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ABSTRACT Multiobjective hyperparameter optimization is applied to find optimal artificial neural network
(ANN) architectures used for optimal feedforward torque control (OFTC) of synchronous machines. The
proposed framework allows to systematically identify Pareto optimal ANNs with respect to multiple (partly)
contradictory objectives, such as approximation accuracy and computational burden of the considered
ANNs. The obtained Pareto optimal ANNs are trained and implemented on a realtime system and tested
experimentally for a nonlinear reluctance synchronous machine against non-Pareto optimal ANN designs
and a state-of-the-art OFTC approach. Finally, based on the most recent results from ANN approximation
theory, guidelines for Pareto optimal ANN-based OFTC design and implementation are provided.

INDEX TERMS Artificial neural network (ANN), hyperspace exploration (HSE), multiobjective hyper-
parameter optimization (MO-HPO), optimal feedforward torque control (OFTC), reluctance synchronous
machine (RSM).

NOMENCLATURE
N, R: natural, real numbers.
x := (x1, . . . , xn)� ∈ Rn: column vector, n ∈ N where “�”

and “:=” mean “transposed” and “is defined as”, respec-
tively.

‖x‖ :=
√

x�x =
√

x2
1 + · · · + x2

n : Euclidean norm of x.

X∈Rn×m: matrix with n rows and m columns.
In ∈Rn×n := diag(1, . . . , 1): identity matrix.

Tp(φp) =
[

cos(φp ) − sin(φp )

sin(φp ) cos(φp )

]
: Park transformation matrix with an-

gle φp ∈ R and J :=Tp( π
2 ) =

[
0 −1

1 0

]
: counter-clock wise

rotation matrix. “s.t.”: subject to (optimization with con-
straints).

D, U , T : design, use case and target space, respectively.
n j : number of neurons in j-th layer. x := (x1, . . . , xn0 )� ∈

Rn0 : input vector to ANN.
m: number of hidden layers.

ŷ := (̂ym+1,1, . . . , ŷm+1,nm+1 )� ∈ Rnm+1 : output vector of
ANN.

� j,i: activation function (AF) of ith neuron in jth layer.
� j : = (� j,1, . . . , � j,n j )

�: jth layer AF vector.

I. INTRODUCTION
Electrical drives are used in various applications. While con-
ventional control algorithms are still in use, machine learning
algorithms become more and more popular (see detailed liter-
ature reviews in [1], [2]). Artificial neural networks (ANNs)
are used, e.g., for control (see [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16] to name a few)
or for state and parameter estimation (see, e.g., [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27]). The main
goals of ANN-based algorithms are 1) increasing accuracy, 2)
improving robustness, and 3) reducing computational effort
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based on data-driven approaches in contrast to physics-based
approaches (although both can and should be combined).

In [2] and [28], optimal feedforward torque control (OFTC)
is realized by ANNs. OFTC plays a crucial role in almost all
applications as it guarantees optimal control of the electrical
drives within its physical constraints [29], [30]. The core
idea of OFTC is to feed optimal reference currents to the
underlying current controllers. By determining the optimal
reference currents, the electrical drive system produces the
reference torque (or at least the maximally feasible torque),
while keeping losses to a minimum and adhering to voltage
and current limits.

OFTC of synchronous machine (SM) is currently an ac-
tively researched and widely investigated topic: in particular
of permanent magnet synchronous machine (PMSM) and re-
luctance synchronous machine (RSM) (see e.g., [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46], [47], [48]) and of electrically excited syn-
chronous machine (EESM; see, e.g., [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58]). But only [48] considers
and allows for 1) arbitrary nonlinearities (e.g., saturation,
(d, q)-cross-coupling and cross-coupling between stator and
exciter), 2) iron and copper losses, 3) stator and exciter voltage
and current limits, and 4) an analytical computation for a
realtime implementation. As it is an iterative algorithm (in the
sense of sequential quadratic programming including online
linearization), the convergence rate and, therefore, the compu-
tation time is not deterministic and must be limited to ensure
realtime implementation.

To overcome this drawback, in [2] and [28] ANN-based
OFTC is proposed and its efficacy is demonstrated. Both
papers also highlight the importance of choosing an optimal
ANN architecture (including the number of layers and neu-
rons per layer) to achieve best performance. However, both
papers follow a predominantly heuristic trial-and-error-based
approach for ANN design. The most effective and efficient
design of ANNs is still an open research question across a
variety of disciplines [59], [60], [61], [62], [63], [64], [65].

For electric drives, ANN-based approaches [8], [19], [21],
[66], [67], [68], [69] generally do not follow a systemat-
ically derived ANN architecture. In [2], [3], [4], [5], [6],
[7], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[23], [24], [25], [27], [28], [70], the ANN architectures for
drive control were chosen heuristically. Whereas [10] de-
termined the ANN architecture by trial and error. In [70]
and [27], the number of neurons per hidden layer was in-
creased until the error decreased below a certain threshold
or the number of neurons per hidden layer was decreased
until the error increased above a certain value again, respec-
tively. Recently, in [2] and [28] for ANN-based OFTC, it
was shown, that the number of neurons per hidden layer
does not (necessarily) correlate with the ANN’s accuracy.
In [28], the optimal ANN architecture was designed based
on a (simple) hyperparameter study. However, solely 200 ar-
chitectures of nearly 1.3 million possible architectures were
considered.

In [26], an evolution programming method was used to de-
termine the number of neurons per hidden layer. But it neither
describes the target criteria (such as accuracy or execution
time) nor the algorithm itself in detail. Moreover, it is unclear
whether an optimal ANN architecture was found.

To the best knowledge of the authors, there is no generic,
structural and a priori method (yet) to determine ANN archi-
tectures (neither the number of hidden layers nor the numbers
of neurons per hidden layer) for ANN-based approaches in the
field of electrical drives.

This article proposes a novel and complete framework
that allows to systematically identify a (Pareto-)optimal ANN
architecture with respect to multiple (partly) contradictory ob-
jectives by using multi-objective hyperparameter optimization
(MO-HPO). Furthermore, the proposed framework is consis-
tent with the most recent results from approximation theory
of neural networks [71] in order to derive generic ANN de-
sign guidelines for ANN-based approaches in electrical drive
systems.

Multiobjective optimization in electrical drives is widely
used during machine design (see detailed literature re-
views [72], [73], [74]). For drive control, multiobjective op-
timization is partially utilized for model predictive controller
design (e.g., [75], [76], [77]) or (conventional) controller pa-
rameter tuning (e.g., [78], [79]).

For machine learning in general, multiobjective optimiza-
tion has already been used. [80] gives a comprehensive
review of algorithms used for MO-HPO. The importance
of MO-HPO in practical applications is emphasized due to
its capability to analyze trade-offs between multiple objec-
tives. However, there are few applications of MO-HPO to
solve ANN-based problems. One notable example is the MO-
HPO-approach proposed by Parsa et al. in [81] to perform
hardware/software co-optimization with respect to ANN per-
formance (accuracy) and energy consumption.

In conclusion, to the best knowledge of the authors, this is
the very first time that MO-HPO for ANN-based control or
estimation approaches in electrical drive systems (in particu-
lar, for ANN-based OFTC) is proposed. The novel framework
provides the opportunity to design realtime applicable ANNs
for electrical drive systems and allows for their implementa-
tion on standard realtime interfaces considering the admissible
computation load [e.g., floating point operations (FLOPS)].
The framework’s primary goal is to identify Pareto optimal
ANNs that strike a balance between accuracy and execution
time all stemming and exploiting the most recent results from
approximation theory of neural network architectures [71].
As a result, design guidelines are proposed that reduce the
design space significantly. The contributions of this article are
1) generic dataset generation for the supervised learning of
ANNs, 2) MO-HPO of ANNs to find Pareto optimal designs,
3) rationalization of MO-HPO results using approximation
theory, and 4) experimental validation of optimally chosen
ANNs for ANN-based OFTC.

The rest of this article is organized as follows. Section II
introduces the problem statement and proposed solution for

42 VOLUME 5, 2024



MO-HPO of ANN architectures in electrical drive systems.
Section III applies the proposed MO-HPO to ANN-based
OFTC of nonlinear RSMs. Section III-A describes the under-
lying nonlinear optimization problem to create the required
data set(s) for optimization and training. Section III-B dis-
cusses ANN architecture selection and ANN training. The
proposed multiobjective ANN-hyperparameter optimization
is discussed in Section III-C. Section III-D presents the MO-
HPO results which allow to determine Pareto optimal ANN
designs. These ANN designs are implemented on a realtime
system and tested experimentally against non-Pareto optimal
ANN designs and a state-of-the-art approach. Section IV
discusses these results and, based on approximation theory,
provides guidelines for optimal ANN-based OFTC design and
implementation. Finally, Section V concludes this article.

II. PROBLEM STATEMENT AND PROPOSED SOLUTION
This section presents a brief discussion of the supervised
ANN learning, focusing on the relationship between input
and output data sets, and the parameterization of ANNs. It
then delves into the problem of finding optimal ANN designs
for electric drives, considering multiple objectives, such as
accuracy and computational complexity. Finally, it introduces
a novel workflow that employs MO-HPO to identify Pareto
optimal ANN designs suitable for real-time applications in
electrical drives.

A. SUPERVISED LEARNING OF ARTIFICIAL NEURAL
NETWORKS
For supervised learning of ANNs, the relation between in-
put x and output y is given by several sample data sets
(y[k]; x[k]) (e.g., obtained by measurements or simulations).
All k ∈ {1, . . . , K} sample sets are collected in the dataset

(Y ; X ) := ((y[1]; x[1]), . . . , (y[K]; x[K])) (1)

containing all corresponding output y[k] and input x[k] vec-
tors. The output y[k] shall be approximated by an ANN, i.e.,

ŷ[k] = f (w,b,�)(x[k]) (2)

which is a recursively defined function f (w,b,�)(·) parameter-
ized by ANN weights, biases, and activation functions, i.e.,

w :=
(
w�

0,1, . . . ,w
�
m,nm+1

)� ∈ Rn0+∑m+1
k=1 nk−1nk

b := (
b0,1, . . . , bm,nm+1

)� ∈ R
∑m+1

k=0 nk

� := (
�0,1, . . . , �m,nm+1

)� ∈ R
∑m+1

k=0 nk

⎫⎪⎪⎬⎪⎪⎭ (3)

where m and n0, n1, n2, . . . , nm+1 ∈ N are the number of hid-
den layers and the numbers of neurons per layer, respectively.

For MO-HPO, several ANN architectures must be eval-
uated. Each ANN architecture (with a fixed selection of
activation functions, number of hidden layers, and number of

neurons per layer) is trained to obtain its optimal parameters

(w∗, b∗) = arg min
(w,b)

1
K

K∑
k=1

‖y[k] − ŷ[k]‖2

︸ ︷︷ ︸
=:ey

. (4)

by minimizing the mean squared error (MSE) ey. Vari-
ous training algorithms, including gradient descent [82, Sec.
10.4.4], Levenberg–Marquardt [82, Sec. 4.1] and adaptive
moment estimation (Adam) algorithm [83], can be employed
for training. To ensure effective training and prevent over-
fitting of the ANN, the dataset is divided into training and
validation subsets. The training set is used to fine-tune the
ANN’s weights and biases, while the validation set gauges the
ANN’s accuracy when dealing with previously unseen data.
Training concludes when the validation error consistently
rises over a specified number of consecutive assessments,
known as maximum validation failure runs [84]. The adapted
ANN parameters, obtained before the raise of the validation
error, are employed as the optimal weights and biases for
ANN implementation.

B. PROBLEM STATEMENT
ANN-based approaches for electric drives must satisfy mul-
tiple objectives and require simultaneous optimization to
determine the set of multiobjective optimal ANN design al-
ternatives. The main objectives are related to accuracy [e.g.,
minimizing ey in (4)] and realtime implementation. In view of
memory and storage constraints, the number of parameters

Nparam =
m+1∑
k=0

nk︸ ︷︷ ︸
number of biases

+ n0 +
m+1∑
k=1

nk−1nk︸ ︷︷ ︸
number of weights

(5)

including both weights and biases, should be a primary con-
sideration in the ANN design. Furthermore, concerning the
mathematical operations involved (see [28]), it is possible to
calculate the number of FLOPs as

Nflop = 2 n0 + 2 nm+1 nm +
m∑

k=1

nk
(
2 nk−1 + 1

)
(6)

which helps to estimate the execution time of the ANN, i.e.,

texec = Nflop
Nc

fs
(7)

with clock frequency fc and number Nc of clock cycles per
FLOP.

The decision, whether the considered ANN is optimal,
must take ANN architecture but also ANN training into ac-
count. The ANN design space covers 1) vector � of chosen
activation functions, 2) number m of hidden layers, 3) num-
bers n1, n2, . . . , nm of neurons per hidden layer, 4) training
method, and 5) its training parameters.
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In conclusion, in view of ANN-based OFTC, obtaining
optimal ANNs defined by their architecture and training rep-
resents the trade-off between accuracy and computational
burden.

C. METHODOLOGY (PROPOSED SOLUTION)
We introduce a novel workflow that employs MO-HPO to
identify Pareto optimal ANNs that are suitable for realtime
electrical drive applications. The workflow begins with the
generation of a dataset for supervised learning of ANNs. Next,
the hyperspace of hyperparameters is defined which must be
explored (e.g., the number m of hidden layers, the numbers
n1, n2, . . . , nm of neurons per hidden layer, training meth-
ods, and training parameters) and the objectives according to
which we want to optimize (e.g., MSE ey, number Nflop of
FLOPs and number Nparam of parameters). The core of the
workflow lies in the execution of a MO-HPO that identifies
the Pareto front efficiently and effectively by, e.g., model-
based direct search algorithms [85], genetic algorithms [86],
or hybrid algorithms [87], [88]. MO-HPO, along with the
training of several ANNs, yields a set of Pareto optimal ANN
designs that represent solutions balancing multiple objectives.
These results serve as the foundation for the investigation of
ANN complexity and approximation accuracy with which the
following research question shall be answered: How many
hidden layers and neurons are necessary for an ANN to
achieve a prescribed lower bound of accuracy, while realtime
implementation is still feasible? The results can be used to
draw conclusions regarding the selection of future design
spaces for MO-HPO (or heuristical approaches) of similar ap-
plications. During the decision-making process, we carefully
navigate through the trade-offs and balance the multiobjec-
tives to select the most suitable ANN related to the electrical
drive application. Finally, the chosen ANNs are subject to
validation through simulations and/or experiments showing
their efficacy and implementability.

III. MULTIOBJECTIVE ANN-ARCHITECTURE
OPTIMIZATION FOR ANN-BASED OFTC OF SMS
This section discusses the application of the proposed MO-
HPO for ANN design for OFTC of SMs. It begins with prepa-
rations, including modeling, OFTC for RSM or (I/S)PMSM,
and dataset generation. The section then covers architecture
selection and training of ANNs, followed by multiobjective
ANN-hyperparameter optimization. Finally, it concludes with
validation, including decision making of the MO-HPO out-
come and the presentation of experimental results.

A. PREPARATIONS
1) MODELING
The equivalent circuit of a nonlinear SM [48] is shown in
Fig. 1. The stator and rotor iron core create a transformer-
like coupling, resulting in flux linkages. Consequently, the
(averaged1) stator flux linkages ψdq

s = ψdq
s (idq

s,m, ωp), become

1Neglecting angle / position dependence of the flux linkages.

FIGURE 1. Equivalent circuit of the nonlinear SM model.

dependent on electrical angular velocity ωp and magnetization

current idq
s,m = idq

s + idq
s,Fe with stator currents idq

s and stator

iron currents idq
s,Fe. Neglecting flux leakage, stator flux linkage,

and stator iron flux linkage are entirely linked, i.e., ψdq
s,Fe =

ψdq
s , which leads to [48]

udq
s = Rdq

s idq
s + ωpJψdq

s + d
dtψ

dq
s

02 = Rdq
s,Feidq

s,Fe + ωpJψdq
s + d

dtψ
dq
s

}
(8)

with J :=
[

0 −1
1 0

]
, 02 := (0, 0)�, stator voltages udq

s :=
(ud

s , ud
s )�, stator currents idq

s := (ids , ids )�, stator resistance
matrix Rdq

s ∈ R2×2, stator iron currents idq
s,Fe := (ids,Fe, ids,Fe)�,

mechanical angular velocity ωm = ωp
np

(i.e., electrical angular
velocity ωp divided by pole pair number np). The stator iron

resistance matrix Rdq
s,Fe := Rdq

s,Fe(idq
s , ωp) ∈ R2×2 varies with

current and frequency, i.e., [48]

Rdq
s,Fe = 2

3κ2

(
ωpJψdq

s + d
dtψ

dq
s

)� (
ωpJψdq

s + d
dtψ

dq
s

)
pFe

I2

(9)

with I2 :=
[

1 0
0 1

]
, nonlinear iron losses pFe(idq

s , ωm ) and

Clarke transformation factor κ ∈ {2/3,
√

2/3} [89, Ch. 14].
Invoking the principles of energy conservation and power

equilibrium in combination with (8) yields

pCu = 2
3κ2

(
idq
s

)
�Rdq

s idq
s , pFe = 2

3κ2

(
idq
s,Fe

)
�Rdq

s,Feidq
s,Fe

mm = 2np

3κ2

(
idq
s + idq

s,Fe

)�
Jψdq

s , pV = pCu + pFe

⎫⎬⎭ (10)

with stator copper losses pCu, collective nonlinear ma-
chine losses pV(idq

s , ωm ), and nonlinear machine torque
mm(idq

s , ωm ). Note that, in motor mode, the stator iron cur-
rents become negative reducing the torque due to iron losses;
in generator mode, the opposite is true.

44 VOLUME 5, 2024



TABLE 1. Key Parameters of the Investigated RSM

FIGURE 2. Illustration of the nonlinear flux linkages ψd
s (a) and ψq

s (b) of
the investigated RSM.

FIGURE 3. Optimal reference currents depend on machine constraints and
actual operating conditions.

The machine under investigation is a nonlinear RSM with
a power rating of 1.9 kW. All machine parameters are col-
lected in Table 1. The nonlinear averaged flux linkage maps
(obtained from measurements) are shown in Fig. 2.

2) OFTC FOR RSM OR (I/S)PMSM
As shown in Fig. 3, OFTC computes the optimal reference
currents (see, e.g., [46])

idq
s,ref:=

(
ids,ref

iqs,ref

)
:=
(

ids,ref(mm,ref, ωm, us,max, is,max)

iqs,ref(mm,ref, ωm, us,max, is,max)

)
(11)

where ids,ref and iqs,ref are the stator (d, q)-reference currents.
The reference currents are functions of reference torque
mm,ref, mechanical angular velocity ωm = ωp

np
, stator con-

straints us,max and is,max (maximum voltage and current
magnitude, respectively). The main goals of OFTC are 1)
satisfaction of voltage and current constraints, 2) generation
of the reference (or, at least, the maximally feasible) machine
torque, and 3) minimization of (iron and copper) losses.

An operation within voltage and current limits is ensured if

‖udq
s (idq

s )‖ ≤ us,max and ‖idq
s ‖ ≤ is,max (12)

hold. The optimal and feasible torque can be attained by
minimizing the deviation between reference torque mm,ref and
actual machine torque mm. Efficient and loss-minimal opera-
tion is guaranteed by minimizing all machine losses, denoted
as pV, which includes copper pCu and iron pFe losses.

3) DATASET GENERATION
The optimal reference currents are the solution of the nonlin-
ear optimization problem (NLP)(

idq
s

�
, s
)� = arg min(

idq
s,ref

�
,s∗
)�

pL (idq
s ) + h s

s.t . ‖udq
s (idq

s )‖ ≤ us,max

‖idq
s ‖ ≤ is,max

|mm,ref − mm(idq
s )| ≤ s. (13)

The NLP aims to reduce the losses while ensuring an opera-
tion within the voltage and current constraints. The parameter
h must be chosen such that pV(idq

s ) � h s even for very small
deviation |mm,ref − mm(idq

s )|; i.e., the slack variable s ≥ 0 has
the lowest possible value and therefore assures the provision
of the maximally feasible reference torque.

A dataset [recall (1)] is produced by solving the NLP
(e.g., by MATLAB’s function fmincon) iteratively for k ∈
{1, . . . , K} sample sets (y[k]; x[k]) with input vector

x[k] := Nx
(
mm,ref[k], ωm[k], us,max[k], is,max[k]

)� + nx

and corresponding output vector

y[k] := Ny

(
ids,ref[k], iqs,ref[k]

)� + ny

where Nx, Ny, and nx, ny are the normalization matrices and
vectors, respectively. The normalization parameters are cho-
sen to normalize input and output values of x and y within the
[−1, 1] range, enhancing data processing, training efficacy,
and mitigating overfitting by preventing dominance of large
input values over smaller ones [90, Sec. 11.5.3].

A dataset consisting of 2000000 sample sets was generated
using MATLAB’s fmincon function and parallel toolbox
with 50 MATLAB workers (meaning 50 parallel MATLAB
instances) on a multi-CPU workstation with 64 cores. This
dataset generation process took approximately five days. Var-
ious input sample sets are created using Latin Hypercube (LH)
sampling [91]. The inputs’ ranges are detailed in Table 2.
These input sample sets are subsequently utilized during the
solution process of the NLP (13) that is based on the nonlinear
machine model [recall (8) to (10)] and LUT-based representa-
tions of the machine nonlinearities, such as flux linkages (see
Fig. 2), iron resistance or machine torque. Note that the cur-
rent values used do not exceed the rated current since the flux
maps are not available for currents beyond the rated current
limit. This precaution is taken to prevent the NLP solver from
failing (especially at high currents).
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TABLE 2. Key Parameters of MO-HPO Framework

B. ANN ARCHITECTURE AND TRAINING
Fig. 5 illustrates a generic ANN architecture comprising input
vector x and output vector ŷ = (̂ids,ref, îqs,ref)

� for the OFTC
problem [recall (11) and Fig. 3]. This ANN architecture con-
sists of one input layer, m hidden layers, and one output layer.
The number of neurons in the ith hidden layer is denoted by
ni with i ∈ {0, . . . , m + 1}, where 0 and m + 1 represent the
input and output layer, respectively. The numbers of neurons
in the input and output layers correspond to n0 (representing
the number of inputs x) and nm+1 (representing the number of
outputs ŷ), respectively. Thus, the ANN architecture is char-
acterized by the number m of hidden layers and the numbers
n1, n2, . . . , nm of neurons in each hidden layer. The output of
the ith neuron in the jth layer is given by

ŷ j,i = � j,i

(
w�

j,ix j + b j,i

)
∈ R (14)

with input vector x j := (x j,1, . . . , x j,n j−1 )� of the jth layer,

weights vector w j,i := (w1
j,i, . . . ,w

n j−1
j,i )�, bias b j,i and acti-

vation function � j,i. An artificial neuron with output as in (14)
is illustrated in Fig. 4.

Collecting all n j neurons’ outputs of the jth layer in one
output vector of the jth layer yields

ŷ j = � j
(
W jx j + b j

) ∈ Rn j (15)

with activation function, bias vector, and weighting matrix

� j :=

⎛⎜⎜⎝
� j,1

...

� j,n j

⎞⎟⎟⎠ , b j :=

⎛⎜⎜⎝
b j,1

...

b j,n j

⎞⎟⎟⎠ , W j :=

⎡⎢⎢⎣
w�

j,1
...

w�
j,n j

⎤⎥⎥⎦ . (16)

FIGURE 4. Illustration of ith artificial neuron in the jth layer.

Considering the output vector of the previous layer as input
vector of the actual layer, i.e., x j = y j−1, the output of the
ANN can be calculated recursively by

ŷ = �m+1(Wm+1xm+1 + bm+1) = fw,b,�(x)︷ ︸︸ ︷
�m(Wmxm + bm)

...︷ ︸︸ ︷
�1(W1x1 + b1)︷ ︸︸ ︷
�0(W0x0 + b0)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(17)

More detailed derivations can be found in [2]. For OFTC in
particular and electrical drive applications in general, where
low computational burdens are crucial, simple activation func-
tions are essential. Therefore, the identity function for input
and output layers, and the rectifying linear unit (ReLU) for
the hidden layers are selected (for details, see [2]).

For this study, the selected training method is the Adap-
tive Moment Estimation (Adam) algorithm, which is based
on stochastic gradient descent (SGD), and combines the ad-
vantages of SGD with the momentum method and adaptive
learning rate adjustments [83]. An initial learning rate of lr =
1 × 10−3 is chosen. Given the substantial size of the generated
dataset, batched training is employed, enabling the utilization
of smaller subsets, referred to as batches having batch size b,
for each update step in the ANN training process. In Table 2,
all ANN training parameters are summarized.

C. MULTIOBJECTIVE ANN-HYPERPARAMETER
OPTIMIZATION
Our goal is to find the nondominated Pareto solutions of the
following MO-HPO problem described by the function:

f : Du × U → T 2 (18)

with

U = {1, 2, 3, 4, 5}, D =
{

[1, 200], for u = 1
[1, 100]u, for u > 1

where the use case space U comprises the five investigated
use cases u ∈ U representing the depth of the ANN by its
number m of hidden layers, i.e., u = m (recall Fig. 5). The
design space D comprises the use case dependent admissible
number ni with i ∈ {1, . . . , m} of neurons per layer ranging
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FIGURE 5. Illustration of the ANN architectures with four input layer
neurons, two output layer neurons and m hidden layers with their
numbers of neurons per hidden layer (n1,n2, . . . ,nm )� ∈ N

m.

from 0 to 200 (if u = m = 1) or from 0 to 100 (if u = m > 1).
The considered objectives (targets) are the number of flops
Nflop and the MSE ey, leading to the target space T ⊆ R2 with
the target vector t = (Nflop, ey)�.

The MO-HPO problem

popt := arg min
p

f (p) ∀ p ∈ D

s.t. Nflop≤ 10000

ey≤ 0.5 (19)

is solved individually for each use case (which means for
each number of hidden layers), where the design vector p =
(n1, . . . , nu)� ∈ Du describes the numbers of neurons ni in
each hidden layer i ∈ {1, . . . , u} of the ANN. The constraints
are selected heuristically, to condense the target space, and
to keep MSE and number of FLOPs within realistic and
application-specific boundaries.

The previously mentioned long training time, the cardinal-
ity and dimension of the design space, and the complexity of
the MO-HPO problem motivate the use of an efficient and
effective numerical search algorithm to identify the Pareto
optimal ANN architectures with respect to several contradic-
tory target variables. A well-established algorithm used for
MO-HPO is the nondominated sorting genetic algorithm II
(NSGA-II) [80], [86]. The MO-HPO in this study was per-
formed based on the NSGA-II implementation of the Python
package pymoo [92]. In the proposed framework, individual
MO-HPO runs are executed for each use case separately
allowing a later-on analysis of Pareto front solutions as a
function of ANN depth. An empirical hyperparameter study
resulted in the NSGA-II configuration with a population size
of 80 and a number of generations of 10. Population size
defines the number of samples evaluated in parallel per gen-
eration. The first generation is initialized based on Latin
Hyper Cube (LHC) sampling, whereas later generations uti-
lize results of the prior generation to identify the set of
nondominated solutions, i.e. the Pareto front. Further details
of the algorithm are given in [86]. The MO-HPO parameters
are summarized in Table 2. On the used a AMD Ryzen 7

FIGURE 6. Target space of MO-HP O results with dominated solutions [ ]
and Pareto optimal ANN designs with 1 hidden layers [ ], 2 hidden
layers [ ], 3 hidden layers [ ], 4 hidden layers [ ] and 5 hidden
layers [ ].

5800x CPU with associated NVIDIA RTX A5000 GPU, solv-
ing the MO-HPO problem took roughly 9 days in total.

The MO-HPO results are presented in Fig. 6. It shows re-
sults of the investigated ANN designs in the target space (i.e.,
MSE ey over number Nflop of FLOPs) with dominated individ-
ual solutions [ ] and Pareto optimal (nondominated) solutions
per use case u (highlighted in different colors): u = 1 hidden
layer [ ], u = 2 hidden layers [ ], u = 3 hidden layers
[ ], u = 4 hidden layers [ ], u = 5 hidden layers [ ].
With an increasing number of FLOPs the MSE decreases for
all use cases. For Nflop > 800, the MSE of the Pareto optimal
designs of the use cases u = 2, 3, 4 and 5 converge to very
small values, whereas, for the use case u = 1, the MSE con-
verges to a significantly larger value.

D. VALIDATION
The applicability and transferability of the proposed approach
is validated in two steps. First, representative ANN designs
are selected (as a subset from Fig. 6) in both dominated and
nondominated regimes. Then, measurements and results for
these designs are presented to compare experimental values
with model-based predictions.

1) MO DECISION MAKING
For experimental validation, four ANN designs are chosen
to be implemented and tested on a realtime system in the
laboratory. Fig. 7 shows the MO-HPO results of use case
u = 2 (2 hidden layers) and the selected ANN designs: three
Pareto optimal designs 4-4-4-2 [ ], 4-4-14-2 [ ], 4-75-12-2
[ ], and a non-Pareto optimal design 4-2-97-2 [ ].

2) EXPERIMENTAL RESULTS
The above selected ANN designs are trained and then imple-
mented on a realtime dSpace system (see Fig. 8). In a first
step, details for one selected ANN design are presented on a
representative basis. In a second step, results of all (in equiv-
alent manner performed) measurements are compared with
their accordingly obtained theoretical predictions to conclude
the validation.
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FIGURE 7. MO-HPO results of two hidden layers with the selected ANN
designs: 4-4-4-2 [ ], 4-2-97-2 [ ], 4-4-14-2 [ ], 4-75-12-2 [ ].

FIGURE 8. Experimental setup.

a) Scenario and Time Series: The implementation of the
ANN is realized by a (self-written) MATLAB function, which
is subsequently integrated into Simulink for the eventual real-
time code generation. The 1.9 kW nonlinear RSM (right
machine in Fig. 8) is speed controlled. The speed controller
outputs the reference torque to the ANN-based OFTC sys-
tem which computes the optimal reference currents for the
underlying current controllers. For those, a generic and non-
linear current controller structure based on I/O-linearization
was applied as introduced in [47, Sec. 6.6.7] (in German) and
adapted in [93] for RSMs. Please note that any other current
control system could be adopted as well. The prime mover
is current (torque) controlled and acts as a load. Industrial
inverters (see Fig. 8 bottom right) with switching frequency
fsf = 8kHz are used to apply the reference voltages from the
current controllers to the machines.

The considered experimental scenario (shown in Fig. 9
for ANN architecture 4-4-14-2) represents a typical start-up
operation of an electrical drive system. Beginning from a
standstill, a step change in the reference speed is applied, tar-
geting a speed of ωm,ref = 125% ωm,N (125% of rated speed).
Throughout the entire experiment, the load torque applied by
the prime mover is kept constant at ≈ 3Nm.

Fig. 9 shows the experimental results of the ANN-based
OFTC approach if the Pareto optimal design 4-4-14-2 [ ]
(recall Fig. 7). Signals shown (with color code) are actual
values [ ], reference values [ ] and maximum values
[ ] of stator currents ids and iqs , current magnitude ‖idq

s ‖,
voltage magnitude ‖udq

s ‖, machine speed ωm, torque mm,

FIGURE 9. Experimental results for the proposed ANN-based OFTC
(architecture 4-4-14-2) for a nonlinear RSM (from top to bottom): Time
series of actual currents is, ANN-based OFTC reference currents is,ref and
NLP-based OFTC reference currents is,ref,nlp (d and q), current magnitudes

of actual ||idq
s || and reference currents ||idq

s,ref||, voltage magnitude ||udq
s ||,

angular velocity ωm, torque mm, and execution time texec.

and execution time texec. The reference currents ids,ref,nlp and

iqs,ref,nlp [ ] are also illustrated to show the accuracy of the
ANN-based OFTC compared to the optimal solution of the
NLP problem (13) obtained by MATLAB’s fmincon. Note
that ids,ref,nlp and iqs,ref,nlp were added during postprocessing as
fmincon cannot be used in realtime.

From t = 0.0 s to t = 0.05s the machine is at stand-still
while reference and produced torque satisfy the load torque,
i.e., mm,ref = mm = ml. Moreover, no voltage or current con-
straints are violated. At t = 0.05s, a reference speed step to
ωm,ref = 125% ωm,N is applied. Consequently, the reference
torque jumps to the maximally feasible torque of ≈ 12 Nm.
Note that the reference torque is larger than the maximally
feasible torque. From t = 0.05s to t = 0.22s, the requested
maximally feasible torque is produced while the current limit
is ensured by the ANN-based OFTC. At t = 0.22s, the volt-
age limit is reached. Therefore, from t = 0.22s to t = 0.36s,
the maximally feasible torque is reduced. At t = 0.45s, the
reference speed is reached and the reference torque reduces
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FIGURE 10. Experimental results of (a) MSE eexp and execution time texec

and the relation between MO-HPO and experimental results by (b)
comparison of the execution time and number of FLOPs, (c) the MSEs eexp

and ey of the selected ANN designs: 4-4-4-2 [ ], 4-2-97-2 [ ], 4-4-14-2
[ ], 4-75-12-2 [ ] and ORCC [•].

to the load torque mL and some additional friction torque.
Consequently, the current magnitude reduces and the current
limit is not touched anymore. From t = 0.45s to t = 0.65s,
voltage limit and reference torque are both satisfied. Besides,
the current limit is also not reached. Throughout the experi-
ment, the execution time of the ANN does not exceed 2µs.
The average execution time is solely 1.25µs.
b) Comparison of all Selected ANNs and Analytical ORCC:
The experiment is repeated for the four selected ANN designs
(recall Fig. 7) and for the state-of-the-art optimal reference
current computation (ORCC) [48], which computes the opti-
mal reference currents analytically and in realtime.

For all selected ANNs and the analytical ORCC, the MSE

eexp = 1
K

K∑
k=1

‖idq
s,ref[k] − idq

s,ref,nlp[k]‖2 (20)

with the total number of samples K which are recorded during
the experiment are computed and plotted against the mean
execution time texec in Fig. 10(a). The ANN architecture with
4-75-12-2 [ ] has the lowest error eexp but yields the high-
est computation time of the ANNs. In contrast, architecture
4-4-4-2 [ ] is the fastest but with higher error. Architecture
4-4-14-2 [ ] strikes a balance between computation time texec

and MSE eexp. For ANN architecture 4-2-97-2 [ ], it is possi-
ble to find ANNs with either lower error or lower computation
time (dominated solution).

Fig. 10(b) shows the relationship between the total number
Nflop of FLOPs and execution time texec. The computation time
clearly increases with the number of FLOPs. In Fig. 10(c),

the MSEs eexp and ey of experiment and MO-HPO are com-
pared revealing a correlation between their error magnitudes.
Finally, Fig. 10(a) clearly indicates that ORCC, with an av-
erage computation time of texec ≈ 22.96 μs and a MSE of
eexp ≈ 2.96 · 10−2A2, significantly performs worse than all
ANN-based OFTC approaches.

IV. DISCUSSION
A novel methodology for systematic Pareto-optimal ANN hy-
perparameter identification was effectively applied to OFTC
for nonlinear SM. It is shown that ANN-based OFTC solu-
tions can be obtained that achieve the best possible trade-off
between execution time and accuracy as competing goals.
Such solutions meet the reference torque demand or at least
the maximum feasible torque while satisfying voltage and
current constraints and accounting for machine nonlinearities
(such as magnetic saturation and cross-coupling).

The study confirms the target conflict between an achiev-
able MSE ey and the number Nflop of FLOPs as a measure
of required computational power. It also demonstrates the
benefits of systematic ANN MO-HPO as an equally effective
and efficient way to identify and implement OFTC solutions.

Applying results from the theory of approximation [71],
allows to gain further insights into specific design rules for
ANN-based OFTC approaches: In function fitting, three error
types occur in general, i.e. training error (arising from non-
convex optimization), estimation error (due to finite dataset
size and generalization), and approximation error (related to
expressivity capability of the chosen approach, in our case
ANNs). Based on our ANN training approach with small
initial learning rates and a sufficiently large dataset with two
million samples, expressivity is dominant. From established
works [71], [94], in this context, universal properties can be
demonstrated. Specifically, the required total number of neu-
rons Ntot within an ANN to approximate a given unknown (in
our case OFTC defined) function to a defined accuracy (here
the expressivity error ey) asymptotically follows a power law:

Ntot ≥ c · (ey
)a ⇐⇒ ey ≤ a

√
Ntot

c . (21)

This allows to identify the scaling factor c and the exponent a
by linear regression on the log-log transformation log(Ntot ) ≥
log(c) + a · log(ey). In (21) represents one of the fundamental
ANN approximation theory results. It not only specifies the
asymptotic power law relationship between the lower bound
for the total number Ntot of required neurons for a desired
MSE, but also states the scaling factor c and exponent a to
differ for shallow (u = 1) and deep (u > 1) ANNs. From the
approximation theory approach, it follows that these parame-
ters for deep ANNs are independent of the network depth u.
In our case, Pareto fronts represent the best possible trade-offs
and thereby should represent the expected lower boundaries.

In Fig. 11(a), the MSE ey and the total number Ntot of
neurons of all hidden layers are shown. For Ntot � 100, the
MSE of the Pareto optimal designs approach a MSE limit that
is no longer dominated by expressivity rather than training
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FIGURE 11. Power law fitting for each number of hidden layers m: (a)
Pareto fronts Ntot versus ey and (b) exponent a ± 3σ. The dashed line
indicates their mean for m ≥ 2.

TABLE 3. Identified Power Law Parameters a and c (Recall (21)) With
Confidence ±3σ and F -Statistics With Corresponding p-Value for Pareto
Optimal ANNs Per Number m of Hidden Layers

residuals. For each number m ∈ {1, . . . , 5} of hidden layers,
the power law was fitted to its Pareto front separately using
the curve_fit implementation in Scipy [95]. The result-
ing parameters are summarized in Table 3 with uncertainties
estimated according to [96]. To test the hypothesis of the
power law dependence, an analysis of variance (ANOVA) was
performed using f_oneway in [95]. Even if all data points
(which are largely, but not completely, dominated by expres-
sivity) of the Pareto fronts are taken into account, the predicted
power law behavior of the (21) already shows a significance
level of better than 10% for each of them. These ANNs may
be interpreted to represent the lower bound of totally required
neurons Ntot to achieve a defined MSE. Likewise, the expected
difference in the exponent for shallow versus deep ANNs is
significantly dissimilar, whereby the convergence behavior for
deep ANNs can be classified as the same and thereby confirms
the approximation theoretical prediction.

In Fig. 11(b), the determined exponents a, along with their
estimator uncertainties (3σ ) are shown. The figure illustrates
that deep neural networks with m ≥ 2 exhibit a common
exponent. The mean value 1

4

∑5
m=2 am = −0.83 [ ] falls

within the uncertainty interval of m ≥ 2. In contrast, shallow
networks with only one hidden layer (m = 1) result in a sig-
nificantly different exponent.

In practical application, this implies that 1) utilizing deep
neural networks (with a number of hidden layers greater than
1, i.e., m ≥ 2) can significantly reduce the MSE ey at the
same number of neurons Ntot, compared to shallow networks
(with only one hidden layer, i.e. m = 1). Additionally, 2) it
is sufficient to consider only ANNs with two hidden layers

m = 2 as a surrogate for this application, because with the
same total number of neurons no further MSE improvement
can be expected for any deeper ANN.

V. CONCLUSION
A novel workflow for the design of ANN-based solutions
tailored to the unique demands of electrical drives has
been proposed, implemented and validated. The workflow
encompasses supervised learning of ANNs and the struc-
tured determination of optimal ANN architectures through
a multiobjective optimization approach. This framework was
successfully applied to OFTC of nonlinear RSMs.

The obtained ANN-based OFTC designs have demon-
strated superior accuracy and execution time when compared
to state-of-the-art analytical computational methods. More-
over, invoking insights from approximation theory allowed to
provide valuable design rules for optimal ANN architectures,
which significantly reduce the design space and enhance the
efficiency of the design process of the ANN-based OFTC
approach for electrical drives.

Future work will extend ANN-based OFTC by including
temperature variations for a more comprehensive analysis of
electrical drives. In addition, the framework’s applicability
will be broadened by also covering EESM with additional
inputs and outputs. Finally, to make this workflow more ac-
cessible, we are working on an open-source Python toolchain
facilitating its implementation and promoting collaborative
innovations within the research community.
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