
Received 20 December 2023; revised 29 January 2024; accepted 2 February 2024. Date of publication 7 February 2024;
date of current version 22 February 2024. The review of this article was arranged by Associate Editor Juan J. Rodriguez-Andina.

Digital Object Identifier 10.1109/OJIES.2024.3363500

Automatic Synthesis of Recurrent Neurons for
Imitation Learning From CNC

Machine Operators
HOA THI NGUYEN 1,2, ROLAND OLSSON 1, AND ØYSTEIN HAUGEN 1 (Member, IEEE)

1Faculty of Computer Sciences, Engineering and Economics, Høskolen I Østfold Universit, 1757 Halden, Norway
2Department of Informatics, University of Oslo, 0373 Oslo, Norway

CORRESPONDING AUTHOR: HOA THI NGUYEN (e-mail: hoan@hiof.no).

This work was supported in part by Arrowhead Tools, ECSEL, under Grant No 826452 (Arrowhead Tools) and in part by the European Union Horizon 2020
Research and Innovation Programme and the member states.

ABSTRACT Analyzing time series data in industrial settings demands domain knowledge and computer
science expertise to develop effective algorithms. AutoML approaches aim to automate this process, reducing
human bias and improving accuracy and cost-effectiveness. This article applies an evolutionary algorithm
to synthesize recurrent neurons optimized for specific datasets. This adds another layer to the AutoML
framework, targeting the internal structure of neurons. We developed an imitation learning control system
for an industry CNC machine to enhance operators’ productivity. We specifically examine two recorded
operator actions: adjusting the engagement rates for linear feed rate and spindle velocity. We compare the
performance of our evolved neurons with support vector machine and four well-established neural network
models commonly used for time series data: simple recurrent neural networks, long-short-term-memory,
independently recurrent neural networks, and transformers. The results demonstrate that the neurons evolved
via the evolutionary approach exhibit lower syntactic complexity than LSTMs and achieve lower error rates
than other networks. They yield error rates 270% lower for the first operation action, while the error rates
are 20% lower for the second action. We also show that our evolutionary algorithm is capable of creating
skip-connections and gating mechanisms adapted to the specific characteristics of our dataset.

INDEX TERMS CNC machine, evolutionary algorithm, imitation learning, recurrent neural networks, smart
manufacturing, time series analysis.

I. INTRODUCTION
Time series analysis plays a crucial role in industrial ap-
plications, providing a powerful tool for understanding and
optimizing processes. Techniques such as trend analysis and
anomaly detection help identify patterns, enabling informed
decision-making. In the finance sector, these techniques are
applied for market analysis and forecasting. The manufactur-
ing sector employs time series analysis for detecting faults,
prolonging the lifespan of equipment, and improving safety
measures. Furthermore, with the integration of advanced
sensors and Internet of Things (IoT) technologies, various
industries are increasingly adopting time series analysis to
boost operational efficiency and productivity.

Designing AI algorithms for time series applications is
complex and requires both domain knowledge and expertise
in machine learning (ML) techniques. An established practice

of ML in industries is CRoss Industry Standard Process for
Data Mining (IoT), in which an ML project goes through six
iterative stages: 1) Business Understanding, 2) Data under-
standing, 3) Data preparation, 4) Modeling, 5) Evaluation, and
6) Deployment [1].

The process of creating a machine learning model, which
happens in stages (2), (3), (4), (5), is primarily a task for
ML experts. They spend time examining different models,
weighing their advantages and disadvantages. It is important
for ML specialists to collaborate with domain experts to fully
understand the context of the collected data and the project’s
overall objectives, navigating the search for the most appro-
priate model.

The limited understanding of the intrinsic characteristics
of a dataset can often introduce biases in steps like feature

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/VOLUME 5, 2024 91

https://orcid.org/0009-0009-5202-2563
https://orcid.org/0000-0002-8345-2613
https://orcid.org/0000-0002-0567-769X
mailto:hoan@hiof.no

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

FIGURE 1. Four stages in model generation.

extraction and model design choice [2]. Automated machine
learning (AutoML) seeks to reduce these biases by automating
many steps in the machine learning pipeline, thus leading
to cost reduction and performance improvement [3]. Deep
learning techniques have emerged as a powerful approach
for time series analysis, as they reduce the need for manual
feature engineering. This advantage is achieved by leveraging
the deep architectures of neural networks to learn meaningful
data representations autonomously [4], [5].

Traditional ML methods encompass stages 1 and 4 in Fig. 1,
covering model and hyperparameter search. AutoML tech-
niques for these stages include grid, manual, and random
search [6] to determine the optimal set of hyperparameters.
The emergence of deep learning methods introduces an ad-
ditional level in AutoML, denoted as stage 3: architecture
search, also known as neural architecture search (NAS). This
phase concentrates on identifying the most effective network
topology or architecture. The search is performed on a prede-
fined set of components [7], such as convolutional neurons
and recurrent neurons, to determine the best arrangement
within and between layers.

This article applies an AutoML method that introduces an
extra layer to the AutoML hierarchy. It focuses on exploring
different internal architectures of the components, specifically
targeting recurrent neurons, whereas AutoML traditionally
optimizes the overall architecture using fixed and predeter-
mined components.

To address the challenge of crafting the internal structure
of a recurrent neuron, we propose using recurrent neurons
generated automatically using automatic design of algorithms
through evolution (ADATE) [8]. These specialized ADATE-
generated recurrent neurons (ARNs) are tailored for each
unique dataset. The effectiveness of ARNs has been demon-
strated in various applications across different domains, in-
cluding the prediction of oil well events using the 3 W
dataset [9].

This article presents a specific application of ARNs in
synthesizing operators’ experiences in controlling a computer
numerical control (CNC) machine. We collected the dataset
over a one-month period from an industrial CNC machine, a

Mazak i500 series, which is a state-of-the-art 5-axis CNC ma-
chine that is equipped with integrated sensors. The data were
collected via MTConnect,1 with sensor data being streamed
alongside operators’ action logs. Our objective is to apply
imitation learning techniques to capture the operators’ skilled
reactions and incorporate them into an algorithm. The primary
purpose of this algorithm is to reduce the need for contin-
uous monitoring and support operators in decision-making
processes. We aim to optimize the operation of the CNC
machine and enhance overall productivity. We approached the
problem by formulating it as a behavioral cloning task, where
we used the same information available to operators during
production as input and used their actions as the ground truth.
Our objective was to replicate two key actions: controlling the
engagement rates for linear feed rate and spindle velocity. We
conducted experiments involving the evolution of ARNs using
our CNC dataset.

To assess the performance of ARNs, we compared it with
other popular neural network algorithms for time series: sim-
ple RNNs, LSTMs, independently RNNs (IndRNNs) [10],
transformers [11] and one machine learning algorithm that
does not use neural networks, for instance, support vector
machines (SVMs). These techniques represent the current
state-of-the-art in deep learning for time series analysis. Our
study showed three key findings. First, the ARNs designed for
our dataset outperformed other types of RNNs. It yields error
rates 2.7 times lower than the next best-performing network
for the first output action and 20% error rates lower than the
next best-performing networks for the second output action.
The ARNs achieved these superior results while maintaining
lower syntactic complexity compared to LSTMs. Second, we
provide evidence of the optimality of the ARNs for our dataset
by demonstrating that they align well with its characteris-
tics. This suggests that the ARNs have evolved to effectively
capture and model the unique patterns and dynamics of our
specific data. Finally, our analysis of the ARNs’ structures
showcases the ability of ARNs to evolve novel architectures
featuring gated mechanisms and skip connections through
time.

The rest of this article is organized as follows:
Section II provides background information, covering dif-
ferent structures of recurrent neurons used in sequential
modeling (see Section II-A), automatic design of algorithms
through evolution (ADATE) for recurrent neurons (see Sec-
tion II-B), and related work in CNC production (see Section
II-C). In Section III, we introduce the research scenario that
serves as the basis for the experimental analysis conducted in
Section IV. The obtained results are discussed in Section V,
followed by the concluding remarks in Section VI.

II. BACKGROUND
A. SEQUENTIAL MODELING
In this article, we adopt the convention of using bold text to
represent matrices and vectors. Superscripts (t) are used to

1[Online]. Available: https://www.mtconnect.org/

92 VOLUME 5, 2024

https://www.mtconnect.org/

FIGURE 2. Legends for circuit diagrams.

denote the timestep index. For a comprehensive understand-
ing of the symbols and notations used throughout the article,
please refer to Fig. 2.

1) RECURRENT NEURAL NETWORKS (RNNS)
RNNs are specifically designed to handle sequential data
where information from previous timesteps influences the net-
work’s current output. In an RNN cell, the hidden state h(t) is
computed at each timestep using the current input token x(t)

and the previous hidden state h(t−1). The hidden state serves
as the internal memory component within the simple RNN
cell [12]

h(t) = σ (W x(t) + Rh(t−1) + bh)

y(t) = f (Uh(t) + by). (1)

The output at a given timestep may rely not only on the most
recent memory but also on information from many preceding
timesteps, indicating a long-term dependence. However, un-
folding RNNs along the temporal sequence generates a very
deep computational graph. When optimizing such networks
using backpropagation, the propagated error signal tends to
diminish with each timestep, causing the vanishing gradient
problem [2], [13].

We will refer to this architecture as the “simple RNN”
architecture to differentiate it from other variations.

2) LONG SHORT-TERM MEMORY
In 1997, Hochreiter and Schmidhuber introduced long short-
term memory (LSTM) to address the limitations of traditional
RNNs. LSTM incorporates a gated mechanism to regulate the
flow of information, employing three gate blocks: the forget
gate f (t), the input gate i(t), and the output gate o(t) [14]. Over
the past two decades, LSTM has proven to be one of the most
successful RNN structures, significantly contributing to fields
like speech recognition and natural language processing.

This study employs a popular variant of LSTM known as
LSTM with peephole connections [15]. To mitigate the van-
ishing gradient problem, an ideal activation function should
sustain the gradient for long-term dependencies. In LSTM, the
sigmoid function σ is utilized as gates to regulate the flow of
information, while the tanh function (h) is used to squash the
output. In line with recommendations from previous studies,
an additional bias is introduced to the forget gate [16]. The
circuit diagram for LSTM is shown in Fig. 3. Its mathematical

FIGURE 3. Circuit diagram for LSTM.

formulas are as follows:

Input block:

z(t) = Wzx
(t) + Rzy

(t−1) + bz

Forget gate:

f (t) = σ (Wf x(t)+R f y(t−1)+p f � c(t−1)+b f + 1)

Input gate:

i(t) = σ (Wix
(t) + Riy

(t−1) + pi � c(t−1) + bi)

Output gate:

o(t) = σ (Wox(t) + Roy(t−1) + po � c(t−1) + bo)

Cell memory:

c(t) = z(t) � i(t) + c(t−1) � f (t)

Output

y(t) = h(c(t)) � o(t).

The values of gates f , i, and o in LSTM are dynamically
adjusted based on the context provided by input information,
previous recurrent states, and memory states. Through the
mechanisms of memory retention and information “forget-
ting,” the LSTM cell can, at each timestep, selectively choose
and preserve long-term dependencies. This dynamic selec-
tion process leads to variable-sized long-term dependencies
at each timestep.

However, LSTM has faced criticism for its complexity [16].
The effects of different gates vary across datasets. Jozefowicz
et al. [16] reported a significant drop in performance upon re-
moving the forget gate, while the output gate can be removed
with minimal impact. On the other hand, Greff et al. [15]
reported contrasting results, noting that removing either the
output gate or the forget gate had a significant adverse ef-
fect on the performance of their datasets. These divergent
observations emphasize the dataset-dependent nature of gate
functionality in LSTM networks. Variants of LSTM, such as
gated recurrent unit (GRU) networks, have been developed as
simpler alternatives. GRU, equivalent to LSTM with f (t) =
1 − i(t) [15], [17], does not possess an explicit memory cell

VOLUME 5, 2024 93

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

and exposes the entire hidden state without output gate con-
trol. Despite its simplicity, GRU remains highly competitive
with LSTM and even outperforms it in many tasks [18].

3) ATTENTION MODELS AND TRANSFORMERS
The sequential nature of RNNs is not without its drawbacks,
such as the nearby context bias, where information from re-
cent timesteps has a greater influence on the current timestep
compared to much earlier timesteps. To address this limita-
tion, the attention mechanism was introduced by Bahdanau
et al. [19] for neural machine translation. This mechanism
enables the creation of a context summarization that aligns
the input sequence with the output sequence.

The transformer models, introduced by Vaswani et al. [20],
employed a self-attention mechanism, where the input se-
quence attends to itself, identifying relevant relationships
between components within the same time series sequence.
Unlike RNNs, the attention mechanism does not inherently
consider the sequential nature of time series. As a result,
additional input of positional encoding is required to inform
the algorithm about the sequential order of the time series.

Originally developed for neural machine translation, the
transformer architecture has gained popularity in time series
analysis. The clear advantage of transformers over RNNs
lies in their global associative memory. However, the effec-
tiveness of transformers for time series analysis remains a
subject of debate [21]. Nevertheless, researchers have ex-
plored various adaptations of transformers models tailored
for time series analysis. Several of these variations focus on
tasks such as long sequence time series forecasting or univari-
ate forecasting [22], [23]. In this study, we chose a version
of the transformer models developed by Zerveas et al. [11]
specifically designed for multivariable time series analysis
that fits our purpose. This variation removes the decoder part
of Vaswani’s model and replaces the deterministic sinusoidal
encodings with fully learnable positional encodings.

4) OTHER DESIGNS
Mikolov et al. [24] introduced a differentiable context layer,
denoted as st , in conjunction with the simple recurrent layer.
This context layer aims to slow down the changes occurring
in the hidden layer, thereby preserving long-term depen-
dencies within the model. Another approach to enforcing
long-term dependence is through time skipping, which avoids
the need for increasing the number of gate parameters. Cam-
pos et al. [25] used a binary update gate to determine whether
a state should be updated or copied from the previous state.
Inspired by skip connections in CNNs, Chang et al. [26]
proposed a dilated RNN structure that incorporates skip con-
nections through time.

In the realm of language models, external memory systems
such as the neural cache have been employed [27], drawing in-
spiration from cache memory in computer systems. The neural
turing machine, developed by Graves et al. [28], introduced

FIGURE 4. Structure of a kingdom of programs in ADATE.

an external memory component while utilizing LSTM as a
controller for reading from and writing to the memory.

These various techniques and architectures showcase the
wide range of approaches taken to address the challenges
of preserving long-term dependencies and enhancing the
memory capabilities of RNN. In this study, we chose the
independently recurrent neural network (IndRNN) developed
by Li et al. [10] to represent other variations of RNNs. In
IndRNN, neurons within a layer operate independently from
one another (2). By stacking multiple layers of IndRNN (3),
the architecture enables effective training of deeper and longer
IndRNN networks

h(t) = σ (W x(t) + u � h(t−1) + b) (2)

h(t)
n = σ (wnx(t) + unh(t−1)

n + bn). (3)

B. AUTOMATIC DESIGN ALGORITHMS THROUGH
EVOLUTION
Evolutionary computing is rooted in the principles of natural
evolution and selection. The fundamental concept involves
creating a set of possible solutions for a specific problem.
Over successive generations, these solutions undergo evolu-
tion transformations, aiming to improve the most effective
solutions as they progress.

1) Population Structure: ADATE employs a hierarchically
structured population called a kingdom as shown in
Fig. 4. A kingdom is comprised of multiple families,
each corresponding to a level of syntactic complexity.
One family consists of many genera. Each genus has
a group of founding programs. One founding program
generates a species of many programs. Programs within
a single species share similarities and often occupy the
same level or plateau in the fitness landscape [29].

2) Program Transformations: The primary transformation
technique is replacement (R), which comes in three
forms: replacing an entire small subexpression, reusing
a complete subexpression, and reusing parts of a subex-
pression. The replacements that preserve semantics and

94 VOLUME 5, 2024

do not deteriorate the program’s performance are a
special subset of R known as replacement preserv-
ing equality (REQ). REQs are expensive to find and
can be seen as a neutral walk within the search land-
scape. The neutral walks play a crucial role in both
machine search algorithms and natural evolution. They
allow the exploration of a plateau in the search land-
scape and the identification of a transition point to the
next level. Additionally, ADATE incorporates abstrac-
tion (ABSTR) for generating new functions and case
distribution (CASE-DIST) for adjusting the scope of
variables and functions. Both ABSTR and CASE-DIST
transformations are considered neutral and pose fewer
combinatorial challenges compared to R and REQ trans-
formations [29].

3) Recurrent neuron representation: in ADATE, recurrent
neurons are represented as functional programs written
in standard ML (SML) [30]. An example of how an
LSTM neuron is written in SML can be found in Ap-
pendix A. The novelties of ARNs are attributed to three
main building blocks:

a) Four memory states per neuron instead of one in a typi-
cal recurrent neuron as in Section II-A

f (xt , s0,t , s1,t , s2,t , s3,t , yt) = (s0,t+1,

s1,t+1, s2,t+1, s3,t+1, yt+1)

where f denotes the neuron.
b) Innovative activation functions can be created through

an evolutionary process using a predefined set of activa-
tion functions, namely tanh, relu, and srelu. The srelu
is a leaky linear approximation of tanh; see (4).

c) The recurrent output and memory states can be in the
form of self or others.

During the evolutionary process, various combinations of
these building blocks are used to create individual programs.
For example, by nesting the srelu functions, the evolutionary
process can roughly adjust the slope of srelu [(4), (5)]

srelu(x) =
⎧⎨
⎩

−1 + 10−2 · (x + 1), x < −1
x, −1 ≤ x ≤ 1
1 + 10−2 · (x − 1), x > 1

(4)

srelu(srelu(x)) =
⎧⎨
⎩

−1 + 10−4 · (x + 1), x < −1
x, −1 ≤ x ≤ 1
1 + 10−4 · (x − 1), x > 1.

(5)

To accommodate the evaluation of these programs, the follow-
ing weight mappings are defined:

a) Five weight mappings for input xt : W(x,0), W(x,1), W(x,2),
W(x,3), W(x,4)

b) Five weight mappings for “other” memory states that
are hollow weight matrices with zeros along their diag-
onal to exclude “self”: U(s,0), U(s,1), U(s,2), U(s,3), U(s,4).

c) Five weight mappings for “other” recurrent outputs that
also are hollow weight matrices: U(y,0), U(y,1), U(y,2),
U(y,3), U(y,4).

d) Auxiliary weights ai are multiplied elementwise
(Hadamard product). The number of auxiliary weights
varies depending on the dataset.

The total runtime of ADATE is linked to the average time it
takes to execute each newly created program, multiplied by
the total number of programs executed. A cost limit deter-
mines the number of offspring for a program. The cost limit
is increased as ADATE progresses. However, the kingdom
cardinality and the cost limit are proportional to the maximum
program size. New and better programs frequently replace
some in the kingdom, preventing an explosion of the number
of programs.

C. RELATED WORKS IN COMPUTER NUMERICAL CONTROL
PRODUCTION
CNC production consists of two primary stages: the engineer-
ing and operational phases (see Fig. 5). The engineering phase
operates within the realm of information, where engineers cre-
ate blueprints for machine components. This phase’s research
focuses on overcoming challenges related to optimizing tool-
paths in terms of energy efficiency, speed, and precision ([31],
[32], [33], [34]). Once the blueprints are finalized, they are
transmitted to the CNC machines for actual production. CNC
machine operators are tasked with loading materials, oversee-
ing the production process, and conducting quality checks.
Research in this phase primarily addresses machine monitor-
ing, encompassing aspects like tool condition monitoring, tool
wear monitoring, and quality control ([35], [36], [37]), which
fall under the domain of CNC operators. While sensors are
optional in the information phase [34], they play a crucial
role in this realm, dealing with tangible properties not al-
ways represented in the information sphere, such as vibration
and temperature. This is why digital twins have emerged as
a valuable technology, offering visualization and monitoring
capabilities otherwise unavailable. However, the effectiveness
of sensors heavily depends on their type and installation lo-
cation [38]. Dealing with real-world properties also leads to
a significantly larger parameter space. Consequently, while
digital twins hold promise for machine monitoring, their
development is still in its infancy, facing challenges in cre-
ating a highly realistic virtual representation of the CNC
machine [39]. On the other hand, the advent of IoT tech-
nologies provides an opportunity to leverage machine learning
in addressing these issues, owing to the massive amount of
data they generate [38]. The use of real-time data for opera-
tional purposes has been explored in previous studies. Moreira
et al. [37] developed a real-time monitoring and control sys-
tem incorporating a model for predicting surface roughness
and a neuro-fuzzy inference system. Their experiment demon-
strated that their system could achieve superior surface quality
compared to human operators. Sakarinto et al. [40] proposed
a decision support system for sharing knowledge and exper-
tise among operators. The foundation of their expert system

VOLUME 5, 2024 95

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

FIGURE 5. Production procedure of a CNC machine.

lies in a manually curated knowledge base. Both approaches
required expert familiarity with CNC machinery and did not
fully utilize Big Data resources.

III. RESEARCH SCENARIO
Mekanisk Service Halden,2 our industrial partner, is a
provider of mechanical services specializing in the precise
machining of parts. They possess several cutting-edge CNC
machines from the Mazak i-series that are equipped with
sensors and offer real-time information services through MT-
Connect. The company is interested in exploring potential
business opportunities, including optimizing human resources
for enhanced productivity. While existing research has pre-
dominantly focused on data-driven applications for CNC
machines, such as tool condition monitoring and energy con-
sumption optimization ([31], [32], [34]), there has been a
notable gap in the investigation of methods to improve human
productivity in CNC production. Our research aims to synthe-
size operators’ experiences into AI algorithms. The primary
goal of our project is to relieve the burden of constant monitor-
ing for experienced operators while providing training support
for novice operators.

Fig. 6(a) shows the control interface of a Mazak machine.
The yellow box indicates the current commands of the nu-
merical control (NC) program. While the linear feed rate
and spindle velocity are initially programmed into the NC
program [see Fig. 6(b)], operators still have the ability to
adjust the engagement rates (%) of these settings using the
knobs in the blue box. When set at 100%, the Mazak machine
operates at the full speed specified in the NC program, while
a value of 0% brings the machine’s speed to a complete halt.
Numerous factors, such as tool condition, may necessitate
operator intervention to modify these rates. Operators rely
on the information provided on the control interface to make
informed adjustments. The Mazak machine does not accept
direct control inputs from another computer. Therefore, an
operator is required to execute control tasks via the control in-
terface. The AI algorithms serve as a decision support system,

2[Online]. Available: https://www.mekservice.no/

FIGURE 6. (a) Control interface for Mazak Integrex i500. The yellow box
shows the current commands. The green box displays cutter positions. The
pink box shows cutter loads. The blue box contains knobs to adjust
engagement rates. (b) Turning spindle speed and feed rate. Figure adapted
by the authors from [41].

96 VOLUME 5, 2024

https://www.mekservice.no/

TABLE 1. List of Input Sensor Signals

TABLE 2. List of Output Signals

allowing a single operator to monitor multiple CNC machines
simultaneously, boosting overall productivity.

1) The engagement rate of linear feed rate controls how
much feed rate is allowed for the movement of the tools
along (x, y, z) (Fovr - feed rate override).

2) The engagement rate of spindle velocity controls the ro-
tary velocity allowed for the milling and turning process
(Sovr - Spindle velocity override).

Their expertise is refined and developed over years of
hands-on experience, making training new operators costly.
Given this scenario, imitation learning emerges as a viable
approach due to the availability of extensive historical logs
documenting operators’ actions. We hypothesize that by pro-
viding machine algorithms with the same information as
operators during production, we can train them to synthesize
the operators’ experiences. Behavioral cloning is a simple,
straightforward imitation learning technique for this task,
where the goal is to establish a mapping between inputs and
the actions of expert operators. The objective function is f :
Xt → yt+g in which:

1) Xt ∈ RN×M is a vector Xt = (xt , xt−1, . . ., xt−n)T , xt is
a vector with M features at timestep t . In this case, M
= 33 include 20 feature signals and 13 rates of changes
�st = st − st−1 (see Table 1). The feature signals con-
tain information regarding movements, temperatures,
and loads on the cutting tools. They match the infor-
mation on the control interface [see Fig. 6(a)]. N is the
window size.

2) yt ∈ R2 is a vector yt = (Fovrt , Sovrt); g is the time
into the future that the model forecast. The AI models
predict operators’ decisions after the g time gap. This

is to prevent shortcut learning and to accommodate the
decision support system. g is set to one second in the
experiment.

Our hypothesis assumes two main characteristics of our
dataset:

1) Our observation indicates that operators consistently
rely on the most recent sensor measurements to make
decisions. This aligns with the characteristics of human
psychology, as the human short-term memory capacity
is generally limited to processing and retaining around
7 to 10 chunks of information [42]. Consequently,
the dataset exhibits a fixed-sized long-term time series
dependence. This contrasts the variable-length depen-
dencies often encountered in other time series problems,
such as natural language or audio processing.

2) Operators make distinct decisions on Fovr and Sovr
using the same source of information. The extent to
which these two output signals, Fovr and Sovr, might
influence each other is unknown. However, preliminary
tests revealed that creating a neural network that si-
multaneously calculates both output signals resulted in
poorer performance than developing separate machine
learning models for each output signal.

IV. EXPERIMENT
A. DATASET PREPARATION
The data were gathered over a month from the Mazak In-
tegrex i500. During this time, the CNC machine repeatedly
manufactured identical units of a product. The maximum data
frequency is 4 Hz. A sensor’s data are only updated if it

VOLUME 5, 2024 97

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

FIGURE 7. Green line visualizes the toolpath on Z-axis. Transient periods
are highlighted as light pink when the cutter quickly moves to the next
position for the cutting path.

changes. This sometimes results in irregular data frequency.
The raw data were interpolated to the maximum of 4 Hz to
make it consistent.

We segmented the sensor data into distinct episodes, each
representing the production of a single machine part. The
Chuck state signal was used to identify the start and end of
one episode. A chuck is a device that secures and rotates the
workpiece during machining time. It switches from OPEN or
UNLATCH to CLOSED as raw material is loaded into the
CNC machine, and vice versa when it is done. The machine
operates on the part only when the chuck is CLOSED. There
were periods when the CNC machine halted, for example,
during lunch break. To filter out these inactive intervals, we
relied on the Execution signal. We removed sequences when
the cutting tools moved to the next ready position as they are
transient and could increase the variance of our dataset (see
Fig. 7).

We limited the scope to just one type of cutting tool to
simplify the parameters. We specifically chose cutting tool
ID 1 for this purpose, as it was the most commonly used
tool and always positioned at the start of each cycle. Data
samples were generated using the window-slicing technique.
In preliminary tests, we tried three options for window sizes
20, 40, and 80 data points and found out that a window size of
40 data points gives enough information for good prediction
without sacrificing the model’s performance. The workpiece
surface transitioned from rough to smooth throughout the
machining process, while the cutting tool gradually wore out.
These factors influenced the operators’ actions. The samples
were kept in chronological order before being divided into
training, validation, and testing sets, following 80-10-10 ra-
tios. This approach aimed to ensure that each set contained a
proportional distribution of samples from the early stages of
machining to the later stages.

The sensor signals were centered and scaled as recom-
mended by LeCun et al. [43] to facilitate neural network
training

sscaled = s − μ

σ

FIGURE 8. Pareto fronts of neurons generated for Fovr(a), and for Sovr (b).

FIGURE 9. Circuit diagram for the selected neuron for Fovr (6).

in which μ is mean and σ is standard deviation. Standard-
ization is a common practice in regression problems. It helps
the models to learn more quickly and easily. The effects of
standardization vary depending on the learning models. In the
case of neural networks, standardization positions input into
the same scale, thus preventing saturation and speeding up
convergence.

For the output signals, namely Fovr and Sovr, we devel-
oped two separate machine learning models. We used mean
squared error (MSE) as both the loss function and the metric
for evaluation.

98 VOLUME 5, 2024

FIGURE 10. Circuit diagram for the selected neuron for Sovr (7).

FIGURE 11. Equivalent of the selected neuron for Sovr after renaming the
constant expressions (7).

B. GENERATING ARNS
1) STEPS
In accordance with the methodology depicted in Fig. 1, the
chosen model for this study is RNNs (stage 1). The evolu-
tionary search algorithm employed in this research is tasked
with identifying the most effective configuration for the in-
ternal structure of these recurrent neurons (stage 2). The
network is designed as a single layer of RNN neurons, which
is then followed by a feedforward layer (stage 3). The evo-
lutionary algorithm can evolve neurons that adapt to both
the characteristics of the dataset and a specific set of hyper-
parameters. Therefore, in stage 4, hyperparameters can be

randomly initiated. In our approach, LSTM networks serve
as the benchmark for our evolutionary search process. A
thorough hyperparameter optimization was conducted for the
LSTM to establish a robust baseline. The detailed steps of this
process are outlined below.

1) We adopted the search strategy proposed by Choi
et al. [44] for optimizing the hyperparameters for
LSTM, incorporating a custom learning schedule

η(t) =
{

d (t) · η0, t ≤ T
αη0, t > T

η(t) is learning rate at time t , η0 is the initial learning
rate, α is decay factor, T is the number of training steps,
and d (t) is linear decay function

d (t) = 1 − (1 − α)
t

T
.

2) We conducted a search to determine the optimal num-
ber of LSTM neurons, considering a predefined set of
choices in the range 2i for i = 1, 2, . . ., 7.

3) The same set of hyperparameters was employed as input
for ADATE to evolve ARNs.

Two separate evolutionary processes were carried out for
the two output signals Fovr and Sovr, enabling an examination
of how the evolutionary processes treated each signal. The
evolution was run on eight servers, where each server had
dual AMD EPYC 7551 32-Core CPUs and 256 GB RAM.
We used a total of 512 processes running in parallel and
communicating using our own TCP/IP library. The time for
the first evolution was three days, whereas the time for the
second was one week. The servers we used were from 2017.
The same experiments could be run equally fast on just one
server from 2023 with around 200 cores. In addition, using
32-bit floating point instead of 64-bit can speed up the process.

It is important to note that the mentioned computational
resources and time requirements are related to the model
creation stage, which is traditionally done manually by ML
specialists. Our algorithm is a part of the AutoML stack seek-
ing to automate the process. In terms of training time and
resources, there was not a notable difference between using
LSTM and ARN-generated neurons. The evolved neurons
have lower syntactic complexity than LSTM. Any standard
computer is adequate for training and using the model in prac-
tice, that is, running it to make inferences. Additionally, the
inference speed is more than sufficient to match the real-time
data frequency of 4 Hz.

2) PARETO FRONT
A Pareto Front refers to a collection of Pareto efficient so-
lutions, which are regarded as optimal because no other
solutions can surpass them without compromising at least one
criterion. The concept of a Pareto front is particularly useful
when selecting solutions that involve a set of tradeoff con-
straints [45]. In evolutionary computation, Pareto optimality
is commonly employed to identify the most promising candi-
dates in each generation [46].

VOLUME 5, 2024 99

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

FIGURE 12. Circuit diagrams for neurons generated from Pareto Front for Sovr. (a) and (b) are the smallest and biggest neurons in the first cluster,
respectively. (c) and (d) are the smallest and biggest neurons in the second cluster.

FIGURE 13. Three layers structures for the smallest neuron in the first
group (a), and for all neurons in the second group (b).

Regarding ARNs, the selection of neurons is based on two
specific constraints: syntactic complexity and the chosen met-
ric for the dataset, in this case, mean squared error (MSE).
Syntactic complexity can be understood as the following: all
the nodes in the syntax tree of the program will have an
occurrence probability. The syntactic complexity of the pro-
gram can be expressed as the sum of the base-2 logarithms of
these occurrence probabilities. Neurons with simpler syntactic
complexity are less prone to overfitting.

Fig. 8 shows the Pareto front for the Fovr signal and the
Sovr signal. The LSTM neuron has a complexity of 324 bits. It
is expressed as the red dot in Fig. 8. Note that the evolutionary
process for Sovr lasted for almost a week, while the same
process for Fovr ended after three days. The search for Fovr
stopped quicker as Fovr’s Pareto Front had already achieved
MSEs of 0.0039, four times smaller than for LSTM and with
a complexity of only 81.55 bits.

The search for Sovr lasted longer as the metric for the
dataset was given higher priority among the constraints. The
Pareto front for Sovr reached a plateau when the complexity

100 VOLUME 5, 2024

TABLE 3. Median and Standard Deviations of MSE Values Obtained From
Eight Runs for Fovr (a) and Sovr (b). The Best Results are Highlighted in
Red, and the Runner-Up Results are in Blue

got to around 240 bits. From this point on, increasing the
complexity did not help reduce MSE anymore as it started
to get overfitted. The second constraint for lower syntactic
complexity was applied to select the solution of 249.22 bits
complexity. It is still smaller than LSTM, while its MSE is
0.0031, two times better than LSTM.

3) THE SELECTED NEURONS
Equation (6) is the mathematical interpretation from the SML
representation of the selected neuron for Fovr. Its circuit di-
agram is shown in Fig. 9. The overline indicates that the
variable is a linear combination of the other neurons, exclud-
ing self. The neuron does not utilize internal states s. At first
glance, it resembles a simple RNN neuron where the output is
updated based on the previous output and the contextualized
current input (1). However, ARN uses the linear combination
of the outputs, excluding the output from the current nodes

x(t)
1 = W(x,1)x

(t)

v
(t)
0 = srelu[srelu(a0 � x(t)

1)] + 0.5

ȳ(t−1) = U(y,0)y
(t−1)

y(t) = v
(t)
0 � ȳ(t−1). (6)

The selected neuron for the Sovr signal is more complex
(7). It involves two internal states s0, s1 and a linear combi-
nation of other peeps s̄(t−1)

1 (Fig. 10). ADATE also invented
several constants for contextualizing token input

c0 = − 0.11708123152147887

c1 = 0.4690375346625194 · 10−5

c2 = 0.3961353427253718 · 10−3

s̄(t−1)
1 = U(s,1)s

(t−1)
1

v0 = srelu[(a0 � srelu(s̄(t−1)
1) + s̄(t−1)

1) · 0.5]

v1 = relu[srelu(2a1,2 + srelu(s(t−1)
1))]

v2 = srelu(c0 · s(t−1)
0 − c0)

v3 = srelu(srelu(v2 � v0)) + v0 + y(t−1)

a1,2 = c1a1 + a2 + srelu(c2)

s(t)
0 = W(x,4)x

(t)

s(t)
1 = 0.4810137295502712

y(t) = v3 � v1. (7)

C. TRAINING NETWORKS
ARN and LSTM networks were implemented in C++. The
training was run using the AADC library from Matlogica [47]
for automatic differentiation. Since this dataset is best ana-
lyzed using small nets, training runs faster on a CPU than on
a GPU, given that a highly efficient auto diff library such as
AADC is employed.

We used the Tensorflow implementation of the simple RNN
model. To conduct the hyperparameters search for the simple
RNN, we used the Keras Tuner [48], keeping the same search
limits as for the LSTM experiment.

For the IndRNN model, we used the PyTorch implemen-
tation available on its first author’s GitHub repository.3 The
hyperparameter search for IndRNN was conducted using Ray
Tune [49], with the same search limits as for the other net-
works. In addition, since the power of IndRNN lies in the
depth of the network, we also searched for the optimal number
of layers from a predefined list of choices 2i for i = 1, 2, 3.

We used the Hyperband algorithm found in both Keras
Tuner and Ray Tune for our experiments. Hyperband is a
random search method that systematically explores different
configurations within a predefined schedule of iterations per
configuration. Promising candidates from the initial random
runs are selected for further evaluation with longer training
runs [50].

The chosen version of the transformer model was provided
by the authors of the transformer library.4 We did not conduct
a hyperparameter search but followed their recommended set-
tings.

We included a traditional machine learning technique as a
benchmark for comparison with deep learning methods. We
selected support vector machine (SVM), a well-established
algorithm in classical machine learning. It is still widely used
thanks to its simplicity, reliability, and flexibility. We used the
implementation of SVM from the Sklearn library [51] with
radial basis function kernel.

3[Online]. Available: https://github.com/StefOe/indrnn-pytorch
4[Online]. Available: https://github.com/gzerveas/mvts_transformer

VOLUME 5, 2024 101

https://github.com/StefOe/indrnn-pytorch
https://github.com/gzerveas/mvts_transformer

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

TABLE 4. Long Short Term Memory Written in SML

TABLE 5. SML Functional Program for the Chosen Evolved Neuron for Fovr

We conducted eight repetitions for each algorithm to have
statistically accurate results. Each repetition followed the
same experimental protocol used with LSTM and ARN.

V. RESULTS AND DISCUSSION
A. PERFORMANCE ON THE DATASET
Table 3 summarizes the performance of different networks
with median and standard deviations from eight repetitions
for Fovr (a) and Sovr (b).

Even though IndRNNs have been shown to outperform
LSTMs by a large margin in other datasets [10], they did
not perform well on our dataset. Similarly, the simple RNNs
also yielded poor results. Transformers surpassed LSTMs for
Sovr but got lower test performance for Fovr. However, in
both cases, ARNs consistently outperformed the runner-ups
in terms of average MSE values. Specifically, for Fovr, ARNs

achieved a 270% lower error rate than LSTMs, while for
Sovr, ARNs outperformed transformers by 20%. Among all
the networks, the variances for ARNs were average for both
Fovr and Sovr.

B. ARCHITECTURES OF THE SELECTED NEURONS
The neuron for Sovr, despite its apparent complexity, is actu-
ally quite straightforward. This is because the second memory
state s1 remains constant (0.481013729550271) throughout
all timesteps. After training, the auxiliary weights ai become
fixed and no longer undergo any changes at run time. This
effectively transforms both v0 and v1 (7) into wrappers for the
auxiliary weights. The circuit diagram of the neuron for Sovr
can be simplified as shown in Fig. 11, which is equivalent to
the original diagram. We can observe similarities between the

102 VOLUME 5, 2024

TABLE 6. SML Functional Program for the Chosen Evolved Neuron for Sovr

neurons for Fovr and Sovr. They both employ three main op-
erators in the same order: �,+,�, accompanied by auxiliary
weights: a0, 0.5 in the case of Fovr, and v0 for Sovr. However,
there are also three key distinctions that are unique to each
neuron.

1) In the case of Fovr’s neuron, the auxiliary weight
a0 serves as an input gate as it is multiplied with

the contextualized input x(t)
1 . It is constant for ev-

ery timestep. On the other hand, Sovr’s neuron uti-
lizes the auxiliary weight v

(t)
0 as a forget gate, as

it is multiplied with the memory from the previous
timestep.

2) Both neurons incorporate an output gate. For Fovr, the
gate changes its value based on the information from

VOLUME 5, 2024 103

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

TABLE 7. SML Functional Program for the Simplest Program in the Pareto Front for Fovr

TABLE 8. SML Functional Program for the Simplest Program in the First Cluster in the Pareto Front for Sovr

TABLE 9. SML Functional Program for the Most Complex Program in the First Cluster in the Pareto Front for Sovr

104 VOLUME 5, 2024

TABLE 10. Functional Program for the Simplest Program in the Second Cluster in the Pareto Front for Sovr

the other output U(y,0)y(t−1). In contrast, Sovr employs
a constant gate v1 as an output gate.

3) Sovr’s neuron implements a skip connection through
time by utilizing the internal state s(t)

0 as context mem-
ory.

The constant gates found in both neurons do not alter their
values based on context information, unlike in LSTM and its
variants. Instead, they act as regulators of the information
flow, ensuring a consistent decay rate of the memory. The
presence of these constant gates in both neurons supports the
hypothesis regarding the first characteristic of our dataset.
Operators can only rely on the most recent data with a consis-
tent frequency, leading to a fixed-size long-term dependence
in the time series.

C. EVOLVED ARCHITECTURES FROM THE PARETO FRONT
After surpassing the performance of LSTM, the Pareto Front
of Sovr formed two distinct clusters (see Fig. 8). Neurons in
the first cluster employed a similar strategy, utilizing internal
states to delay the output by several timesteps. The primary
focus of evolution within this cluster was determining the
optimal number of skip connections through time. In addition,
the output in these neurons was often calculated not from the
current recurrent states but through skip connections, allowing
for the preservation of long-term dependencies. There was a
big leap in syntax complexity between the two clusters, with

values jumping from 80.25 to 195.56. Following the dramatic
shift in strategy, neurons in the second cluster closely resem-
bled one another, and they could all be simplified in a similar
manner as the chosen solution for Sovr. The evolutionary
process converged on an optimal strategy that fits the charac-
teristics of our dataset, further refining the contextualization
of information and the values of the control gates. Fig. 12
illustrates the circuit diagrams of the first neuron (a), the last
neuron (b) in the first cluster, the first neuron (c), and the last
neuron (d) in the second cluster. It is important to note that the
syntactic complexity increased as we moved along the Pareto
Front. Consequently, the first neurons in each cluster represent
the smallest neurons within their respective clusters. Fig. 13
demonstrates the differences in skip connections through time
between the first and second clusters. As the neurons in the
later cluster consistently employed the same strategy (b), it is
reasonable to assume that skipping one time-step is optimal
for Sovr in this dataset.

Despite conducting separate evolutionary processes for
Fovr and Sovr, both converged toward remarkably similar
optimal strategies. This finding strongly supports our hy-
pothesis regarding the second characteristic of our dataset.
Operators used the same input source to make distinct de-
cisions for Fovr and Sovr. The resulting neurons further
indicate similar underlying characteristics for both Fovr and
Sovr.

VOLUME 5, 2024 105

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

TABLE 11. SML Functional Program for the Most Complex Program in the Second Cluster in the Pareto Front for Sovr

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

106 VOLUME 5, 2024

VI. CONCLUSION
In this article, we presented recurrent neurons generated via
ADATE (ARNs) for the purpose of imitation learning in
controlling an industrial CNC machine based on operators’
experience. The AI algorithms utilize the same data that op-
erators have during the machining process and output two
decisions for engagement rates: feed rate (Fovr) and velocity
speed (Sovr). Our experiment compares the performance of
ARNs to four other notable neural networks for time series
analysis: simple RNNs, IndRNNs, LSTMs, and transformers.
The results demonstrate the following:

1) ARNs achieve enhanced performance over other com-
peting networks for both output signals Fovr and Sovr,
exhibiting notably lower error rates. Specifically, ARNs
achieve error rates that are 270% lower than LSTMs
for Fovr and 20% lower than transformers for Sovr. In
addition, ARNs also have lower syntactic complexity
compared to LSTMs.

2) Although we conducted two evolutionary processes
for Fovr and Sovr separately, both paths eventually
led to comparable solutions. The outcome aligns with
our second hypothesis, which proposes that operators
make two distinct decisions influenced by the same
dataset characteristics. This convergence suggests that
the evolutionary approach effectively identified optimal
structures for processing information specific to this
dataset.

3) The evolutionary algorithm ADATE is capable of gener-
ating novel architectures of artificial neurons, including
gate mechanisms and skip connections through time.

Our method tackles the challenge of designing neuron
components within the AutoML framework. Automating this
process mitigates human’s limited understanding of the na-
ture of the dataset and enhances accuracy, as demonstrated
in our study. The ADATE evolutionary algorithm could gen-
erate a plethora of recurrent neuron architectures fitting for
our datasets. Our approach can complement other AutoML
techniques in model generation, as shown in our experiment
where we incorporated Hyperband search for hyperparameter
optimization.

The AI models replicating operators’ experiences for safe-
guarding and quality control can significantly enhance the
level of automation on the shop floor. They can be used for
training new operators and reducing the workload on experi-
enced operators, allowing them to allocate their labor to other
tasks.

While the evolutionary algorithm required a week to gen-
erate neurons, this duration is comparable to the time and
resources that machine learning experts typically invest in
manually exploring various model configurations. In our re-
search, we used data from a single month, covering only
one product from MSH’s production. Despite the limited data
scope, the generated neurons have shown promising align-
ment with our initial hypotheses about operator cognition.
This suggests a degree of validity in these neurons for general-
izing to new data, indicating that simply retraining the neural

network might suffice for new incoming data. Should there
be a need to rerun the evolutionary algorithm, we anticipate a
quicker process. Automating the model exploration with the
evolutionary algorithm is also likely to be more cost-effective
than the manual exploration of different model options. We
plan to further validate the generalizability of ARN neurons
with a broader dataset.

APPENDIX A
RECURRENT NEURONS WRITTEN IN SML
The appendix lists recurrent neurons written in Standard ML.
Table 4 shows how LSTM is written in SML. Table 5, 6, 7, 8,
9, 10, 11 are the direct outputs from ADATE algorithm with
minor modifications for formatting.

ACKNOWLEDGMENT
The authors would like to thank Mekanisk Service Halden by
making available to us real data and to share their domain
knowledge upon our repeated requests.

REFERENCES
[1] C. Schröer, F. Kruse, and J. M. Gómez, “A systematic literature

review on applying CRISP-DM process model,” Procedia Comput.
Sci., vol. 181, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877050921002416

[2] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[3] E. Real, C. Liang, D. R. So, and Q. V. Le, “AutoML-zero: Evolving
machine learning algorithms from scratch,” in Proc. 37th Int. Conf.
Mach. Learn., 2020, Art. no. 742.

[4] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013,
doi: 10.1109/TPAMI.2013.50.

[5] B. Lim and S. Zohren, “Time-series forecasting with deep learning: A
survey,” Philos. Trans. Roy. Soc. A, Math. Phys. Eng. Sci., vol. 379,
no. 2194, Feb. 2021, Art. no. 20200209.

[6] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[7] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-
of-the-art,” Knowl.-Based Syst., vol. 212, 2021, Art. no. 106622,
doi: 10.1016/j.knosys.2020.106622. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950705120307516

[8] R. Olsson, “Inductive functional programming using incremental pro-
gram transformation,” Artif. Intell., vol. 74, no. 1, pp. 55–81, 1995.

[9] L. V. Magnusson, J. R. Olsson, and C. T. T. Tran, “Recurrent neural
networks for oil well event prediction,” IEEE Intell. Syst., vol. 38, no. 2,
pp. 73–80, Mar./Apr. 2023, doi 10.1109/MIS.2023.3252446.

[10] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Independently recurrent
neural network (IndRNN): Building a longer and deeper RNN,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognition, pp. 5457–5466,
2018.

[11] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eick-
hoff, “A transformer-based framework for multivariate time series
representation learning,” in Proc. 27th ACM SIGKDD Conf. Knowl.
Discov. Data Mining, New York, NY, USA, 2021, pp. 2114–2124,
doi: 10.1145/3447548.3467401. [Online]. Available: https://doi.org/10.
1145/3447548.3467401

[12] A. Graves, Supervised Sequence Labelling With Recurrent Neural Net-
works. Berlin, Germany: Springer, 2012.

[13] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen netzen,”
Diploma thesis, Technische Universitdt Munchen, 1991.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Comput., vol. 9, pp. 1735–1780, Dec. 1997,
doi 10.1162/neco.1997.9.8.1735.

VOLUME 5, 2024 107

https://dx.doi.org/10.1016/j.procs.2021.01.199
https://www.sciencedirect.com/science/article/pii/S1877050921002416
https://www.sciencedirect.com/science/article/pii/S1877050921002416
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://dx.doi.org/10.1109/TPAMI.2013.50
https://dx.doi.org/10.1016/j.knosys.2020.106622
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://dx.doi.org/10.1109/MIS.2023.3252446
https://dx.doi.org/10.1145/3447548.3467401
https://doi.org/10.1145/3447548.3467401
https://doi.org/10.1145/3447548.3467401
https://dx.doi.org/10.1162/neco.1997.9.8.1735

NGUYEN ET AL.: AUTOMATIC SYNTHESIS OF RECURRENT NEURONS FOR IMITATION LEARNING FROM CNC MACHINE OPERATORS

[15] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J.
Schmidhuber, “LSTM: A search space odyssey,” IEEE Trans. Neu-
ral Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017,
doi: 10.1109/TNNLS.2016.2582924.

[16] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration
of recurrent network architectures,” in Proc. 32nd Int. Conf. Mach.
Learn., 2015, pp. 2342–2350.

[17] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” 2014. [Online]. Available:
https://arxiv.org/abs/1406.1078

[18] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” 2014. [Online].
Available: https://arxiv.org/abs/1412.3555

[19] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2016, arXiv:1409.0473.

[20] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Int. Conf.
Neural Inf. Process. Syst., 2017, pp. 6000–6010.

[21] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective
for time series forecasting?” in Proc. AAAI Conf. Artif. Intell., 2023.

[22] H. Zhou et al., “Informer: Beyond efficient transformer for long se-
quence time-series forecasting,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 11106–11115.

[23] N. Wu, B. Green, X. Ben, and S. O’Banion, “Deep transformer mod-
els for time series forecasting: The influenza prevalence case,” 2020,
arXiv:2001.08317.

[24] T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, and M. Ranzato, “Learn-
ing longer memory in recurrent neural networks,” 2014. [Online].
Available: https://arxiv.org/abs/1412.7753

[25] V. Campos, B. Jou, X. Giro-i Nieto, J. Torres, and S.-F. Chang, “Skip
RNN: Learning to skip state updates in recurrent neural networks,”
2017. [Online]. Available: https://arxiv.org/abs/1708.06834

[26] S. Chang et al., “Dilated recurrent neural networks,” 2017. [Online].
Available: https://arxiv.org/abs/1710.02224

[27] E. Grave, A. Joulin, and N. Usunier, “Improving neural language mod-
els with a continuous cache,” 2016. [Online]. Available: https://arxiv.
org/abs/1612.04426

[28] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
2014. [Online]. Available: https://arxiv.org/abs/1410.5401

[29] R. Olsson and A. Løkketangen, “Generating meta-heuristic optimiza-
tion code using adate,” J. Heuristics, vol. 16, pp. 911–930, 2010.

[30] R. Olsson, C. Tran, and L. Magnusson, “Automatic synthesis of neurons
for recurrent neural nets,” 2022, arXiv:2207.03577.

[31] S. Newman, A. Nassehi, R. ImaniAsrai, and V. Dhokia, “Energy effi-
cient process planning for CNC machining,” CIRP J. Manuf. Sci. Tech-
nol., vol. 5, no. 2, pp. 127–136, 2012, doi: 10.1016/j.cirpj.2012.03.007.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1755581712000223

[32] S. Tajima and B. Sencer, “Global toolpath smoothing for CNC machine
tools with uninterrupted acceleration,” Int. J. Mach. Tools Manufacture,
vol. 121, pp. 81–95, 2017.

[33] B. Li, H. Zhang, P. Ye, and J. Wang, “Trajectory smoothing method
using reinforcement learning for computer numerical control machine
tools,” Robot. Comput. Int. Manuf., vol. 61, 2020, Art. no. 101847,
doi: 10.1016/j.rcim.2019.101847. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0736584519300419

[34] L. Wang, X. Yuan, H. Si, and F. Duan, “Feedrate schedul-
ing method for constant peak cutting force in five-axis flank
milling process,” Chin. J. Aeronaut., vol. 33, no. 7, pp. 2055–2069,
2020, doi: 10.1016/j.cja.2019.09.014. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1000936119303449

[35] T. Mohanraj, J. Yerchuru, H. Krishnan, R. Nithin Aravind, and R. Ya-
meni, “Development of tool condition monitoring system in end milling
process using wavelet features and Hoelder’s exponent with machine
learning algorithms,” Measurement, vol. 173, 2021, Art. no. 108671,
doi: 10.1016/j.measurement.2020.108671. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0263224120311830

[36] D. F. Hesser and B. Markert, “Tool wear monitoring of a retrofitted
CNC milling machine using artificial neural networks,” Manuf.
Lett., vol. 19, pp. 1–4, 2019, doi: 10.1016/j.mfglet.2018.11.001.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2213846318301524

[37] L. Moreira, W. Li, X. Lu, and M. Fitzpatrick, “Supervision con-
troller for real-time surface quality assurance in CNC machining
using artificial intelligence,” Comput. Ind. Eng., vol. 127, pp. 158–168,
2019, doi: 10.1016/j.cie.2018.12.016. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0360835218306211

[38] M. I. Ahmad, Y. Yusof, M. E. Daud, K. Latiff, A. Z. A.
Kadir, and Y. Saif, “Machine monitoring system: A decade in re-
view,” Int. J. Adv. Manuf. Technol., vol. 108, pp. 3645–3659, 2020,
doi: 10.1007/s00170-020-05620-3.

[39] W. Luo, T. Hu, C. Zhang, and Y. Wei, “Digital twin for CNC machine
tool: Modeling and using strategy,” J. Ambient Intell. Humanized Com-
put., vol. 10, pp. 1–4, 2019.

[40] W. Sakarinto, H. Narazaki, and K. Shirase, “A decision support system
for capturing CNC operator knowledge,” Int. J. Autom. Technol., vol. 5,
no. 5, pp. 655–662, 2011, doi 10.20965/ijat.2011.p0655.

[41] CustomPartNet, “Speed-feed-turning,” 2008. Accessed: Apr. 13, 2023.
[Online]. Available: https://www.custompartnet.com/calculator/
turning-speed-and-feed

[42] M. Törngren and U. Sellgren, “Complexity challenges in development
of cyber-physical systems: Essays dedicated to Edward A. Lee on
the occasion of his 60th birthday,” Lecture Notes Comput. Sci. (In-
cluding Subseries Lecture Notes Artif. Intell. Lecture Notes Bioinf.),
pp. 478–503, 2018, doi: 10.1007/978-3-319-95246-8_27.

[43] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Efficient Back-
Prop. Berlin, Germany: Springer, 2012, pp. 9–48.

[44] D. Choi, C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl,
“On empirical comparisons of optimizers for deep learning,” 2020,
arXiv:1910.05446.

[45] M. Wooldridge, An Introduction to MultiAgent Systems. Chichester,
U.K.: Wiley, 2009.

[46] D. A. van Veldhuizen and G. B. Lamont, “Evolutionary computation
and convergence to a pareto front,” in Proc. Late Breaking Papers
Genetic Program. Conf., J. R. Koza, Ed., 1998, pp. 221–228,. [Online].
Available: http://www.lania.mx/∼ccoello/EMOO/vanvel2.ps.gz

[47] MatLogica LTD, “HPC AAD-compiler C++software library user
guide,” Oct. 31, 2022. [Online]. Available: https://matlogica.com/

[48] T. O’Malley et al., “Kerastuner,” 2019. [Online]. Available: https://
github.com/keras-team/keras-tuner

[49] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I.
Stoica, “Tune: A research platform for distributed model selection and
training,” 2018, arXiv:1807.05118.

[50] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter op-
timization,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 6765–6816,
Jan. 2017.

[51] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

108 VOLUME 5, 2024

https://dx.doi.org/10.1109/TNNLS.2016.2582924
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.7753
https://arxiv.org/abs/1708.06834
https://arxiv.org/abs/1710.02224
https://arxiv.org/abs/1612.04426
https://arxiv.org/abs/1612.04426
https://arxiv.org/abs/1410.5401
https://dx.doi.org/10.1016/j.cirpj.2012.03.007
https://www.sciencedirect.com/science/article/pii/S1755581712000223
https://www.sciencedirect.com/science/article/pii/S1755581712000223
https://dx.doi.org/10.1016/j.rcim.2019.101847
https://www.sciencedirect.com/science/article/pii/S0736584519300419
https://www.sciencedirect.com/science/article/pii/S0736584519300419
https://dx.doi.org/10.1016/j.cja.2019.09.014
https://www.sciencedirect.com/science/article/pii/S1000936119303449
https://www.sciencedirect.com/science/article/pii/S1000936119303449
https://dx.doi.org/10.1016/j.measurement.2020.108671
https://www.sciencedirect.com/science/article/pii/S0263224120311830
https://www.sciencedirect.com/science/article/pii/S0263224120311830
https://dx.doi.org/10.1016/j.mfglet.2018.11.001
https://www.sciencedirect.com/science/article/pii/S2213846318301524
https://www.sciencedirect.com/science/article/pii/S2213846318301524
https://dx.doi.org/10.1016/j.cie.2018.12.016
https://www.sciencedirect.com/science/article/pii/S0360835218306211
https://www.sciencedirect.com/science/article/pii/S0360835218306211
https://dx.doi.org/10.1007/s00170-020-05620-3
https://dx.doi.org/10.20965/ijat.2011.p0655
https://www.custompartnet.com/calculator/turning-speed-and-feed
https://www.custompartnet.com/calculator/turning-speed-and-feed
https://dx.doi.org/10.1007/978-3-319-95246-8LY1	extbackslash _27
http://www.lania.mx/~ccoello/EMOO/vanvel2.ps.gz
https://matlogica.com/
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

