is
because less parameters are exchanged after pruning, while
the accuracy is not loss.

Fig. 5 depicts the processed data volume at different stages
by RMS-CNN-LSFL, CNN-FL, and MLP-FL on different
datasets. It is observed that the processed parameters by fed-
eral learning is only 4%, 8%, and 13% of the raw data on the
three datasets. Furthermore, with dynamic parameter pruning,
the parameters are reduced to only 2.4%, 5.9%, and 10.4% of
the raw data. That is to say, our proposed strategy saves at least
89.6% wireless communication cost for parameters exchange.

Fig. 6 evaluates how tampering attacks impact the perfor-
mance of different strategies on the three datasets. With the
increase of tampering attack, namely more and more param-
eters are ineffective, the accuracy of CNN-FL and MLP-FL
is gradually decreasing since they do not perform parameter
encryption. For this case, once the parameters are tampered,
the features and distribution of parameters cannot be ac-
curately captured, thus decreasing the accuracy of anomaly
detection by federal learning. In contrast, the accuracy of
RMS-CNN-LSFL does not decrease and remains the highest,
since RMS-CNN-LSFL performs adaptive key generation to
encrypt the parameters and certainly prevent the tampering
attacks.

Furthermore, Fig. 7 studies the influence of injecting at-
tacks on the accuracy of different strategies. By evaluating
on different datasets, we can observe that the accuracy of
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all strategies decreases with the increase of malicious data
continuously injected. However, our proposed strategy still
remains the highest accuracy than those of CNN-FL and
MLP-FL.

Comparing Fig. 7 with Fig. 6, we can also observe that
the accuracy of all strategies significantly decreases when
there is injecting attack. This is because tampering attack and
injecting attack are different kinds of attacks, which make dif-
ferent influence on the valid parameters for federal learning.
Tampering attack directly modifies the content of parameters,
which can make the unencrypted parameters invalid or even
destructive. In this way, the proposed strategy with parameter
encryption can protect the pruned parameters from tamper-
ing attack. In contrast, injecting attack does not destroy the
existing parameters, but add more invalid or even destruc-
tive parameters. In this way, the ratio of valid parameters is
decreased, which decreases the accuracy of all strategies.

V. CONCLUSION
In this article, we established an end-edge collaborative LSFL
architecture and proposed the LSFL anomaly detection strat-
egy for the wireless ICS. First, the RMS-CNN structure was
designed for local spatial-temporal feature learning at end
devices. Then, the dynamic pruning algorithm based on infor-
mation entropy gain was proposed to reduce the wireless com-
munication cost for parameter exchange. Furthermore, the
adaptive key generation algorithm was presented to encrypt
the pruned parameters for edge federal learning. Extensive
experiments were performed on three representative datasets,
namely Smart Meter, NSL-KDD, and UNSW-NB15, during
which two benchmark strategies were compared. The results
showed that the proposed LSFL anomaly detection strategy
achieves above 99% accuracy on different datasets, where at
least 89.6% communication cost is reduced and tampering and
injecting attacks are defended.

To summarize, the proposed anomaly detection strategy
simultaneously considered the powerful computation resource
requirement of federal learning, the low communication cost
requirement of end-edge collaborative computing and the high
security requirement of parameter exchange in the open ra-
dio environment of the wireless ICS. This is different from
existing federal learning-based anomaly detection strategies,
where only communication cost or security issue is con-
sidered. In the future, we will further consider the joint
computation and communication allocation for LSFL in the
end-edge collaborative architecture.
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