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ABSTRACT Smart grids (SGs), a cornerstone of modern power systems, facilitate efficient management and
distribution of electricity. Despite their advantages, increased connectivity and reliance on communication
networks expand their susceptibility to cyber threats. Machine learning (ML) can radically transform cyber
security in SGs and secure protocols as in IEC 60870 standard, an international standard for electric
power system communication. Notwithstanding, cyber adversaries are now exploiting ML-based intrusion
detection systems (IDS) using adversarial ML attacks, potentially undermining SG security. This article
addresses cyber attacks on the communication network of SGs, specifically targeting the IEC 60870-5-104
protocol. We introduce a novel ML-based IDS framework for the IEC 60870-5-104 protocol. Specifically, we
employ an artificial neural network (ANN) to analyze a new and realistically representative dataset of IEC
60870-5-104 traffic data, unlike previous research that relies on simulated or unrelated data. This approach
assists in identifying anomalies indicative of cyber attacks more accurately. Furthermore, we evaluate the
resilience of our ANN model against adversarial attacks, including the fast gradient sign method, projected
gradient descent, and Carlini and Wagner attacks. Our results demonstrate that the proposed framework can
accurately detect cyber attacks and remains robust to adversarial attacks. This offers efficient and resilient
IDS capabilities to detect and mitigate cyber attacks in real-world ML-based adversarial environments.

INDEX TERMS Adversarial attacks, deep learning, IEC 60870-5-104 protocol, intrusion detection systems

(IDS), machine learning (ML), smart grids (SGs).

I. INTRODUCTION

The increasing electricity demand is exhausting the current
power systems, which lack reliability, efficiency, and automa-
tion. This motivates the move toward the smart grid (SG),
which can potentially solve many of the challenges in the
existing power grid by providing bidirectional information
flow between different power system components [1]. SG
is designed to improve the efficiency and reliability of the
traditional power grid by integrating advanced technologies
for power generation. Unlike conventional power grids, the
bidirectional flow of power and information enables power
generation at the consumer level using renewable energy

sources and storing excess energy for future use. Thus,
communication technologies play a pivotal role in the func-
tioning of the SGs. They interconnect various grid compo-
nents and Internet of Things devices, such as smart meters,
which generate vast volumes of data for automated decision-
making and dynamic energy management. In effect, the
communication infrastructure serves as the backbone of the
SG, enabling all the data exchange and processing that are
vital for SG operations [2].

In this context, the International Electrotechnical Com-
mission (IEC) 60870 standard is particularly important to
streamline integration and enhance interoperability between
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different devices and systems within the SG [3], [4]. This
facilitates the use of various networking technologies in the
grid, such as Ethernet, Wi-Fi, and cellular networks [5].
However, IEC 60870, and specifically the IEC 60870-5-104
protocol, introduces several vulnerabilities that must be ad-
dressed. Adversaries can access to numerous vulnerabilities,
including ways to launch destructive attacks and access sen-
sitive information. As an example of such attacks, the 2015
Ukrainian power outage illustrates the critical vulnerabilities
to cyber attacks in both the control center and the smart
devices employed for managing and observing the electrical
system [6]. Specifically, IEC 60870-5-104 is susceptible to
standard network attacks, such as denial of service (DoS),
man-in-the-middle (MITM), and other forms of cyber attacks.
In addition, using IP networks in IEC 60870-5-104 inadver-
tently expands the attack surface that cyber attackers often
target. Notably, the utilization of widely recognized protocols,
such as IEC 60870-5-104, could simplify unauthorized access
for attackers who are familiar with these insecure protocols.
Moreover, the presence of older devices lacking robust secu-
rity features within the grid could constitute a potential weak
point. Consequently, it is critical to focus on enhancing the
security mechanisms within IEC 60870 to strengthen the SG’s
resilience against cyber threats [7], [8].

Machine learning (ML), as a rapidly growing technology,
can play a crucial role in detecting cyber attacks on SGs [2],
[9], [10], [11]. ML algorithms can be trained to identify pat-
terns and anomalies in large volumes of data generated by the
grid using either anomaly-based or signature-based detection
methods [12]. These algorithms can analyze normal network
traffic and energy consumption patterns, creating a baseline
of “normal” behavior [13], [14], [15]. When an attacker tries
to infiltrate the network or conduct a disruptive operation, the
ML algorithm can quickly recognize this unusual activity as
it deviates from the established baseline. Once an anomaly
is detected, alerts can be triggered for further investigation
and prompt response. This proactive approach enables real-
time detection and prevention of cyber threats, significantly
enhancing the security of overall SG systems [16].

A. CONTRIBUTIONS

Despite the increasing use of the IEC 60870-5-104 protocol
in SG and its crucial role in several industries, there is a
shortage of efficient and resilient intrusion detection systems
(IDS) capable of identifying and counteracting cyber attacks
directed toward IEC 60870-5-104-based systems. In addition,
the lack of realistic, publicly available datasets for this pro-
tocol hampers the development and testing of ML models
tailored for IDSof IEC 60870-5-104 communication. Further-
more, robust ML models that can resist adversarial attacks—a
key consideration in cyber security—are scarcely explored in
the existing literature. These gaps highlight a critical need for
thorough studies and approaches to harness ML’s potential
in enhancing IEC 60870-5-104’s security, fueling the devel-
opment of robust IDS, and reinforcing the resilience of SGs
against sophisticated cyber threats. This motivates the need
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for robust IDS that can secure the IEC 60870-5-104 communi-
cation between different components within SGs. This article
contributes to these challenges, and our contributions can be
summarized as follows.

1) Addressing the lack of a real IEC 60870-5-104 dataset,
which limits the research community’s ability to de-
velop effective security measures for the IEC 60870-5-
104 protocol. We provide a clean and labeled dataset
that captures information from the IEC 60870-5-104
header, enabling the training of ML-based IDS.

2) Proposing a novel approach for IDS in IEC 60870-5-
104-based systems using advanced ML techniques. The
proposed framework can detect and mitigate up to 11
cyber attacks using a hierarchical approach to differen-
tiate between legitimate and malicious network traffic
and, providing an efficient familial analysis of the at-
tack type. This approach enables a rapid and effective
response to cyber attacks.

3) Handling the issue of the lack of a robust IEC 60870-5-
104 IDS that can maintain a high positive detection rate
in the presence of ML-based adversarial attacks. The
proposed IEC 60870-5-104 IDS is tested against several
ML adversarial attacks, such as the Fast Gradient Sign
Method (FGSM), Projected Gradient Descent (PGD),
and Carlini and Wagner (C&W).

4) Contributing to the open-source research community
by making the dataset and all the associated training
codes available for public access. This enables other
researchers to validate, reproduce, and build upon our
work. The resources can be accessed with a detailed
description via the following GitHub link.'

B. ORGANIZATION

The rest of this article is organized as follows. In Section
II, we provide a brief overview of the existing related work.
In Section III, we overview the dataset. In Section IV, we
describe our system architecture and explain the methodology
used. Moreover, in Section VI, we illustrate our experimental
results and summarize. Finally, Section VII concludes this
article.

Il. RELATED WORK

In the literature, several studies have explored the use of ML
algorithms for IDS in SGs. Some effort in the literature was
devoted to generating security datasets for SG. For example,
Babu et al. [17] presented a framework called Melody that
mitigates the security risk associated with SG datasets through
simulation and emulation. The melody framework emulates
the normal traffic and the intrusion attacks on a simulated
SG network to mimic a real SG network dataset. Melody
uses power world to replace the electrical features of the SG
and Mininet as the communication network between emu-
lated SG components, such as supervisory control and data
acquisition (SCADA), remote terminal unit, and intelligent
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electronic device (IED). The framework was evaluated regard-
ing scalability, temporal accuracy, and traffic reply capability.
In [18], combined deep neural networks (NNs) with honey-
pots were proposed to generate Modbus data traffic. Their
Neuralpot used generative adversarial networks (GANs) and
autoencoders, with the Conpot, a honeypot widely used for
industrial applications. Neuralpot could generate data with
high similarity in a short time. Ahmed and Kandasamy [19]
built an electrical grid testbed called EPIC to generate datasets
for ML. The testbed consisted of four zones: generation,
MicroGrid, transmission, and smart Home. They distributed
IEDs across all four zones and collected current, voltage, and
frequency measurements. They simulated the electrical layout
and communication network between SG components. The
data was collected using a different configuration of the EPIC
and by implementing different attack scenarios.

Considering the ML algorithms to secure the SG, the
work in [20], for instance, used the dataset (KDDCUP99) to
train ML-based IDS. They used principal component anal-
ysis (PCA) for dimensionality reduction and compared ML
algorithms, such as support vector machine (SVM), decision
trees (DT), and Naive Bayesian. According to [21], particle
swarm optimization (PSO) can be used to optimize feature
selection. They performed feature selection optimization and
preprocessing on the published datasets KD99 and NSLKDD
to improve the detection accuracy of the trained ML models.
Using PSO, they selected seven out of 41 features in the
NSLKDD dataset and 8 out of 41 in the KDD99 dataset. Khan
et al. [21] trained binary and multiclass classifiers using K-
nearest neighbor (k-NN), NNs, DTs, and random forest (RF)
trained models. They evaluated their models based on metrics,
such as f1-Score, accuracy, recall, and precision, to prove the
efficiency of using PSO on these datasets. Likewise, Ustun
et al. [22] focused on intrusion detection within SGs, utilizing
a range of ML algorithms, including DT, RF, SVM, k-NN,
and adaptive boost (AdaBoost). In addition, Aziz et al. [23]
claimed that hybrid models can help with false data injection
(FDI) attacks. They used a public SG dataset and trained hy-
brid classifiers. such as SVM with extreme gradient boosting
(XGBoost) classifier, gradient boosting classifier, categorical
boosting (CatBoost) classifier, AdaBoost classifier, and SVM
with the light-gradient and histogram boosting classifiers.
Their results show that SVM combined with the CatBoost
classifier gives the highest accuracy among all the tested hy-
brid models. On the other hand, Nowroozi et al. [24] tested the
transferability of adversarial attacks between models. They
showed that the malicious attack could be transferred between
ML models even if they are trained on different datasets
or have different architectures. The work in [25] offered a
guide on model selection based on the confidentiality, in-
tegrity, and availability (CIA) triad, covering both traditional
and deep learning models. A survey by Alkuwari et al. [26]
listed some existing anomaly detection methods, particularly
against FDI, DoS, and load drop attacks, while also dis-
cussing data privacy and the advantages of hybrid methods.
Wang et al. [27] introduced a stacked deep learning approach
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and highlighted the effectiveness of XGBoost for SCADA
systems. The work in [28] proposed the binary gray wolf
optimization evolutionary computation (BGWO-EC) scheme,
demonstrating its applicability across diverse attack scenarios.
Lastly, Yu et al. [29] presented the gray wolf algorithm (GWA)
artificial neural network (ANN) model, which employs GWA
and outperforms conventional algorithms when tested on the
MSU/ORNL datasets. Table 1 summarizes the advantages and
disadvantages of the various methodologies discussed in this
section.

In summary, despite the considerable efforts in the litera-
ture, there is a clear shortfall in addressing the vulnerabilities
of IEC 60870-5-104 communication. Furthermore, there is
a significant gap in applying realistic IEC-specific datasets
for testing and developing these models. Also, none of these
studies substantively test or prove the resilience of their pro-
posed models against adversarial intrusions. To address these
pressing concerns, our study focuses on developing a robust
IDS specifically tailored for IEC 60870-5-104. Our approach
includes the use of a realistic, labeled IEC 60870-5-104
dataset and validating the IDS’s resilience against adversarial
intrusions, offering a thorough solution to IEC 60870-5-104
communication security.

IIl. INDUSTRIAL CONTROL SYSTEM (ICS)INTRUSION
DETECTION DATASET PREPARATION AND ANALYSIS

In IDS, the utilization of real-world datasets is instrumental to
the development, testing, and evaluation of proposed models.
In March 2022, Brno University published a streaming ICS
dataset capturing information from two headers, IEC 60870-
5-104 and IEC 61850 MMS, which are commonly used for
anomaly detection and security monitoring [30]. In this work,
we mainly focus on IEC 60870-5-104 related data. The data
was either captured from real ICS devices’ communication or
virtualized from ICS applications. The data spanned across
one or multiple days, including benign and malicious samples
with attacks, such as switching, scanning, and communica-
tion interruption. However, this dataset has no labels and
needs to be preprocessed to be appropriate for commercial
or research purposes. Labeling, cleaning, and preprocessing
datasets is a crucial step in the data preparation process for
many types of analysis. This section details our process of
preparing this dataset, including assigning appropriate labels
to data samples, eliminating irrelevant or inaccurate data, and
transforming data to a format conducive to subsequent analy-
sis (i.e., encoding).

A. OVERVIEW OF THE UTILIZED IDS DATASET AND
PREPROCESSING STEPS

The IDS dataset exhibits a well-structured folder hierarchy,
complemented by informative readme.txt files outlining data
types and attack timestamps. Table 2 provides an overview
of the dataset’s folder arrangement, while Table 3 delineates
the attributes extracted from the IEC 60870-5-104 header.
Notably, this dataset encompasses 11 distinct types of attacks,
each capable of exerting diverse effects on the SG system.
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TABLE 1. Summary of Advantages and Disadvantages of Related Works
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Related work

Advantages

Disadvantages

Melody Emulation and simulation of SG networks. Evaluate | May lack real-world applicability. No countermeasure against
Framework scalability, temporal accuracy, and traffic reply capa- | adversarial attacks.

[17] bility.

Neuralpot [18] Generates high-similarity data quickly using GANs | Specialized for Modbus data traffic. No countermeasure against

and Autoencoders. Integrates with Conpot honeypot
for industrial applications.

adversarial attacks.

EPIC Testbed
[19]

Coverage of SG zones for data collection. Real-world
scenarios simulated.

Limited validation details. No countermeasure against adversar-
ial attacks.

Using Uses PCA and multiple ML algorithms. Relies on older datasets (KDDCUP99). No countermeasure
KDDCUPY9 against adversarial attacks.

with PCA [20]

PSO [21] Optimize feature selection. Uses older datasets. No countermeasure against adversarial

attacks.

Hybrid Models
[23]

Tackles FDI attacks. Multiple hybrid classifiers.

Specificity limits general applicability. No countermeasure
against adversarial attacks.

Transferability of
Attacks [24]

Insights into attack transferability between ML mod-
els.

Uses irrelevant datasets. No countermeasure against adversarial
attacks.

Berghout et al.

[25]

Guide on model selection based on CIA triad. Covers
traditional and deep learning models.

Consider a simple attack scenario. No countermeasure against
adversarial attacks.

Wang et al. [27]

Stacked deep learning approach. Highlights XGBoost
effectiveness.

irrelevant datasets. No countermeasure against adversarial
attacks.

Panthi ct al. [28]

Proposes BGWO-EC scheme. Effective across diverse
attack scenarios.

High-complexity. No countermeasure against adversarial at-
tacks.

Yu et al. [29]

Presents GWA-ANN model. Uses grey wolf opti-
mization. Outperforms conventional algorithms on

No consideration for limited-resource devices. No countermea-
sure against adversarial attacks.

MSU/ORNL datasets.

)

2)

3)

4)

5)

6)

7

~

8)

9)

DoS attack: Grid components may become unrespon-
sive, leading to potential power outages, delays in
response to grid events, and reduced overall system
reliability.

Injection attack: It can lead to unauthorized control
over SG components, potentially affecting grid stabil-
ity and security. For example, changing setpoints or
control commands could result in equipment damage
or grid instability.

Connection-loss attack: It can lead to a lack of sit-
uational awareness, delayed response to grid events,
and potentially cascading failures as grid components
cannot coordinate effectively.

Switching attack: It can lead to erratic device behav-
ior, potentially causing grid instability, overloads, or
unsafe operating conditions.

Scanning attack: Attackers may gain insight into the
SG’s structure and vulnerabilities, potentially enabling
future attacks or unauthorized access to critical com-
ponents.

Rogue device attack: It can lead to false data being
injected into the SG, potentially causing incorrect de-
cisions and actions by control systems.

MITM attack: It can lead to unauthorized manipulation
of data and control commands, potentially compromis-
ing grid stability and security.

Value change attack: Altered values may damage
equipment, grid instability, or unsafe operating condi-
tions.

Masquerading attack: It can introduce false data into
the system, leading to incorrect decisions and actions

by control systems. This could impact grid stability,
reliability, and the overall integrity of data.
10) Report-block attack: These attacks can disrupt the flow
of critical information, potentially leading to a lack
of situational awareness and delayed responses to grid
events.
Replay attack: It can deceive the SG’s systems into
making incorrect decisions or taking actions based on
duplicated data.

1)

B. DATASET LABELING

The Raw data from Brno University was not labeled. How-
ever, the timestamp for the attack occurrence was mentioned
in the dataset description. Hence, based on the time stamp, we
performed the needed preprocessing to label the data, which
included two main tasks: timestamp processing and adding the
day feature.

1) Timestamp processing: We converted the timestamp
from HH:MM: SS format to HH.MMSS Format. This
facilitates the numerical comparison between times-
tamps and allows accurate labeling of the exact time
when the attack occurred.

2) Day feature: The captured IEC 60870-5-104 data are
spanned across multiple days, meaning that the times-
tamp will be repeated. Hence, if we only consider the
timestamp as our only reference for the attack timing,
an error will occur in labeling. To avoid this, we cal-
culated the day feature from the relative time, which

is the logical time that starts with the traffic capturing.

__ relative time
Day = =5e0605
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TABLE 2. Description of IDS Dataset Folders

TABLE 3. IEC 60870-5-104 Dataset Features

Folder name

Description

but-iec104-i

This folder contains 7 CSV files. The first file contains
regular traffic communication data, while the others
contain six attack scenarios: label=.

o DoS Attack: Overwhelms the host with legit-
imate IEC 60870-5-104 packets, employing a
spoofed IP address and specific ASDU charac-
teristics.

o Injection Attack: Compromises one host and
sends unusual requests, including Single Com-
mand (ASDU TypelD=45) and File Access
(ASDU TypelD=122) attacks.

o Connection-Loss Attack: Temporarily inter-
rupts the connection, causing packet loss.

o Switching Attack: Consists of switching the
device on/off using specific IEC 60870-5-104
packets.

e Scanning Attack: Includes horizontal and ver-
tical scanning, probing for IEC 60870-5-104
objects and responses.

o Rogue-Device Attack: Involves a rogue device
sending legitimate IEC 60870-5-104 packets
with measured values.

Feature

Description

Timestamp

The absolute current time

Relative time

The time from the start of capturing in sec-
onds

Source [P address

From the IP header

Destination IP ad-
dress

From the IP header

Source port

From the TCP header

Destination port

From the TCP header

IP length from the IP header

APDU length from the IEC 60870-5-104 header
APDU format | i-format:0x0, s-format:0x1, u-format:0x3
type

u-format type

start data transfer:0x01, stop data trans-
fer:0x02, test frame activation:0x10, test
frame confirmation: 0x20, stop data transfer
action: 0x04, stop data transfer confirmation:
0x08

ASDU type iden-
tification

single point information M_SP_NA_1:1, in-
terrogation command: C_IC_NA_1:100, etc.

Number of Infor-
mation objects

Number of Information objects within an
ASDU packet

Cause of Trans-
mission

periodic:1, spontaneous:3, activation:6, con-
firmation activation:7, etc

but-iec104-ii

This folder contains benign communication data.

rts-iec104 The traces in this folder reflect normal SCADA
network communication.
vrt-iec104 This folder contains data collected from an IEC virtual

testbed, including benign communication and five
attacks: label=.

o MITM Attack: Alters command types
and values.

e Value Change Attack: Manipulates packet
contents.

e Masquerading Attack: Pretends to be a legiti-
mate device.

e Report-block Attack: Blocks information and
sends duplicate packets.

o Replay Attack: Replays packets to deceive the
system.

Table 4 gives the labels and the count of samples in each
class after labeling.

C. DATASET PREPROCESSING

Some of the data in the IEC 60870-5-104 dataset included
the feature (IOA), and some did not. Hence, the IEC 60870-
5-104 data was split into two data frames, IECwithIOA and
IECwithoutIOA, and then preprocessed as follows.

1y

2)

IP address encoding: The IP addresses were encoded
and converted into integers by converting the IP address
into binary, concatenating all four octets together, then
converting them into decimals.

Step 1:192.168.0.1 = 11000000101010000000000000
000001

Step 2:11000000101010000000000000000001 = 3232
235521.

Categorical values encoding: The TEC 60870-5-104
data included three categorical features: APDU Format
type, u-format type, and IOA. In this step, we rep-
resented each unique categorical feature value as an
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Originator A unique identifier that specifies the address
address of the device that originated the communica-
tion (optional)

ASDU  address | The address of the target station or the broad-
field cast address

X . a list of addresses of Information Objects
Information present in the ASDU
Object Address
(I0A)

TABLE 4. IEC 60870-5-104 Labels

Data type Label Number of samples
Benign Data 0 2715768
Connection-Loss Attack | 1 1564
DoS Attack 2 4362
Switching Attack 3 342
Scanning Attack 4 954
Rogue-device Attack 5 889
Injection Attack 6 671
MITM attack 7 30334
Replay attack 8 30740
Report-block attack 9 11668
Value-change attack 10 19274
Masquerading attack 11 26224

integer value. After conversion, the APDU format type
had a value of 0-2, the u-format type ranged between 0
and 3, and IOA was equal to 0—138.

3) Clear the dataset from null values: Many of the features

included null values. To mitigate this, we replaced all
the nulls with the calculated median of each feature.

4) Data sampling: As given in Table 4, there is a huge im-

balance between classes, and the benign data represent
the majority in the dataset. This imbalance can limit the
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IEDs

IEC 60870-104 Clients:
simulating attack traffic
requests to the conpot

IEC 60870-104 Clients:
simulating Normal traffic
requests to the conpot

FIGURE 1. System architecture.

accuracy of the trained model since the majority classes
will overpower the minority, causing an imbalance bias
in the model. To overcome this, each class was either
oversampled/undersampled as needed.

5) Normalization: The last step involved applying min—
max normalization to preserve the correlation between
the original data points while minimizing the impact of
outliers.

After preprocessing (steps 1 to 3), we extract 2 CSV files;
the first file includes IEC 60870-5-104 with the IOA feature
and contains 1573737 data samples: 1564955 benign, and
8782 malicious samples. The second extracted file has IEC
60870-5-104 without the IOA feature and contains 1 150 813
normal traffic samples and 11 840 attack samples.

IV. METHODOLOGY

In this section, we go through the detailed methodology to
build a robust model that can secure the IEC 60870-5-104
communication and detect various attacks with high accuracy,
even in the presence of adversarial intrusions. The proposed
approach involves training a hierarchical multilayer percep-
tron (HMLP) and utilizing defensive distillation to enhance
the model’s resilience.

A. SYSTEM ARCHITECTURE

Our system consists of two main components: the ML clas-
sifier and the Conpot. The Conpot will be running with the
IEC 60870-5-104 template to mimic the behavior of the IEC
60870-5-104 control and monitoring communication flow.
The ML model will be trained on the IEC 60870-5-104
dataset, allowing it to detect up to 11 various attacks. After
training the model, it could be integrated on top of the Conpot
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IEC 60870-104 DATASET

| r—
Malicious

WN =

11
Machine
Learning Model

Benign

Misleading Environment to detect the attack

to enable real-time detection of malicious traffic. This archi-
tecture will be able to detect intrusions in real-time. Fig. 1
illustrates the architecture of our proposed IDS, and Algo-
rithm 1 outlines the steps of our methodology.

Algorithm 1 begins with an initialization step, where the
model’s weights and biases are randomly initialized. The
training phase follows, spanning multiple epochs (controlled
by the parameter E), during which the training dataset Dy,
is shuffled, and for each batch B;, a forward pass is performed
through the NNs with L hidden layers and H neurons in
each layer. This forward pass involves applying activation
functions (o) to compute layer-wise activations. The loss is
computed, incorporating both the model’s predictions (M (x))
and true labels (y), along with a regularization term to pre-
vent overfitting. The backward pass computes gradients using
backpropagation, and the weights and biases are updated us-
ing a learning rate (Lr) and gradient descent. The algorithm
then transitions to the adversarial attack phase, generating ad-
versarial examples for each training example in Dy,i,. Three
attack methods are outlined: FGSM, PGD, and C&W. These
attacks introduce controlled perturbations to input examples to
deceive the model. Following the adversarial attack phase, the
algorithm proceeds to defensive distillation. It trains a teacher
model (M7) on a distilled dataset Dgjs using a temperature
parameter T;. For each training example in Dyip, it softens
the logits using the teacher model and trains a student model
(My) on these softened logits and true labels, incorporating a
temperature parameter 7.

B. BASELINE ML

To get an insight into the performance of the preprocessed
dataset and study the importance of the IOA feature, we use
SVM, DTs, and multilayer perceptron (MLP) to train binary
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TABLE 5. HMLP Models Parameters

Algorithm 1: HMLP Training With Adversarial Attacks

and Defensive Distillation. Binary model Attack model
Input :Training dataset Dyrqin, learning rate Lr, number of - -
epochs F, attack strength ¢, number of iterations 7', Learning Rate: 0.006 | Learning Rate: 0.006
step size for each iteration «, temperature parameter . .
T4, distilled dataset Da;s¢ Parameters | Epochs: 20 Epochs: 300
Parameters : Numb_er of hidden layers L,_number o_f neurons in Batch size: 1000 Batchsize: 1000
each hidden layer H, batch size B, weight decay A,
temperature parameter 7T’ Inputs 14 14
Output : Trained model M Outout 5 1
utputs
1 Training: Initialize weights W and biases b randomly P
fore =1t E do
2 Shuffle training dataset Diain .
for each batch B; in D,y do Linear (14x512)
3 Forward pass: a® = B;,a® = U(W(l)a(l_l) + b<l)) for Batchnorm (512)
=1,...,L
Compute loss: J = ﬁ Pwyyen, LM(@),y) + Linear (14x512) ReLU
S W3 Batchnorm (512) Dropout (0.2)
Backward pass: Compute gradients Vyy J and V3 .J using ’
backpropagation ReLU Linear (512x256)
Update weights and biases: WO — wh — aVymd
and b oD — Lrv, oy Jforl=1,...,L Dropout (0.2) Batchnorm (256)
¢ | end Linear (512x128) ReLU
5 end
6 Adversarial Attack: for each example (x,y) in Dirqin do Batchnorm (128) Dropout (0.2)
7 Generate adversarial example 4. Layers ReL.U Linear (256x128)
8 FGSM Attack:
Compute gradient: g = Vo L(M (z),y) Dropout (0.2) Batchnorm (128)
Compute perturbation: § = ¢ - sign(g) .
Compute adversarial example: zqq4, = Clip(z + §, 0, 1) where Linear (128x64) RelLU
Clip(z, a, b) clips @ to the range [a, b] Batchnorm (64) Dropout (0.2)
9 PGD Attack: .
Initialize perturbation: 6 = 0 RelL.U Linear (128x32)
fort =11Tdo Dropout (0.2) Batchnorm (32)
10 Compute gradient: g = V,L(M (z + 6),y) )
Compute perturbation: &’ = Clip(d + a - sign(g), —e¢, €) Linear (64x2) ReLU
Compute adversarial example: 2o, = Clip(z + 6,0, 1)
Update perturbation: § &’ Dropout (0.2)
n | end Linear (32x11)
12 C&W Attack:
Initialize perturbation: § = 0
fort =1t T do
13 Compute perturbation update: &' = Clip(6 + « -
sign(Va J (M (z + 0),y) — VQUJ(Z\/[(JC),Ay))7 —e,/e)
Soglzizte e‘f:f;;f;l %xfin%l,e: Taav = Clip(z +6",0,1) the TOA feature and one for the data without the IOA feature.
14 end paatep ’ For the MLP, we use a trial-and-error approach to tune the
is Add adversarial example to training dataset: Dirqin hyperparameters. The architecture and final parameters of the
4 Dirain U{(Zadv, y)} binary MLP are detailed in Table 5.
16 en

17 Defensive Distillation:
Train teacher model M7 on distilled dataset Dg;,; using temperature
parameter T} 2) MULTICLASS CLASSIFICATION
for each example (x,y) in Dirqin do Similarly, we train two classifiers per algorithm for multi-

. . . 1 . .
18 Soften logits using teacher model: z = 7~ ',MT(””) classification, one for IOA and one for non-IOA data. We
Train student model Mg on softened foglts and true labels

(2, y) using temperature parameter Ty sample the data classes before the training to overcome the
19 end bias caused by data imbalance. The architecture and final pa-
rameter of the multiclass MLP are similar to the attack model
in Table 5.
and multiclass classifiers. We use the accuracy and F1-score
as the performance metrics. 3) 10A FEATURE SIGNIFICANCE
We utilize a RF classifier to determine the importance of the
1) BINARY CLASSIFICATION IOA feature. Following this, we exported and organized the

We train a binary classifier using DT, SVM, and MLP. For significance of each feature. The significance of each feature
each algorithm, we train two classifiers, one for the data with  in the classifier is illustrated in Fig. 2.
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C. HIERARCHICAL MULTILAYER PERCEPTRON

The data imbalance between benign and malicious samples is
evident in Table 4. This imbalance is causing multiclass classi-
fiers to perform poorly. This motivates us to use a hierarchical
approach to train the model. The first layer decides if the data
are benign or malicious, and the second layer determines the
attack type. This approach isolates the attack samples from
the benign samples when training the multiclass classifier in
the second layer, which helps to reduce the impact of data
imbalance drastically, allowing the model to perform better
and achieve a higher detection rate, especially for multiclass
classification.

After observing the performance of both binary and multi-
class classifiers and determining the significance of the IOA
feature, we adopted a hierarchical classification approach to
increase the granularity of the model. As shown in Fig. 3, the
trained classifier includes two models: the first model decides
whether a given sample is benign or malicious, and if the
sample is malicious, it is forwarded to the second model,
which determines the exact type of attack.

1) PREPROCESSING FOR THE HMLP

Before training the HMLP, the IOA feature was dropped, and
all the IEC 60870-5-104 data with the 11 attacks were merged.
We unify the label of all attack samples to train the binary
model. In contrast, we keep the labels as it is to train the attack
model, but we remove all the benign samples from the dataset.

V. ADVERSARIAL TRAINING FOR ROBUST ML-BASED IDS
With the wide use of ML in the security of SGs, attackers
started employing their attacks on ML models to mislead
IDS and evade detection. Such attacks are called adversarial
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attacks, which generate malicious inputs using small pertur-
bations to fool ML models and force them to misclassify a
given input. After training our HMLP, which consists of the
binary and the attack models, we evaluate the robustness of
both models against adversarial attacks to study the effect
of such attacks on the model’s accuracy and strengthen the
robustness of the model.

A. ADVERSARIAL ATTACKS
In this work, we evaluated our model robustness against
FGSM, PGD, and C&W attacks.

1) FGSM

A simple attack method that adds a small perturbation to each
feature of the input in the direction of the gradient of the loss
function with respect to the input.It is called “fast” because it
only requires one forward and one backward pass through the
model to generate the adversarial example

x' =x+e€-sign(VeJ(0,x,y)) M

where x is the original input, x’ is the perturbed input, € is the
magnitude of the perturbation, J (8, x, y) is the loss function of
the NNs with parameters 6 evaluated on input x and true label
v, and V,J(0, x, y) is the gradient of the loss with respect to
the input.

2) PGD

PGD is a more powerful attack method that performs multiple
steps of gradient descent with a small step size to iteratively
generate an adversarial example that maximizes the model’s
loss. PGD can be seen as an extension of FGSM and is con-
sidered one of the most effective white-box attacks

D =clip, " + o - sign(Vx7(0,x7,y))  (2)

where x is the original input, € is the maximum perturbation
allowed, 7 is the iteration index, « is the step size of the update,
clip is a function that clips the values of its argument to the
given range, and V,J(#, x"), y) is the gradient of the loss with

respect to the input evaluated at the current perturbed input
(1)
x,

3) CARLINI AND WAGNER

C&W attack uses an optimization-based approach to generate
adversarial examples. It minimizes a custom loss function
that considers the distance between the original input and the
adversarial example, as well as the confidence of the model’s
prediction on the adversarial example. This makes the C&W
attack one of the most effective black-box attack methods, as
it does not require knowledge of the model’s parameters or
gradients

min[8], + ¢~ f(x +8) — fx) + - |wlg 3)

where § is the perturbation vector added to the input x, @
is an auxiliary variable used to enforce a constraint on the
perturbation magnitude, f is the NN, p and g are the L,
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FIGURE 3. Hierarchical MLP architecture.

and L, norms used to measure the perturbation and auxiliary
variables, c is a hyperparameter that controls the tradeoff be-
tween the perturbation magnitude and the classification loss,
and « is a hyperparameter that controls the tradeoff between
the perturbation magnitude and the constraint on the auxiliary
variable.

B. DEFENSE MECHANISMS

To increase the robustness of the model against the aforemen-
tioned attacks, we use two well-known defense mechanisms:
adversarial training and defensive distillation.

1) ADVERSARIAL TRAINING

‘We train the model on a mixture of original and adversarial ex-
amples. The adversarial examples are generated by perturbing
the original input data using FGSM, PGD, or C&W attacks.
We perform the adversarial training for each attack separately.
The model is expected to be more resilient to adversarial
attacks by training on both original and adversarial examples.
Fig. 4 illustrates the adversarial training steps.

2) DEFENSIVE DISTILLATION

We trained the final model using a two-stage process. In the
first stage, a model is trained on the original data using a stan-
dard supervised learning algorithm. In the second stage, a new
model is trained using the output of the first model as input
but with a different temperature parameter during the Softmax
activation function. The temperature parameter controls the
smoothness of the probabilities assigned to each class, with
higher temperatures resulting in softer probabilities. We train
a single model for all three attacks, and each iteration involves
three optimization steps. The first step calculated the loss
based on the original data, while the second and third steps
computed it based on FGSM adversarial examples and PGD,
respectively. The approach that was followed is illustrated in
Fig. 5.
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Vi. PERFORMANCE EVALUATION
In this section, we provide details about the implementation
of our system model and later present the results we obtained.

A. EXPERIMENTAL SETUP

To construct our robust intrusion detector, we employ the
architecture and parameters outlined in Table 5. We observe
that the time complexity of the binary model is primarily
governed by operations within its linear layers, estimated to
involve approximately 14 x 512 + 512 x 128 + 128 x 64 +
64 x 2 computations. Meanwhile, the complexity of the
attack model, also driven by its linear layers, is summa-
rized by the equation 14 x 512 4+ 512 x 256 4+ 256 x 128 +
128 x 32 4+ 32 x 11 computations. Among different NN ar-
chitectures, our proposed models, namely the binary model,
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FIGURE 5. Defensive distillation.

and the attack model, are noted for their comparative sim-
plicity and enhanced efficiency. Compared to more complex
structures such as convolutional NNs, long short-term mem-
ory networks, and gated recurrent units, both models are
characterized by their minimal computational requirements
and lower resource consumption. This aspect renders them
particularly suitable for applications in environments con-
strained by limited computational resources, such as in SG
devices. We use Pytorch to train and test the model and our
detector was built by training the binary model on a dataset of
200000 samples, equally divided between benign and mali-
cious data. For the attack model, we train it on 65 000 samples,
with a nearly equal distribution across all 11 classes. The split
ratio between the training and testing data is 70:30. Specif-
ically, the testing dataset was constructed as a subset of the
original dataset but kept distinct from the training dataset to
ensure model generalization. It comprises 60 000 samples for
the binary model and 27 500 samples for the attack model.
Both datasets contain a balanced distribution of benign and
malicious data classes but differ in their temporal aspects,
ensuring that the model is tested on different scenarios than
those it was trained on. The data in the testing set was also
subjected to separate preprocessing steps, including normal-
ization and the introduction of simulated noise to more closely
simulate real-world variability. For software, we utilized Py-
Torch for model training and evaluation, running in a Python
3.8 environment. Additional libraries, such as Scikit-learn and
NumPy, were used for data preprocessing and manipulation.
On the hardware front, all experiments were conducted on a
computing cluster featuring Nvidia GeForce RTX 3080 GPUs
and Intel Xeon CPUs. Finally, we incorporate the Torchattacks
library from [31] to execute FGSM, PGD, and C&W attacks
using the specified parameters in Table 6.

B. EVALUATION METRICS
We conduct extensive simulation experiments to determine
the effectiveness of our proposed approach. We assess the
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TABLE 6. Adversarial Attacks Parameters

Attack Parameter

FGSM | €¢=10.05

PGD € = 0.05,a« = 0.01, steps = 10

C&W ¢ = 1, kappa = 0, steps = 100, Ir = 0.01

performance of the detection scheme using standard clas-
sification metrics, specifically accuracy and Fl-score. In
addition, we analyze the per-class performance by examining
the confusion matrix

TP+TN
Accuracy = 4)
TP + TN + FP + FN
TP
Recall = —— ®))
TP + FN
.. TP
Precision = —— (6)
TP + FP

where TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives, respec-
tively. The F; is defined as follows:

macro 1 e 2 - precision, - recall;
B =22 )

‘= precision; + recall;

where n is the number of classes, precision; is the precision of
class i, and recall; is the recall of class i.

C. BASELINE ML RESULTS
To understand the performance and create a baseline bench-
mark, we compare several ML models, includingDTs, SVM,
and NNs. During this phase, separate models are trained for
IOA and non-IOA data, and we experiment with both binary
and multiclass classification approaches. The performance of
these models is evaluated and summarized in Table 7.
Following our analysis of the results presented in Table 7,
we concluded that implementing a hierarchical approach
could potentially enhance the overall performance of our mod-
els. Therefore, we proceeded to train two separate models (the
attack model and the binary model) utilizing the same model
architectures and training parameters as detailed in Table 7.
The performance of these models was as follows.

1) BINARY MODEL

The binary model achieved 100% accuracy and 100% macro
average F1 Score. The confusion matrix in Fig. 6 shows that
the model can accurately classify all the test samples. This
performance suggests that the binary model has learned the
feature space for benign and malicious data quite effectively,
making it highly reliable for the classification tasks at hand.

2) ATTACK MODEL
The attack model is evaluated on a test dataset containing
19500 instances. The confusion matrix in Fig. 8 shows the

VOLUME 4, 2023



ML Models Results

Algorithm Metric Multiclass classification-IOA Multiclass classification-NolOA ~ Binary classification-IOA  Binary classification-NoIOA
SVM Macro Average F1-Score 14% 10% 48% 48%
Accuracy 81.8% 6% 82% 90.7%
bT Macro Average F1-Score 34% 98% 54% 99%
Accuracy 95.5% 99.5% 97% 99.7%
MLP Macro Average F1-Score 94% 99% 100% 100%
Accuracy 94.7% 98.7% 100% 100%
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correct classification count for each class along the diago-
nal line. A total of 220 test samples were misclassified. The
model’s accuracy is 98.87%, with a macro average F1 score
of 99%. The accuracy trend of the attack model throughout
the training process is shown in Fig. 7. It is worth noting that
the misclassified instances mainly belong to specific classes,
thereby providing a route for further fine-tuning.

D. ADVERSARIAL ATTACK EFFECT
To test the resilience of our models, we conducted a series of
adversarial attacks. This section elaborates on the susceptibil-
ity of our models to these attacks and the effectiveness of the
implemented defenses. Figs. 9 and 10 illustrate the impact of
applying adversarial attacks (FGSM, PGD, and C&W) on the
attack Model while varying the attack parameters. Similarly,
Table 8 presents the effect of these attacks on both models
using the parameters described in Section VI-A.

Table 8 tabulates that the binary model is inherently re-
sistant to all three attacks. This implies that even when
introducing a perturbation to the input, the binary model can
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TABLE 8. Adversarial Attacks Effect on Model Accuracy

Original FGSM PGD C&W

Binary Model 100% 100% 100% 100%

Attack Model 98.9% 757%  749%  713.7%

TABLE 9. Adversarial Training Effect on Model Accuracy

Original FGSM  PGD C&W

Accuracy Before 98.9% 757%  749%  73.7%

Accuracy After 96% 95.4% 95% 73.7%
TABLE 10. Defensive Distillation Effect on Model Accuracy

Original FGSM PGD C&W

Accuracy Before 98.9% 757%  749%  73.7%

Accuracy After 99.4% 97.5% 92% 98.9%

still accurately classify the given input’s class. However, as
shown in the table, the accuracy of the attack model declines
by almost 30% when any of the three attacks are employed,
leading to misclassification of the attack type. Consequently,
it is imperative to implement a defense mechanism to enhance
the attack model’s robustness against adversarial attacks.

E. ADVERSARIAL DEFENSE RESULTS

1) ADVERSARIAL TRAINING

To enhance the robustness of our model, we adopt adversarial
training. This involves optimizing the model parameters at
each iteration twice: once using the original data and then
using the generated adversarial examples. The model can
learn to handle perturbations and improve its overall robust-
ness by incorporating adversarial examples into the training
process. Table 10 illustrates how adversarial training affects
the model’s accuracy against different attacks during the ad-
versarial training process. It is clear from the Table that even
though the adversarial training helped increase the robustness
of the model against FGSM and PGD, it did not provide
any improvement for the C&W attack. This iterative training
process has shown to be particularly effective for countering
FGSM and PGD attacks, as confirmed by the significantly
improved post-training accuracy.

2) DEFENSIVE DISTILLATION

While adversarial training enhanced our model’s robustness,
we sought an additional layer of security through defensive
distillation to protect against a broader range of attacks. Ad-
versarial training reduced the impact of FGSM and PGD
attacks but impacted the model’s original accuracy and did
not enhance its resistance against C&W attacks. Furthermore,
since adversarial training was only effective against each at-
tack individually, we trained a separate model for each attack.
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FIGURE 11. Model accuracy during defensive distillation training.

To address this limitation, we use defensive distillation, which
involves training a student model using the original model’s
output to improve its generalization and make it more ro-
bust against adversarial attacks. Fig. 11 shows how defensive
distillation improved the model’s accuracy in classifying all
three types of attacks during the training process. The results
demonstrate that the distillation process enhanced the model’s
ability to accurately identify the adversarial examples gener-
ated by the attacks.

Implementing defensive distillation significantly enhanced
the model’s accuracy against various attacks. Specifically, the
accuracy improved from 77.5% to 96% against FGSM, from
73.8% to 92% for PGD, and from 70.3% to 99% for C&W at-
tacks while boosting the model’s original accuracy to 99.4%.

VIil. CONCLUSION

In this article, we presented a novel approach for building
a model for the IEC 60870-5-104 protocol that is robust to
adversarial attacks and can be used to enhance the security of
SG systems. Our contributions include creating and utilizing
new datasets for the IEC 60870-5-104 protocol, a significant
asset for the open-source community. The proposed model
uses a hierarchical approach to classify the input, where the
first layer gives a binary decision about whether the sample is
benign or malicious, and the second layer determines the type
of attack. Our models achieved exceptionally high accuracy
rates, with the binary model reaching 100% accuracy and the
attack model scoring 98.87%, confirming the effectiveness of
the hierarchical approach. We used defensive distillation to
increase the model’s resilience against various kinds of at-
tacks, including FGSM, PGD, and C&W attacks. Specifically,
implementing defensive distillation enhanced the model’s ac-
curacy against FGSM from 77.5% to 96%, against PGD from
73.8% to 92%, and against C&W from 70.3% to 99%. This
substantial improvement in robustness underscores the effi-
cacy of our adversarial defense strategies. We also quantified
the efficiency of our proposed ML-based IDS, demonstrat-
ing its suitability for real-time applications of ICS. We also
demonstrated how our developed model can be integrated
with Conpot, a popular open-source tool for simulating ICSs,
to detect and prevent attacks on the SG. Our experimental
results showed that the proposed approach achieved high ac-
curacy in classifying normal and adversarial examples while
maintaining highly efficient intrusion detection for eleven
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types of attacks. These results demonstrate the potential of
the proposed approach to improve the security and reliability
of SG systems against cyber threats.
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