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ABSTRACT Fault diagnosis is integral to maintenance practices, ensuring optimal machinery functionality.
While traditional methods relied on human expertise, intelligent fault diagnosis techniques, propelled by
machine learning (ML) advancements, now offer automated fault identification. Despite their efficiency, a
research gap exists, emphasizing the need for methods providing not just reliable fault identification but also
in-depth causal factor analysis. This research introduces a novel approach using an extra tree classification
algorithm and feature selection to identify fault importance in manufacturing processes. Compared with
SVM, neural networks, and tree-based ML, the method enhances training and computational efficiency,
achieving over 99% classification accuracy on prognostics and health management 2021 dataset. Importantly,
the algorithm enables researchers to analyze individual fault causes, addressing a critical research gap. The
study provides guidelines for further research, aiming to refine the proposed strategy. This work contributes to
advancing fault diagnosis methodologies, combining automation with comprehensive causal analysis, crucial
for both academic and industrial applications.

INDEX TERMS Deep learning, fault identification, intelligent fault diagnosis (IFD), machine learning (ML),
machines.

I. INTRODUCTION
The failure of machine parts can have severe consequences,
from endangering lives to substantial financial casualties.
Thus, maintaining industrial facilities is essential, and en-
suring equipment availability, durability, and product quality
depends heavily on maintenance [1], [2]. Identifying and
assessing machine component conditions is crucial to en-
hancing machine safety and dependability while reducing
operational and maintenance expenses [3]. However, timely
and accurate fault detection in today’s industrial facilities
can be impractical, typically requiring one or more human
professionals to assess machine performance in real-time [4].
Previous works in the field of fault diagnosis primarily relied
on manual fault diagnosis and signal processing techniques
[5]. These methods often required domain-specific expertise
and were not efficient in handling the growing complex-
ity of modern machinery. Therefore, there was a pressing
need to develop automated fault diagnosis techniques that

could efficiently and accurately identify faults without ex-
tensive human intervention [6]. Alternative approaches, such
as model-based diagnosis using artificial intelligence (AI)
techniques, have gained prominence recently in scholarly and
industrial contexts due to their ability to provide intuitive
results with minimal expert intervention [7]. These methods
use machine learning (ML) to adaptively create machinery
diagnostic understanding using data rather than relying on the
knowledge and skills of engineers. Intelligent fault diagnosis
(IFD) intends to instantly create diagnostic models connecting
gathered data and machine health [8]. Due to more effective
paradigms and data availability, deep learning algorithms have
also been successfully employed to identify errors intelli-
gently [9].

The motivation for this research arises from the lim-
itations of previous fault diagnosis methods. Manual di-
agnosis and traditional signal processing techniques were
time-consuming, limited in scope, and dependent on expert
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knowledge. They were not equipped to handle the increasing
complexity of machinery in various industries [10]. More-
over, in the pursuit of streamlined fault diagnosis, it is crucial
to not merely categorize faults with high accuracy but to
also equip researchers with the capability to conduct in-depth
analyses, discerning the root causes behind these faults. This
dual-pronged approach stands as an unaddressed research gap,
one that offers the potential to greatly enhance the efficiency
and efficacy of fault diagnosis methods, particularly in in-
dustrial contexts. This article proposes an ML-based model
and a unique feature selection process to categorize errors
based on input data from the prognostics and health manage-
ment (PHM) mechanical defects dataset.1 The PHM 2021 is a
benchmark dataset for mechanical fault diagnosis designed for
the PHM community. The dataset contains vibration signals
and corresponding health status information from bearings
with artificially induced faults, providing a realistic testbed for
evaluating the performance of fault detection and diagnosis
algorithms [11]. The proposed model uses the extra tree (ET)
classifier to categorize mechanical faults based on the features
in the dataset, contrasted with several other learning algo-
rithms. The study’s tasks include acquiring, preprocessing,
and splitting the PHM dataset into two sets for training and
testing, building the ET ML classification model, developing
an adequate assessment procedure with metrics to evaluate
the model’s performance, fine-tuning model parameters for
the ideal set of evaluation measures, contrasting outcomes
with alternative approaches, and assessing the classification
results for each class. With the motivation rooted in the short-
comings of previous fault diagnosis methods, this research
contributes to the field by offering a more efficient and accu-
rate approach to IFD. The proposed method not only enhances
the reliability of machinery but also empowers researchers to
analyze the causes of individual faults based on their essential
characteristics. Our approach distinguishes itself by offer-
ing a multifaceted capacity. While excelling in categorizing
mechanical failures with remarkable accuracy, consistently
exceeding 99%, it further empowers researchers to conduct
in-depth root cause analysis. This dual-pronged innovation
enables fault identification and subsequent causality analysis,
granting comprehensive insights into machinery health and
fault scenarios.

The rest of this article is organized as follows. Section II
investigates deep neural networks’ significance and topologies
for conducting IFD, the limitations, constraints, and possible
practical approaches, including transfer learning. Section III
examines aspects of the proposed model’s workflow and im-
plementation tools, followed by a detailed presentation of
the suggested approach. Section IV presents and compares
the experiment’s results against several learning algorithms,
evaluating the proposed method’s results on the PHM dataset
rigorously. Finally, Section V concludes this article.

1https://github.com/PHME-Datachallenge/Data-Challenge-2021

II. RELATED WORKS
Science and technological advancements have led to the de-
velopment of mechanical systems, such as those seen in wind
turbines, aircraft, high-speed trains, and industrial gear. Engi-
neers must develop strategies to guarantee the effectiveness of
these systems. Machine fault identification is one of the key
tactics for ongoing maintenance. This technique could help
limit the escalation of abnormal events, minimize downtime,
foresee residual life, and reduce productivity loss.

Incorporating advanced techniques and methodologies into
the realm of fault diagnosis is crucial for enhancing the relia-
bility and efficiency of machine health assessments. Notably,
the field has witnessed significant innovations in optimization
algorithms, such as the development of coevolutionary multi-
swarm adaptive differential evolution [12], which addresses
issues like premature convergence and search stagnation,
or the introduction of MS-RPNet, a novel hyperspectral
image (HSI) classification network combining data-driven
approaches with S3-PCA and 2D-SSA techniques [13], im-
proving spectral accuracy in HSI classification. Furthermore,
the advent of multistrategy competitive-cooperative coevolu-
tionary algorithms, like MSCOEA, showcases a remarkable
capability to balance uniformity and convergence in solv-
ing multiobjective optimization problems [14]. As technology
evolves, issues related to data sharing and privacy protection
become paramount, leading to innovative solutions such as the
blockchain-based flight operation data sharing scheme [15],
which ensures secure data sharing while preserving privacy
and confidentiality. The integration of these advanced tech-
niques marks a significant progression in the field of fault
diagnosis, promising more accurate and efficient methodolo-
gies for maintaining industrial machinery. These advanced
techniques complement the traditional methods of fault di-
agnosis that have relied on manual assessment and signal
processing [16]. By introducing these innovations into the
domain of machine health assessment, researchers aim to ad-
dress challenges related to premature convergence, spectral
uncertainty in image classification, multiobjective optimiza-
tion, and secure data sharing. These advanced techniques
offer more effective, accurate, and efficient approaches to
fault diagnosis and maintenance practices in various industrial
domains.

Furthermore, in actual conditions, various defect diagnosis
techniques are used to gather helpful information from certain
physical assets. Examples of situation monitoring for ma-
chine data contain environmental information, temperature,
and pressure. It used to be possible to identify the types of
equipment faults that occurred and where they originated us-
ing manual fault diagnosis and signal processing techniques.
Nevertheless, in an engineering context, most maintainers
must acquire the specific skills these solutions rely on. As a
result, diagnostic defect schemes that are able to recognize ap-
pliance health issues automatically are preferred by industrial
applications today [16]. Intelligent fault detection is antici-
pated to accomplish this goal via ML. To recognize machine
problems in the past, IFD used well-known ML methods like
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support vector machines. The diagnostic technique is split into
three stages: data collection; synthetic attribute extraction; and
health situation identification [17].

Sensors are mounted on the equipment during the data-
collecting phase to gather data continuously. Numerous sen-
sors, including currents, temperature, and vibration, have been
employed for automatic status assessments as sensor technol-
ogy has advanced [18], [19]. The subsequent step in building
an automatic defect recognition scheme using conventional
ML models is extracting critical characteristics from the in-
formation obtained during data collection stages. The feature
extraction phase uses signal processing techniques, including
time-domain and Fourier spectral analysis to extract represen-
tative features from the recorded signals [20]. Subsequently,
these models learn the labeled data in the training stage to
identify machinery health issues when presented with unla-
beled input samples. To accomplish this, tagged samples are
used during the initial training of the diagnostic models. The
remainder of this part is separated into subsections based on
the various sorts of these procedures and the methods IFD
research utilizes them.

A. ARTIFICIAL NEURAL NETWORKS (ANN)
ANNs are a subset of ML fundamental to deep learning
methodologies. A primal input layer, one or more hidden lay-
ers, and an output layer help compensate for a neural network.
These algorithms are potent tools in computer science and AI
after they have been adjusted for better accuracy [21]. Shallow
neural networks have occasionally been utilized to find defects
based on input data, even though deep learning methods were
employed in most researches on IFD involving ANNs. For
instance, Bernieri et al.’s [22] work was among the pioneering
studies to apply an ANN-based method for real-time issue
detection. They showed that ANNs might aid identification of
schemes and defect recognition in situations requiring quick
response times. When this research was released in 2009,
most ANN techniques were single-step time-series prediction
methods, indicating that deep learning networks were not uti-
lized. Lei et al. [20] proposed a two-step training method for
ANN-based intelligent machine failure detection in another
similar research. Furthermore, using ANNs, another research
created an intelligent system that can recognize three recur-
ring occurrences in a PV array, including healthy and short
circuit failures and string disconnection [23].

B. SUPPORT VECTOR MACHINES (SVMS)
The SVM algorithm seeks an N-dimensional space hyper-
plane that divides data points. Decision boundaries, known
as hyperplanes, are used to classify data. In the late 1990s,
the initial efforts were made to use SVMs for mechanical
condition control and issue diagnostics. Multiple research pa-
pers later proposed SVM-based fault diagnostic techniques,
displaying more outstanding fault diagnosis capabilities than
traditional ML algorithms [24]. These approaches used a va-
riety of kernel functions and cross validation. For instance,

Samanta [25] identified characteristics from the vibration sig-
nals of a spinning tool with both standard and unreliable gears.
Sugumaran et al. [26] employed the proximal SVM in order
to effectively identify defects using numerical information in
other inquiries utilizing a DTree model to select the most
important attributes of an example collection for a classifica-
tion problem. Piliougine et al. [27] also introduce ML-based
techniques to detect partial shading-induced mismatches in
photovoltaic arrays, achieving accurate module fault detec-
tion with SVM and decision tree (DT) models. Zhang et al.
[28] suggested employing collaborative empirical mode decay
to break down vibrational signals into a cluster of intrinsic
mode functions when bearings contain flaws. Datta and Sarkar
[29] examined vibrational inspection, acoustic methods, and
pipeline leakage discovery based on SVM. Stetco et al. [30]
reported the most recent study on ML methods for monitoring
wind turbine conditions. Most models utilize a dataset called
SCADA or simulated data, with classification making up
roughly two-thirds of the techniques and regression providing
the remaining one-third.

C. DECISION TREES
The goal of using a DT is to create an ML model that can pre-
dict the type or quantity of the target variable. In its simplest
versions, DTs are straightforward algorithms that are easy to
observe and understand. These models, however, could be
excessively straightforward for problems with more intricate
elements [31]. Numerous tree-based methods were created to
increase accurateness and maintain dispensation competence.
Many people use ensemble techniques, which aggregate DTs
to improve prediction accuracy. These methods include the
XGBoost and random forest (RF) algorithms [32], [33].

The DT’s precision in fault recognition can be proved by
means of test data and expert information because it is easy
to understand and grasp [34]. For instance, Zhao et al. [35]
provide a decision-tree-based system for categorizing and de-
tecting defects. Widely accessible PV system data, such as
PV array voltage, operational temperature, and irradiance, are
utilized as characteristics in the training and test sets. The
trained DT models demonstrated good flaw detection and
classification accuracy in experiments. Yan et al. [34] used the
categorization and regression tree approach for DT induction
as a data-driven diagnostic tool for AHUs. The technique
combined a steady-state sensor and a regression model to
make the diagnostic method easier to understand. An aver-
age F-measure of 0.97 was used to demonstrate the superior
diagnostic performance of this technique.

XGBoost is a gradient-boosting DTree ensemble ML al-
gorithm. When big datasets are not accessible and the input
qualities are not visual, extreme gradient boosting could be
a viable solution for IFD [36]. For instance, Zhang et al.
[5] offered a unique signal-processing method based on the
XGB algorithm that solely relies on phase voltage and cur-
rent information. Preprocessed data and wavelet analysis were
combined to create the XGBoost approach, which extracts
attributes with more than 90% accuracy. In a different research
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[32], an XGB method was introduced to increase fault ID
precision, combining an improved genetic algorithm with the
XGBoost to create a hybrid diagnostic network. Alfarizi et al.
[37] also proposed an integrated fault diagnosis system using
the extreme gradient boosting algorithm for a fuse test bench
line. The article concludes that the proposed method achieves
high classification accuracy, fast diagnosis time, and inter-
pretable root cause analysis. Experimental results show that
the proposed algorithm outperforms several common fault
diagnostic approaches.

Another ensemble learning technique, RF, combines sev-
eral ineffective models to get a more reliable model. Each
tree produces a “vote,” a classification for that class. A forest
selects the categorization that obtains the highest number of
votes in regression. RF classifiers excel in industrial settings
where large datasets are frequently unavailable for diagnostic
training models. A dependable method for detecting multi-
class faults in spur gears was developed by Cerrada et al. [4]
using an evolutionary algorithm. Zhang et al. [28] also used an
RF classifier to identify mechanical issues with induction mo-
tor bearings. Additionally, RFs were employed while locating
nonmechanical flaws. For instance, Puggini et al. [38] created
an unsupervised RF method to recognize injured wafers using
chemical fingerprints.

D. DEEP NEURAL NETWORKS (DNN)
A DNN is a computer program that creates predictions and
corrects data errors using complex algorithms. Such a net-
work needs accurate constraints to perform appropriately,
including the number of hidden layers and neurons in each
[39]. Although data-collecting techniques for obtaining the
data required for DL algorithms are yet essential, the fea-
ture extraction phase must be included in implementing deep
learning models [40]. Therefore, DNNs revolutionized ML
models and gained popularity recently [41]. DL-based anal-
ysis employs attributes learned from the inputs to identify
appliance health issues. DL algorithms can solve shortcom-
ings in current intelligent fault detection systems by learning
feature hierarchies utilizing features from higher levels of the
order established by the composition of lower-level character-
istics [19].

Deep learning-based diagnostic methods incorporate at-
tributes they have learned from input data to identify machine
health issues. These models use hierarchical networks like
fully-connected (FC) layers [42], [43], [44], [45], CNNs [46],
[47], [48], [49], [50], deep belief networks [17], [51], [52],
RNNs [53], [54], and multilayered auto-encoders [52], [55],
[56] to find essential traits. After learning to relate these qual-
ities to other classes in future layers, the model generates its
output. After each training cycle, the diagnostic models’ train-
ing parameters are updated via backpropagation. FC models
cannot be the best at everything. However, they perform better
when representing more intricate functions, and they have
proven to outperform similar methods when multiple deep
algorithms are coupled, and sufficient amounts of data are
available.

III. METHODOLOGY
The current study proposes an approach split into four major
stages: preprocessing, determining the importance of features,
ML model construction, and evaluation based on assessment
criteria.

A. DATASET
The data from the PHM challenge [11] is utilized in this exper-
iment to evaluate several machine-learning architectures. This
dataset collaborated with the Swiss Center for Electronics and
Microtechnology to gain access to a dataset from a real-world
industrial testbed. This system, which includes robotic arms,
conveyor belt motors, and an infrared camera, enables contin-
uous testing of electrical components. With the aid of subject
experts, the dataset was collected in errorless work settings
and supervised circumstances utilizing a range of seeded vul-
nerabilities. The collected data has 50 signals representing
how a critical variable has changed. Every signal has fields
attached to it that specify various signal qualities obtained
from it utilizing an autonomous data collection method [11].

The PHM 2021 dataset contains four fault classes, each
containing eight types of mechanical faults. There are 8000
data points in the dataset, with 2000 data points for each fault
class. The dataset comprises 24 features, including statistical,
spectral, and time-domain features, acceleration, temperature,
and pressure measurements. Additionally, the dataset includes
information about the motor’s operating conditions, such as
voltage and current values [11].

B. DATA PREPROCESSING
This study’s preprocessing includes removing ineffective
columns and replacing NaN values with zero. The dataset is
then split into input and output sections, transformed using
quantile transformer to achieve a uniform and normal distri-
bution, and divided into 80/20 train and test sets.

C. FEATURE IMPORTANCE
A dataset’s significance of features can be utilized to under-
stand it better. The relative ratings may determine the target’s
priorities, showing which attributes are not essential. Under-
standing the association between the characteristics and the
goal variable is made more accessible by the relevance of
the features [57]. It also helps to identify the qualities that
are irrelevant to the model. By calculating scores for each
component, feature importance can assist in understanding
which characteristics contribute most to a model’s ability
to forecast. Checking the significance score while making
a forecast provides information about that particular model,
including which components are most and least important to
it [58], [59]. The present study employed scikit-learn’s built-in
functions for determining feature importance. It is important
to note that deep learning models are similar to black boxes
and do not provide information on the essential features that
contribute to their results. As such, feature importance calcu-
lations were not conducted for the DNN, which served as one
of the baseline methods. The entire dataset was trained once
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for the other models, and then feature importance functions
were applied to identify the top 15 features. These features
were saved for each model, and subsequent training was per-
formed using datasets that only included the top 15 features.
It is worth noting that the remaining attributes varied across
the different algorithms [57].

1) SHAP FEATURE IMPORTANCE
SHAP (SHapley Additive exPlanations) is a revolutionary
technique for calculating feature importance in ML interpre-
tation [60]. This value, operating on many ML models like
SVMs and DTree algorithms, is helpful for regression and
classification tasks. Using Shapley values, we may determine
how to distribute the “payout fairly” (also known as the
forecast) across the attributes [59], [60]. The Shapley addi-
tive explanations values in this study are estimated using the
SHAP Python package. Except for the deep learning baseline
model, it is applied to all algorithms and identifies the top
15 significant characteristics for retraining. This indicates that
just a few essential traits are chosen for additional training.

This analysis is crucial in determining the root cause of me-
chanical faults, as it helps identify the underlying factors that
lead to the defects. By examining the impact of each feature on
the model’s predictive performance, we can determine which
features are most critical for classification and analyze the root
causes.

D. PROPOSED ALGORITHM
According to preliminary analyses conducted for this study,
tree-based ML structures like RF and eXtreme gradient boost-
ing can perform better than identical models [37]. DNNs and
ANNs in general also showed encouraging outcomes with
increased computing load. As a result, adopting tree-based
algorithms is advantageous regarding assessment metrics, ac-
curacy, and computing efficiency [61]. Many tree-based ML
models were trained and evaluated to find the top solution on
the preprocessed dataset from the PHM [62]. These studies
were conducted to reduce the training time and hardware
resources needed while increasing the suggested method’s
accuracy. An ET classification algorithm was chosen as the
suggested method in this research since the preliminary tests
showed more promising results than similar tree-based ap-
proaches.

The ETs method, a member of the ensemble learning algo-
rithms, amalgamates DTs, drawing resemblance to both RFs
and bootstrap aggregation (bagging) techniques [61]. Unlike
conventional DTs or RFs, the ETs algorithm generates un-
pruned DTs using the training dataset. Notably, at each split
point within a DT, the method employs random sampling
of features, similar to RFs, enhancing diversity and reduc-
ing overfitting potential [63], [64]. Unlike the RF’s greedy
method of selecting the optimal division point, the ET clas-
sifier opts for a random selection strategy for division points.
This characteristic differentiates the ET algorithm from other

FIGURE 1. Visual process of an ET classifier [53].

tree-based models, contributing to its robustness and adapt-
ability. This ET classifier’s procedure is shown in Fig. 1.

The implementation of the ET algorithm, facilitated
through the scikit-learn package, involves a specific set of
hyperparameters crucial in shaping its functionality. The
choice of n_estimators=100 delineates the number of trees
forming the forest; a higher count can potentially enhance
model robustness but might also lead to increased compu-
tational demands. The criterion=gini parameter signifies the
metric employed to assess the quality of splits in the DTs.
Gini, measuring impurity, drives the algorithm to create child
nodes by discerning significant differences in label proba-
bility distributions within nodes, thus influencing the tree’s
branching for optimal classification accuracy. Additionally,
the min_samples_split=2 parameter denotes the minimum
number of examples necessary to divide an internal node.
Adjusting this parameter might impact the depth and breadth
of DTs, affecting the algorithm’s sensitivity to individual
data points and, consequently, its overall performance. In
this study, the utilization of Gini to evaluate node impurity
aligns with the goal of minimizing misclassifications, a piv-
otal aspect in optimizing the resulting DTs for accurate fault
diagnosis and maintenance prediction.

In this implementation, all other arguments have default
values. These parameters were improved using a Bayesian
optimization approach to achieve the finest outcomes on the
PHM’s dataset. A systematic optimizing method using the
Bayes theorem, known as Bayesian optimization. This method
is beneficial in cases where the objective function is expensive
to evaluate, and the parameter space is large and complex.
In the case of the PHM dataset, the classification problem
involves many features and complex relationships, making
it challenging to optimize the model’s hyperparameters [65].
Therefore, Bayesian optimization is a suitable choice as it
effectively balances exploration and exploitation of the pa-
rameter space while minimizing the number of evaluations
required to reach the optimal set of hyperparameters. It func-
tions by building a substitute or stochastic framework for
the target function, which thereafter is efficiently examined
through an acquisition function prior to prospective samples
being picked to assess the objective function. This method
directs a reasonable investigation into a global optimization is-
sue. The model’s hyperparameters are optimized via Bayesian
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optimization employing the validation data set, which makes
up 20% of the initial data. This method efficiently refines
the model’s hyperparameters, presenting a nuanced and op-
timized approach that mitigates the complexity inherent in
determining these values.

E. BASELINE ALGORITHMS
The proposed method’s results are compared against four
baseline algorithms to evaluate its effectiveness from various
aspects using different metrics. Since tree-based models per-
formed better than other ML approaches, three baseline mod-
els are categorized as tree-based ML algorithms: XGBoost,
CATBoost, and Hist gradient boosting classifier. A DNN is
also fine-tuned as the fourth baseline since it demonstrated
promising results. Similar to the proposed algorithm, these
methods are implemented using the Python programming lan-
guage and its libraries, including scikit-learn, TensorFlow, and
Keras.

1) XGBOOST
It has been demonstrated that the XGBoost method is highly
adaptable in various learning scenarios, quicker than gradient
boosting, and supports regularization techniques. Addition-
ally, parallel processing delivers quicker results in time-
sensitive circumstances [32]. This classifier was developed
using Python programming and the “xgboost” package. The
model predicts that the input data will fall into the category
with the maximum likelihood quantity. Additionally, the gb-
tree booster was selected as the booster core for the classifier,
and after doing numerous tests with various values, the learn-
ing rate was set to 0.3.

First, the dataset is scaled and encoded using multiple meth-
ods to find the best way to represent features using automated
ML (AutoML). For a predictive modeling task, AutoML ap-
proaches are strategies to find a high-performing ML model
pipeline automatically. Hyperopt-Sklearn and TPOT were the
two main AutoML libraries in Sklearn utilized in the cur-
rent research. Hyperopt-Sklearn uses Bayesian optimization
to search through model configurations, while TPOT uses
genetic programming to explore a large space of possible
pipelines. They are used in this study to find the best way
to represent features and improve the performance of the
predictive modeling task. As a result of the findings, which
indicated that encoding approaches did not significantly en-
hance classification quality, they were not applied in the first
implementations to reduce model time complexity. In other
words, the models trained on the dataset did not exhibit a
significant difference in performance between the various en-
coding methods used. Additionally, the classification quality
depended more on the choice of the ML algorithm and hyper-
parameters used in the model rather than the encoding method
applied to the data.

2) CATBOOST
The CatBoost ML algorithm from Yandex was just released
as open source. It generates cutting-edge results excluding
the extensive training dataset required by traditional ML tech-
niques. CatBoost uses several statistics to convert categorical
input to numerical values [66]. The “catboost” package of the
Python programming language, which includes a CatBoost-
Classifier function, is used to build this model. Since earlier
sets of hyper-parameters produced poor results, the parame-
ters in this implementation are all set to their default values.

3) HIST GRADIENT BOOSTING CLASSIFIER
Gradient boosting is a statistical framework that expands the
capabilities of boosting algorithms such as AdaBoost. It can
be used with any loss function, and its ensembles are suitable
for solving structured predictive modeling problems, reducing
the number of distinct values for each attribute [67]. Gra-
dient boosting, including histogram-based gradient boosting
[68], can be used with DT ensembles to speed up the cre-
ation of single DTs on large datasets. This study uses the
histogram-based gradient boosting approach implemented by
scikit-learn, which can be tuned using several parameters such
as learning rate, max depth, max iter, and l2 regularization.
The loss function used is categorical cross entropy, which is
suitable for multilabel classification.

4) DEEP NEURAL NETWORK
As a representation of deep learning techniques, a DNN is
used to carry out the categorization. Preprocessing and feature
importance steps are omitted, allowing the model to extract
features independently. The training procedure is repeated ten
times to counteract the impact of random weight initializa-
tions. Then the models were compared, demonstrating that
random initializations do not affect the final results signifi-
cantly and that the model can perform the classification task
regardless of the initialized weights. Therefore, we specified
the random state and generated the final model. An FC neural
network with seven hidden layers and nine neurons in the
output layer with SoftMax activation is used, having over
1 80 000 trainable parameters. An early stopping mechanism
tracks the loss function on the validation set, comprising 20%
of the training data, for up to 20 epochs, with maximum
training epochs of 150.

IV. RESULTS AND DISCUSSION
The evaluation technique may assess the models’ efficiency
once implementations have been completed using the pro-
posed and baseline methods. The introduction of the evalu-
ation criteria for such evaluations, together with an estimation
of each model’s performance using these metrics, are covered
in this section. In the end, it is described how the proposed
technique performs better than the baselines regarding accu-
racy metrics and computing expenses.
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TABLE 1. Numerical Comparison Between the Implementations on the
PHM Challenge’s Dataset Among All Models and Regarding all Metrics

FIGURE 2. Visual comparisons of all models’ implementations and metrics
for all models.

A. EVALUATION CRITERIA
The preprocessed data from the preceding part was divided
into two sets for train and testing in this experiment, with an
80/20 split between the two sets. Each model is then given the
training set, allowing them to understand the characteristics of
the attributes and map these features into various categories.
Once the training phase is through, the resulted algorithms
are next fed with the test data. The test set is then sent to each
algorithm, and it is assumed that it would use the training data
to predict the outcome of each input sample. For each set of
inputs, these predictions are compared with the actual results,
and the effectiveness of each model is evaluated. Accuracy,
precision/recall, the F1-score, ROC, the kappa values, and
MATTEW are standard metrics used to assess how well ML
models do categorization. The accuracy metric measures the
model’s overall performance, while precision and recall help
identify the models’ false-positive and false-negative rates.
The F1 score is a harmonic mean of precision and recall, while
the ROC curve, kappa, and MATTHEW measure agreement
between the predicted and actual class labels. These metrics
are appropriate for this research as they objectively evaluate
models’ performance in categorizing mechanical faults.

B. EVALUATION RESULTS
The contrast of all models’ implementations on the dataset
from the PHM challenge is summarized in Table 1 and vi-
sualized in Fig. 2. The results show that, with an accuracy
of over 99%, the presented ET classification model did re-
markably well on the classification problem of this research.
Their results for precision, recall, and F1 measures also show

FIGURE 3. Evaluation of the training times (seconds) and memory usage
(megabytes) for each implementation.

that the model can accurately classify a significant portion
of the total relevant outcomes. The Kappa value’s proxim-
ity to one also suggests a satisfactory association between
the classes this model categorizes and those it predicts. The
presented technique performs significantly well in precision
and achieves equivalent results in the rest of the criteria, de-
spite the proposed models and baseline algorithms producing
almost identical results.

The proposed algorithm’s key benefits are its quick learning
curve and low training resource requirements. Fig. 3 illus-
trates how the upgraded dataset with the top 15 important
characteristics can train the suggested algorithm faster than
seven seconds. The following best outcome is devoted to
the Hist gradient boosting, which takes 3.5 times as long as
the suggested algorithm, demonstrating that the ET method-
ology delivers equivalent faster. The deep learning model
took almost 870 s to perform the same operation as the ET
classifier. When considering resource efficiency, examining
memory usage provides valuable insights. The memory us-
age values in megabytes for each model are as follows: ETs
(1388.09 MB), CatBoost (1480.48 MB), HistGradientBoost-
ing (1497.77 MB), XGBoost (1529.22 MB), and deep neural
net (1922.04 MB). Notably, the ETs model stands out as
the most memory-efficient, using significantly less memory
compared with other models. This demonstrates that the ETs
classifier excels not only in training speed but also in terms
of resource usage, making it a robust choice for efficient fault
diagnosis. The causation of each failure is investigated using
a root cause analysis, which reveals that many of these flaws
are caused by minor problems like humidity and temperature.
This stage demonstrates that the proposed model does not
operate as a black box and that users may identify the causes
of each failure, which is another benefit over DNNs.

C. ROOT CAUSE ANALYSIS
Root cause analysis is a method to locate and examine the
causes of problems. To determine which factors relate to what
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FIGURE 4. Top five characteristics in defective categories based on the
relevance of the SHAP features.

issues and which might cause the problem’s source, ML mod-
els group the problems and examine the reasons that impact
them. Based on the characteristics causing mistakes in each
category of faults, the underlying causes are considered in
this study. Visualizations show that several common problems
arise in various faults, and several errors in each category
cause defects. The fundamental causes were examined in a
class-based technique, and the most significant factors were
identified. The top five qualities that significantly impact the
defective classes are presented in Fig. 4 to conclude this
part. Common elements like humidity and temperature are
excluded except for the classes on which they have the most
significant influence, and unique characteristics are consid-
ered in each defect category. Therefore, for each fault class,
only distinctive characteristics are considered.

D. FAULT DIAGNOSIS
This article’s main objective is identifying errors with intel-
ligent methods. Now that the suggested algorithm’s strength
has been shown, this approach may be used to diagnose faults.
These conclusions were reached based on the feature signifi-
cance values computed for each defect class and the root cause
analysis. In other words, the underlying causes of a problem
are indicated by the crucial signals in the feature importance
investigation. More data analysis is being done to compre-
hend better the issues’ grounds and how they are physically
interpreted, especially for the most important signals. These
essential signals for each fault category are listed in Table 2.
It lists these signals responsible for the greatest number of
cases in each class’s examples. Even though specific signals
may have high significance levels, they often do not cause
errors. For instance, standard signals like humidity cannot be
the primary factor in any class since they are present in all
categories. Only class 7 exhibits this phenomenon; even then,
temperature and humidity are the main fault-causing factors.
In addition, the feature importance analysis demonstrated that
humidity is not among the most critical signals for any other
class, implying that other signals have a higher impact on

TABLE 2. Most Influential Signals for Each Class

the occurrence of defects. Overall, these results highlight the
complexity of fault diagnosis and emphasize the importance
of considering the interrelationships among different signals
to identify the underlying causes of defects accurately.

It is noteworthy that root cause analysis and fault diagno-
sis are distinct but complementary processes in the field of
predictive maintenance. Fault diagnosis involves identifying
the type and location of a fault in a system, while root cause
analysis seeks to determine the underlying cause or causes.
In this article, the feature significance analysis and root cause
analysis results are used to support the fault diagnosis process,
providing insights into the most critical signals for each fault
class.

V. CONCLUSION
This study suggested using an ET classifier to identify me-
chanical failures. In the experimental section of this article,
various models were tested to evaluate their performance in
identifying defects in the manufacturing process. These exper-
iments showed that tree-based and deep-learning methods are
able to obtain the most promising outcomes between all poten-
tial techniques. Therefore, based on the experimental findings,
it was concluded that these two types of models could obtain
the best results among all possible methods. The outcomes
support these experiments, with each model’s accuracy lev-
els above 99%. Accordingly, four tree-based algorithms trees
were chosen: the eXtreme gradient boosting, CATBoost, his-
togram gradient boosting, and the ET classification model;
and the SHAP (SHapley Additive exPlanations) technique
was used to preprocess the data fed to them. An FC DNN
was correspondingly developed to complete the identical job
deprived of the preprocessing steps. An assessment procedure
was created to evaluate the models’ performance concerning
multiple indicators. Investigations proved that the five selected
strategies could attain more than 99% accuracy and that their
outcomes are generally equivalent.
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The proposed method has advantages in low processing
resource usage and quick training times. Compared with the
DNN, which took almost 870 s, the ET classifier only took
less than 7 s. Additionally, the proposed algorithm is reliable
in classification quality and effective in computing power. A
root cause analysis revealed minor problems like humidity
and temperature as the cause of many failures, demonstrating
that the suggested algorithm is not a black-box and allows
for identifying failure causes, another benefit over DNNs.
However, it is essential to recognize the proposed method’s
limitations in practical applications. The effectiveness of this
approach heavily depends on the quality and quantity of avail-
able data. In situations with limited data, the performance
might not be as robust. Additionally, as with many ML tech-
niques, the complexity of the model can increase with a high
number of features, potentially affecting its efficiency. Also,
while our approach offers causality analysis, it may not be as
interpretable as simpler models like simple DTs with lower
accuracies.

The forthcoming IFD studies are set on a route that uses
more data. Generative models might be utilized to enhance the
quantity of data the models acquire and extend the datasets.
To benefit from robust models’ expertise with the IFD pro-
cess, transfer learning methodologies can also be used with
pretrained models. Unsupervised learning techniques are also
able to be used with supervised procedures to enhance the
examination of every fault’s cause and the consequent setups.
Data samples from each class may be analyzed using cluster-
ing algorithms, which group them according to the structures
that can fail.

Furthermore, researchers can use Bayesian optimization
techniques to enhance the model’s hyperparameters. How-
ever, accomplishing these techniques might be challenging
and impractical for mechanical engineers with no technical
foundation in ML engineering. In this area, AutoML tech-
niques might be helpful to speed up the ML procedure and
reduce the difficulties for mechanical professionals.
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