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ABSTRACT This work presents a general framework for developing a multiparameter 1-D chaotic system
for uniform and robust chaotic operation across the parameter space. This is important for diverse practical
applications where parameter disturbance may cause degradation or even complete disappearance of chaotic
properties. The wide uninterrupted chaotic range and improved chaotic properties are demonstrated with
the aid of stability analysis, bifurcation diagram, Lyapunov exponent (LE), Kolmogorov entropy, Shannon
entropy, and correlation coefficient. We also demonstrate the proposed system’s amenability to cascading
for further performance improvement. We introduce an efficient field-programmable gate array-based im-
plementation and validate its chaotic properties using comparison between simulation and experimental
results. Cascaded normalized linearly-combined chaotic system (NLCS) exhibits average LE, chaotic ratio,
and chaotic parameter space of 1.364, 100%, and 1.1 × 1012, respectively, for 10-bit parameter values. We
provide a thorough comparison of our system with prior works both in terms of performance and hardware
cost. We also introduce a simple extension scheme to build 2-D robust, hyperchaotic NLCS maps. We present
a novel reconfigurable multiparameter pseudorandom number generator and validate its randomness using
two standard statistical tests, namely, National Institute of Standards and Technology SP 800-22 and FIPS
PUB 140-2. Finally, we outline six potential applications where NLCS will be useful.

INDEX TERMS Chaos, chaotic map, encryption, field-programmable gate array (FPGA), Lyapunov expo-
nent (LE), reconfigurable random number generator, robust chaos, security.

I. INTRODUCTION
Chaos can be defined as a phenomenon that occurs when
the temporal evolution of a deterministic nonlinear dynamic
system becomes aperiodic and highly sensitive to its initial
state. In the chaotic region, two initial states, starting in-
finitesimally close to each other, will eventually follow two
drastically different time trajectories, which will never repeat
themselves. Starting with Lorenz’s seminal work in 1963 [1],
chaos has attracted a lot of attention in the last 60 years in
different disciplines, such as physics, biology, chemistry, and
engineering [2]. In recent years, researchers have leveraged
the dual properties of chaotic systems, namely, “determin-
istic aperiodicity” and “acute susceptibility to initial state

perturbation” for diverse applications, such as random num-
ber generation [3], [4], [5], [6], data encryption [7], [8], [9],
reconfigurable logic [10], [11], physical unclonable func-
tion (PUF) [12], side-channel attack mitigation [13], secure
communication [14], [15], [16], modeling of astronomical
phenomenon [17], logic obfuscation [18], and so on.

Based on the number of state variables or dimension,
chaotic systems can be broadly divided into the following two
groups: 1) one-dimensional (1-D); and 2) multidimensional
(multi-D) systems. Based on the nature of time evolution,
chaotic systems can be classified into the following two
groups: 1) continuous-time; and 2) discrete time. It has been
shown that a continuous-time nonlinear dynamic system has
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to have at least three state variables to show chaotic behavior
whereas for discrete-time system there is no such restric-
tion [2]. Familiar examples of 1-D discrete-time maps are sine
map, tent map, logistic map, and so on. On the other hand,
Henon map (discrete-time) and Lorenz system (continuous
time) are examples of multi-D chaotic systems.

A 1-D discrete-time chaotic system consists of a nonlinear
block, called a chaotic map, which defines one or multiple
control parameter-dependent evolution of a single state vari-
able in discrete-time steps. Conventionally, these 1-D systems
have been studied using classic mathematical functions, such
as logistic map, tent map, sine map, etc. These traditional
1-D maps are useful as they offer simplicity in implemen-
tations. However, the chaotic region of these 1-D maps is
limited. Moreover, a good chaotic entropy is not promised
over the whole range of that limited chaotic window. As
a result, any change in the operating condition or parame-
ter value may degrade the chaotic properties or even deflect
the system from the desired chaotic region to an undesired
nonchaotic (fixed point or periodic orbit) region. Researchers
have been exploring various schemes for an improved chaotic
map by manipulating multiple existing 1-D maps (henceforth
referred to as seed maps). The schemes include dynamic re-
configuration of control parameter [19], [20], cascading of
multiple seed maps [6], [21], use of discrete wheel-switching
technique [22], averaging of multiple seed maps [23], sine
transformation of a combination of multiple maps [24], modu-
lation and coupling [25], exponential chaotic model [15], and
so on. Recently, a new paradigm of designing hyperchaotic
maps based on discrete memristor model has attracted the
interest of the research community. Memristor was postu-
lated as the fourth fundamental circuit element by Chua in
1971 [26] and experimentally demonstrated in 2008 by HP
Labs [27]. By coupling existing 1-D maps with discrete mem-
ristor model, researchers have reported 2-D [28], [29] and
3-D [30] hyperchaotic maps with complex dynamics along
with their potential usage in secure communication [29] and
image encryption [30]. All of the aforementioned techniques
result in an improved chaotic performance by widening the
chaotic window and/or increasing the chaotic entropy at the
cost of increased overhead.

In this work, we propose a general framework of a mul-
tiparameter 1-D robust chaotic system called the normalized
linearly-combined chaotic system (NLCS) where the output
of n number of 1-D seed maps are linearly combined with
arbitrary coefficients and then normalized using a simple al-
gorithm to produce the final output. We use stability analysis
using Jacobian at equilibrium points along with the bifurca-
tion plot to demonstrate the wide chaotic region across the
entire parameter space (EPS). Then, the excellent chaotic
properties are illustrated with the aid of established entropy
metrics. The performance analysis shows that NLCS provides
an uninterrupted chaotic window, along with uniformly high
entropy, over the EPS. We also show an efficient hardware
implementation in field-programmable gate array (FPGA) and
validate the experimental results against the simulation results

from MATLAB. We introduce a simple extension scheme
to build 2-D maps with robust, hyperchaotic, and uniformly
excellent properties across the parameter space. Finally, we
propose a new reconfigurable multiparameter pseudorandom
number generator (PRNG) and outline six potential applica-
tions for the proposed system.

In summary, our main contributions in this work are as
follows.

1) We present a general framework named NLCS for de-
veloping arbitrary number of new multiparameter 1-D
chaotic system.

2) We demonstrate the uniformly excellent chaotic oper-
ation of four new NLCS maps across the parameter
space using stability analysis, bifurcation diagram, Lya-
punov exponent (LE), KE, Shannon entropy (SE), and
correlation coefficient (CC). We also show the proposed
system’s amenability to further improvement in chaotic
performance and parameter space using cascading.

3) We develop an efficient design for FPGA-based hard-
ware implementation and present a thorough compari-
son against prior works in terms of chaotic performance
and implementation metrics.

4) We introduce a simple extension scheme to build 2-D
hyperchaotic maps with uniformly excellent properties
and demonstrate it using three representative examples.

5) We present a new reconfigurable multiparameter PRNG
and validate its excellent randomness property using
two standard statistical test suites. We also outline six
application scenarios where the particular attributes of
the proposed system will be useful.

The rest of this article is organized as follows. Three seed
maps used in this work are introduced in Section II. The pro-
posed scheme, NLCS is presented in Section III along with the
derivation of five representative NLCS systems. Section IV
evaluates the chaotic performance with LE, KE, SE, and
CC. Section V presents an extension of the proposed system
for further performance enhancement. An efficient hardware
implementation in FPGA along with its validation against
simulation results is discussed in Section VI. Section VII in-
troduces some global metrics to compare the proposed system
with previous works. Section IX presents a new reconfigurable
PRNG using NLCS along with performance evaluation using
statistical tests. Section X outlines six promising applications.
Finally, Section XI concludes this article.

II. TRADITIONAL SEED MAPS
This section reviews three existing 1-D chaotic maps namely,
logistic, tent, and sine maps as background. They will be used
as seed maps to generate new chaotic maps in Section IV. For
ease of comparison, we are using the normalized versions of
these seed maps such that their domain, range, and parameter
values are within [0, 1].

Logistic map can be mathematically defined as

xi+1 = L(xi ) = 4CLxi(1 − xi ) (1)

where CL is the control parameter and CL ∈ [0, 1].
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FIGURE 1. Transfer curve (first row), Bifurcation diagram (second row), and LE (third row) of three seed maps. (a) Logistic (L). (b) Tent (T ). (c) Sine (S).

Tent map can be mathematically defined as

xi+1 = T (xi ) =
{

2CT xi when, xi < 0.5

2CT (1 − xi ) when, xi ≥ 0.5
(2)

where CT is the control parameter and CT ∈ [0, 1].
Sine map can be mathematically defined as

xi+1 = S (xi ) = CSsin(πxi ) (3)

where CS is the control parameter and CS ∈ [0, 1].
The effect of a control parameter on a dynamical system

can be visualized with a bifurcation diagram where for each
parameter value, a long sequence of steady-state output values
is plotted. The chaotic property in the output is evaluated with
a widely used metric called LE. A positive LE demonstrates
the existence of chaotic behavior [2]. Fig. 1 plots the transfer
curves, bifurcation diagrams, and LEs of the logistic, sine,
and tent maps with the change of their control parameters.
As can be observed, the logistic, sine, and tent maps have
chaotic behaviors when CL ∈ [0.89, 1], CS ∈ [0.87, 1], and
CT ∈ (0.5, 1), respectively. It should be noted that the logistic
and sine maps do not have robust chaos as periodic windows
exist in their chaotic ranges, but the tent map has robust chaos
when CT ∈ (0.5, 1).

FIGURE 2. Schematic of the NLCS scheme. Here, fn and Cn denote the nth
mapping function and the corresponding control parameter, respectively.
xi is the ith iteration value of the state variable.

III. PROPOSED CHAOTIC SYSTEM
Fig. 2 shows the block diagram of the proposed NLCS. The
output of the map function, normalized linearly-combined
chaotic map (NLCM) is fed back to the input after each iter-
ation. Inside NLCM, the output of the seed maps are linearly
combined and then normalized to produce the final output.
Given, n seed maps, f1(C1, xi ), f2(C2, xi ), . . ., fn(Cn, xi ), the
output of the linear combination block, LC is

LC =
n∑

j=1

a j f j (xi ). (4)
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FIGURE 3. Transfer curves (first row), equilibrium points (second row), corresponding Jacobian (third row), and Bifurcation diagrams (fourth row) of three
NLCS maps. (a) LT . (b) LS. (c) ST .

Here, a1, a2, . . ., an are the coefficients of the linear combi-
nation of seed maps f1, f2, . . ., fn, respectively. The function-
ality of the normalization block, N (LC), can be expressed as

N = LC − L

H − L
. (5)

Here, H = max(LC) and L = min(LC) over the range of xi

from 0 to 1. Both L and H are functions of the parameters of
the seed maps and coefficients of the linear combination.

The fundamental insight behind this framework can be
conveyed using the transfer curves three NLCS systems de-
veloped using different combinations of the seed maps. As
shown first row of Fig. 3, all the transfer curves cover the
entire output range [0, 1] while retaining high slope across
the parameter space for each value of the state variable. This
is in stark contrast to the constituent seed maps as shown in
the first row of Fig. 1 where the slope and output range vary

significantly with the change in parameter value. Since the
chaotic performance has a strong dependence of the average
slope of the trajectory, we expect our system to have uniformly
excellent entropic properties across the parameter space as
will be demonstrated later in Section IV using LE, KE, and
SE. Moreover, we expect that the slight change of the transfer
curve as a result of any parameter variation is sufficient for
generating completely uncorrelated long-term sequence for
different parameter values since a chaotic system is extremely
susceptible to tiniest perturbation in initial condition or pa-
rameter value (popularly known as the “butterfly effect”). This
hypothesis will be proved with the help of CC in Section IV
and we will leverage this to build a novel reconfigurable
PRNG in Section IX.

The proposed NLCS can be formed with any number of
seed maps with different values of coefficients for the linear
combination. In Section III-A, we will explore three such
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maps with two constituent seed maps and unity coefficients.
Then, in Section III-B, we will consider the case of three seed
maps with unity coefficients. In the final Section III-C, we
will consider the case of two seed maps with coefficients other
than 1.

A. TWO SEED MAPS WITH UNITY COEFFICIENTS
First, we will consider three combinations of two seed maps
while keeping the coefficients a1 = a2 = 1.

1) LOGISTIC-TENT
If the two constituent seed maps are logistic and tent maps,
then for a1 = a2 = 1, LC = L(xi ) + T (xi ), H = CL + CT ,
and L = 0. The final expression for LT map can be written
as

xi+1 =
{

xi(4CL(1−xi )+2CT )/(CL+CT ); xi < 0.5

(1−xi )(4CLxi+2CT )/(CL+CT ); xi ≥ 0.5.
(6)

The equilibrium points of the LT map are the roots of the
following equation:

x̃ =
{

x̃(4CL (1 − x̃) + 2CT )/(CL + CT ); x̃ < 0.5

(1 − x̃)(4CLx̃ + 2CT )/(CL + CT ); x̃ ≥ 0.5.
(7)

Solving (7), we can find that there are two equilibrium points
over the range [0, 1]. The equilibrium point of a dynamic
system can be either stable or unstable. A stable point implies
a fixed point whereas an unstable point implies a periodic
or chaotic oscillation. The stability of a fixed point can
be determined by the magnitude of the eigenvalues of the
Jacobian matrix (a derivative of the map function with re-
spect to the state variable) at that equilibrium point. If at
least one eigenvalue has a magnitude greater than 1 then
the system is unstable. For a 1-D system, the eigenvalue
can be simply determined by the value of the Jacobian at
the equilibrium point. The Jacobian for LT map can be
expressed as

J (x) =
{

(4CL (1 − 2x) + 2CT )/(CL + CT ); x < 0.5

(4CL (1 − 2x) − 2CT )/(CL + CT ); x ≥ 0.5.
(8)

The second and third subplots of Fig. 3(a) show the two
equilibrium points and their corresponding Jacobian values,
respectively. The magnitudes of the Jacobian at both equilib-
rium points are greater than 1 clearly indicating an unstable
state. The fourth subplot shows the corresponding bifurcation
diagram, which illustrates chaotic operation across the entire
2-D parameter space. This is consistent with the instability
of equilibrium points indicating robust chaos for all possible
combinations of parameter values.

2) LOGISTIC-SINE
If the two constituent seed maps are logistic and sine maps,
then for a1 =a2 =1, LC =L(xi )+S (xi ), H = CL +CS , and

L = 0. The final expression for LS map can be written as

xi+1 = (4CLxi(1 − xi ) + CSsin(πxi ))/(CL + CS ). (9)

Here, CL and CS are two parameters of the system and
CL,CS ∈ [0, 1]. For a particular combination of parameters,
there are two equilibrium points, which can be determined by
solving for the roots of the following equation:

x̃ = (4CLx̃(1 − x̃) + CSsin(π x̃))/(CL + CS ). (10)

The Jacobian for LS map can be expressed as

J (x) = (4CL(1 − 2x) + πCScos(πxi ))/(CL + CS ). (11)

The second and third subplots of Fig. 3(b) show the two
equilibrium points and their corresponding Jacobian values.
The magnitudes of the Jacobian at both equilibrium points
are greater than 1 clearly indicating an unstable state. The
fourth subplot shows the corresponding bifurcation diagram,
which shows that the outputs are chaotic across the entire
2-D parameter space. This is consistent with the instability
of equilibrium points and demonstrates wide robust chaos for
all possible combinations of parameter values.

3) SINE-TENT (ST )
If the two constituent seed maps are sine and tent maps,
then for a1 = a2 = 1, LC = S (xi ) + T (xi ), H = CS + CT ,
and L = 0. The final expression for ST map can be written
as

xi+1 =
{

(CSsin(πxi )+2CT xi )/(CS +CT ); xi < 0.5

(CSsin(πxi )+2CT (1−xi ))/(CS +CT ); xi ≥ 0.5.

(12)
Here, CL and CS are two parameters of the system and
CL,CS ∈ [0, 1]. For a particular combination of parameters,
there are two equilibrium points that can be determined by
solving for the roots of the following equation:

x̃=
{

(CSsin(π x̃)+2CT x̃)/(CS +CT ); x̃ < 0.5

(CSsin(π x̃)+2CT (1−x̃))/(CS +CT ); x̃ ≥ 0.5.
(13)

The Jacobian for ST map can be expressed as

J (x)=
{

(πCScos(πx)+2CT )/(CS +CT ); x < 0.5

(πCScos(πx)−2CT )/(CS +CT ); x ≥ 0.5.
(14)

The second and third subplots of Fig. 3(c) show the two
equilibrium points and their corresponding Jacobian values,
respectively. The magnitudes of the Jacobian at both equilib-
rium points are greater than 1 clearly indicating an unstable
state. The fourth subplot shows the corresponding bifurcation
diagram demonstrating chaos across the entire 2-D parameter
space. This is consistent with the instability of equilibrium
points indicating wide robust chaos across the EPS.

B. THREE SEED MAPS WITH UNITY COEFFICIENTS
Here, we consider an NLCS system consisting of three seed
maps with unity coefficients, i.e., a1 = a2 = a3 = 1, and
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FIGURE 4. Equilibrium points (first row), corresponding Jacobian (second row), and bifurcation diagrams (third row) of LT S maps while keeping one
parameter fixed at 0.5 and varying the other two parameters. (a) CL − CT . (b) CT − CS . (c) CL − CS .

name it logistic–tent–sine (LT S) map. Here, LC = L(xi ) +
T (xi ) + S (xi ), H = CL + CT + CS , and L = 0. The final ex-
pression for LT S map can be written as

xi+1 =
{

4CLxi (1−xi )+2CT xi+CSsin(πxi )
CL+CT +CS

; xi < 0.5
(4CLxi (1−xi )+2CT (1−xi )+CSsin(πxi )

CL+CT +CS
; xi ≥ 0.5.

(15)

The two equilibrium points can be determined by solving for
the roots of the following equation:

x̃ =
{

4CLx̃(1−x̃)+2CT x̃+CSsin(π x̃)
CL+CT +CS

; x̃ < 0.5
(4CLx̃(1−x̃)+2CT (1−x̃)+CSsin(π x̃)

CL+CT +CS
; x̃ ≥ 0.5.

(16)

The Jacobian for LT S map can be expressed as

J (x) =
⎧⎨
⎩

4CL (1−2x)+2CT +πCScos(πx)
CL+CT +CS

; x < 0.5

4CL (1−2x)−2CT +πCScos(πx)
CL+CT +CS

; x ≥ 0.5.
(17)

The first two rows of Fig. 4 show the two equilibrium points
and their corresponding Jacobian values while varying two
parameters and keeping the third one fixed. In all cases, the
magnitudes of the Jacobian at both equilibrium points are
greater than 1 clearly indicating an unstable state. The third
row shows the corresponding bifurcation diagrams, which
show that the generated sequences are chaotic across the entire
3-D parameter space. This is consistent with the instability
of equilibrium points indicating wide robust chaos for all
possible combinations of parameter values.

C. TWO SEED MAPS WITH NONUNITY COEFFICIENTS
Previous sections explored the linear combination of seed
maps with unity coefficients. Here, for brevity, we consider
one example with nonunity coefficients, but we have verified
that similar results can be obtained for other combinations
as well. For nonunity coefficients, we use superscript to in-
dicate the coefficients in an ordered pair, e.g., NLCS(a1,a2).
Let us consider the LT map with a1 = 2 and a2 = 3. Then,
LC = 2L(xi ) + 3T (xi ), H = 2CL + 3CT , and L = 0. The fi-
nal expression for LT (2,3) map can be written as

xi+1 =
{

xi(8CL (1−xi )+6CT )/(2CL+3CT ); xi <0.5

(1−xi )(8CLxi+6CT )/(2CL+3CT ); xi ≥0.5.

(18)
The equilibrium points of this system are the roots of the
following equation:

x̃=
{

x̃(8CL (1−x̃)+6CT )/(2CL +3CT ); x̃ < 0.5

(1−x̃)(8CLx̃+6CT )/(2CL +3CT ); x̃ ≥ 0.5.
(19)

The Jacobian for this map can be expressed as

J (x) =
{

(8CL (1 − 2x) + 6CT )/(2CL + 3CT ); x < 0.5

(8CL (1 − 2x) − 6CT )/(2CL + 3CT ); x ≥ 0.5.
(20)

Fig. 5(a) and (b) shows the two equilibrium points and their
corresponding Jacobian values. The magnitudes of the Ja-
cobian at both equilibrium points are greater than 1 clearly
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FIGURE 5. LT map with a1 = 2 and a2 = 3. (a) Equilibrium points. (b) Jacobian. (c) Bifurcation diagram.

FIGURE 6. LE plot of four NLCS maps. (a) LT . (b) LS. (c) ST . (d) LT S.

indicating an unstable state. Fig. 3(c) shows the correspond-
ing bifurcation diagram, which demonstrates chaos across
the entire 2-D parameter space. This is consistent with the
instability of equilibrium points and clearly illustrates robust
chaos across the entire 2-D parameter space for nonunity
coefficients.

IV. PERFORMANCE ANALYSIS
A. LYAPUNOV EXPONENT
The sensitive dependence on the initial condition is a defining
characteristic of a chaotic system. Two neighboring trajec-
tories of a chaotic sequence, starting from slightly different
initial conditions, diverge exponentially fast, on average. The
most widely-used metric to quantify that sensitive dependence
on initial conditions is LE. For a discrete-time chaotic system,
LE is defined as

LE = lim
n→∞

1

n

n−1∑
i=0

ln| f ′(xi )|. (21)

The value of LE is negative for fixed points and periodic orbits
whereas for chaotic attractors, its value is positive [2]. Fig. 6

shows the results for four NLCS systems. The LE of each
map is calculated with 14 000 steady-state iterations (after
discarding first 1000 points) for each control parameter value.
The first row presents a comparison of LE values between
NLCS and its constituent seed maps with one or more control
parameters fixed to a constant value while the other one is
varied along the x-axis. It is clear from these 2-D plots that in
the NLCS systems, LE value remains almost steadily close
to the maximum LE achievable by the seed maps over the
whole operational range. The second row in Fig. 6 shows
3-D LE plots for four NLCS systems where we can observe a
uniformly high LE across the EPS.

B. KOLMOGOROV ENTROPY
KE captures the generation rate of new information. In this
work, we follow the estimation method by Grassberger et al.
in [31], which partitions the phase space of an F-dimensional
dynamic system into εF-sized boxes. We are measuring the
state of a trajectory, �X (t ), at intervals of time, τ . There is
a probability measure, p(i1, i2, . . ., id ) that defines the joint
probability of �X (t ) being in the box i1 at t = τ , in i2 at t = 2τ ,
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FIGURE 7. KE plot of four NLCS maps. (a) LT . (b) LS. (c) ST . (d) LT S.

and so on. Then, the KE is defined as

KE = − lim
τ→∞ lim

ε→∞ lim
d→∞

1

n

∑
i1,..,id

p(i1, i2, . . .., id )

× ln(p(i1, i2, . . .., id )). (22)

KE is 0 for an ordered sequence, ∞ for a random sequence,
and a positive nonzero constant for a chaotic sequence where
the higher positive value of KE indicates a better chaotic per-
formance [32]. Fig. 7 shows a uniformly high KE across the
EPS for all NLCS schemes, whereas the constituent seed maps
show a nonuniform distribution of positive nonzero value in a
very narrow region. The KE of each map is calculated with
14 000 steady-state iterations for each parameter value.

C. SHANNON ENTROPY
SE is a widely used metric to measure the amount of uncer-
tainty in a random process. If the range of values of signal X is
divided into n equally spaced bins, then the SE can be written
as

SE = −
n∑

i=1

Pr(xi )log2Pr(xi ). (23)

Here, Pr(xi ) is defined as the probability of signal value lo-
cated in the ith bin. SE can be used to check the randomness
of a discrete-time sequence. We set n = 210 = 1024 and used
(23) to calculate the SE for each control parameter with
14 000 steady-state iterations. The theoretical maximum value
is log2n = log21024 = 10, which occurs when the sequence
values are uniformly distributed across the whole range ([0,
1]). The value of SE increases with the amount of ergodicity
involved in the sequence. Fig. 8 shows the SE values of NLCS
and corresponding seed maps. It is clear from the SE plots that
NLCS offers a very high SE value over the whole operational
range.

D. CORRELATION COEFFICIENT
A defining feature of a chaotic system is its extreme sensitivity
to slight perturbation in the initial state, i.e., initial condition
or parameter values. This sensitive dependence on the initial
state can be measured using a well-known metric called CC.
Equation (24) shows the expression of Pearson’s CC that can
be used to determine the correlation between two sequences,
X and Y

Co = E [(X − μX )(Y − μY )]

σX σY
. (24)

Here, “E[·]” indicates the expectation operator while μ and σ

represent the mean value and standard deviation, respectively.
The value of the CC is close to +1/−1 if X and Y are highly
correlated whereas, a close to 0 CC indicates an extremely
low correlation between the data sequences. To measure the
initial state dependence using the CC, two sets of steady-state
discrete-time data sequences are generated from the same
chaotic oscillator with a particular control parameter but with
two slightly different initial states. Then, CC is calculated
using (24). If the system is chaotic for that particular control
parameter then the tiniest variation in the initial state will
result in two very different sequences and as a result, we will
get a CC close to 0. On the other hand, if the operating point
is nonchaotic then the two steady-state sequences will be very
similar and result in a CC close to +1/−1.

Fig. 9 shows the plots of calculated CC for four NLCS
systems demonstrating acute sensitivity to initial value per-
turbation since the CC value is very close to 0 across the
EPS. We did a similar experiment to measure the system’s
susceptibility to parameter perturbation. In this case, we have
generated two long sequences with identical initial conditions
while slightly varying the parameter value. Fig. 10 shows
the parameter sensitivity results for the four NLCS systems
demonstrating high susceptibility to tiniest parameter pertur-
bation across the EPS. Therefore, NLCS can be used as a

VOLUME 4, 2023 493



HASAN ET AL.: NORMALIZED LINEARLY-COMBINED CHAOTIC SYSTEM: DESIGN, ANALYSIS, IMPLEMENTATION, AND APPLICATION

FIGURE 8. SE plot of four NLCS maps. (a) LT . (b) LS. (c) ST . (d) LT S.

FIGURE 9. CC (CCinitial) plot demonstrating initial value sensitivity of four NLCS maps. (a) LT . (b) LS. (c) ST . (d) LT S.

reconfigurable chaotic oscillator since each parameter con-
figuration will generate a completely unique sequence (see
Fig. 10) with excellent entropic properties as demonstrated in
Figs. 6–8. Later, in Section IX, this attribute will be leveraged
to build a new reconfigurable PRNG.

V. PERFORMANCE IMPROVEMENT WITH CASCADING
It was shown in [21] that cascading multiple 1-D maps can
significantly improve chaotic properties. Later, it was shown
that this is true under certain constraints and not all maps
are amenable to performance improvement via cascading [6].
As it turns out, cascading is particularly suitable for all
combinations of NLCS maps. Cascading of two maps with
independent parameter exponentially expands the parameter
space while uniformly improving entropy metrics across the
extended space. The schematic of the cascaded normalized

linearly-combined chaotic system (CNLCS) is presented in
Fig. 11. The performance improvement in CNLCS is il-
lustrated using two entropy measures, LE and KE for the
cascaded connection of two NLCM’s. The constituent NL-
CMs can be identical or different. Figs. 12 and 13 present
a comparison between NLCS and CNLCS based on the LE
and KE values, respectively. The plots show that CNLCS with
two NLCMs increase both LE and KE by almost a factor of
two. Similarly, it can be shown that cascading n number of
maps improves these entropy measures by almost a factor of n.
In addition, each new cascaded map increases the number of
parameters and exponentially extends the chaotic space.

VI. HARDWARE IMPLEMENTATION USING FPGA
Recently, FPGA has gained popularity for implementing dif-
ferent types of chaotic systems [33], [34]. WE have chosen
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FIGURE 10. CC (CCparameter) plot demonstrating parameter sensitivity of four NLCS maps. (a) LT . (b) LS. (c) ST . (d) LT S.

FIGURE 11. CNLCS scheme.

FIGURE 12. LE plots of different NLCS and CNLCS systems. (a) LT –LT .
(b) LT –LS. (c) LT –ST .

FIGURE 13. KE plots of different NLCS and CNLCS systems. (a) LT –LT .
(b) LT –LS. (c) LT –ST .

FIGURE 14. Experimental setup for FPGA implementation.

a Nexys A7 FPGA board as our hardware platform due to
their affordability, reconfigurability, and high performance.
We have implemented four types of NLCS system, namely,
LT , LS , ST , and LT S in Nexys A7 FPGA board. An exter-
nal device (e.g., our PC) communicates with the FPGA with
universal asynchronous receiver–transmitter (UART) proto-
col, which is used for data collection for postprocessing and
visualization in our computer. Fig. 14 shows our experimental
setup. The hardware architecture and the FPGA implementa-
tion result are discussed in the following. Here, we have used
LT as a specific example to explain some of the details but
the principles are applicable for any NLCS.

A. NUMBER REPRESENTATION
Since we are dealing with real numbers exclusively in the
range [0, 1], we have decided to develop our own fixed-point
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FIGURE 15. Schematic of the FPGA Implementation.

number representation system with n + 1 binary bits (n : 0)
under the assumption of binary point after the nth bit. If we
consider the n + 1 bits as a binary integer, then the binary
number 0 and 2n correspond to the real numbers 0 and 1,
respectively. The following results are obtained for n = 64,
which gives us a uniform high resolution (1/264) across the
entire range with less overhead compared to standard 64-bit
IEEE-754 floating-point representation [35], which is meant
to represent a much wider range of numbers, i.e., [−2 ×
21023,+2 × 21023] and consequently, can give the highest res-
olution of (1/252) due to its 52-bit mantissa. Moreover, the
finite precision of a digital system implies that it will never
be possible to obtain an ideal infinitely aperiodic sequence
since the system is bound to reach a previous state after a
finite number of iterations, which dictates a periodic repetition
due to the system’s deterministic nature. Hence, in practice,
we strive to obtain the highest possible period out of a chaotic
system. Due to our number representation scheme, the highest
period achievable by our system is 263 compared to 252 in
64-bit IEEE-754 floating-point representation.

B. HARDWARE ARCHITECTURE
The proposed chaotic oscillators are designed in Verilog hard-
ware description language and implemented in Nexys A7
FPGA board. As shown in the block diagram of Fig. 15, it
has input and output communication modules to communicate
with external devices. The circuit has four input ports and one
output port as described in the following.

1) CLK: Provides the clock input for the digital circuits.
2) Data_In: An UART Protocol enabled input pin, which

accepts data from external devices.
3) Stop: A control input to stop all processes in the FPGA.
4) Reset: A control input to reset the system.
5) Data_Out: An output port uses UART protocol to

communicate individual data produced by the chaotic
oscillator with external devices.

The system has three distinct parts as described in the fol-
lowing.

1) Data_Input: This input processing module accepts in-
formation from an external device using UART pro-
tocol and outputs the initial condition for the chaotic
map. External device can run the algorithm shown in
Fig. 16. This sends 3 × n + 24 bits of data under the

FIGURE 16. Algorithm for communication between the external device
and Data_Input module.

FIGURE 17. Schematic of the Data_Process module.

UART protocol. The Data_Input module receives the
data and outputs the initial condition and parameters for
the chaotic map (x0, CL , and CT ), which are all n + 1
bits in size. It also outputs a completion trigger bit to
notify the next module in the pipeline to accept the
initial condition and parameters.

2) Data_Process: This data processing module is built as a
finite-state machine to implement the proposed scheme,
as shown in Fig. 17. It accepts the initial condition
and parameters and outputs the iterated sequence ac-
cording to the chaotic map. The normalization step in
the proposed scheme requires division, which is slow
compared to other operations. However, we observe that
the normalizing factor does not change throughout iter-
ations, and consequently, we need to do this only once
before the iteration starts, which does not reduce the
running throughput of the system. It still has a higher
latency for the first output but that is less significant
compared to throughput for iterated maps since we usu-
ally use these systems to generate a very long sequence
of outputs. We elaborate this mechanism using LT map
function as an example. The transfer function of LT
map from (6) can be rewritten as

xi+1 = C1 × M1(xi ) + C2 × M2(xi ). (25)

Here, C1 = CL
CL+CT

, C2 = CT
CL+CT

, M1(xi ) = L(xi ) for
CL = 1 and M2(xi ) = T (xi ) for CT = 1. C1 is calculated
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FIGURE 18. Division algorithm for NLCM.

using the highly efficient division algorithm shown in
Fig. 18. C2 is calculated by subtracting C1 from 1. The
inputs CL and CT and the outputs C1 and C2 from the
division submodule are all ∈ [0, 1], which satisfy the
original assumption behind our chosen number repre-
sentation. The circuit ignores calculation for CL,CT >

1. This saves n-bit register and n clock cycles in the op-
erations performed by the circuit. The Reg submodule
stores the current state of the chaotic system, i.e., xi and
the NLCM submodule calculates the next state based on
the current state from Reg module and precalculated C1

and C2 from the division submodule using (25).
3) Data_Output: This module outputs the value produced

by each iteration of the chaotic map. It is triggered by
the Data_Process module to send each new output of the
iterated map. It appends the n + 1-bit data with leading
zeros and converts it to n + 8-bit data. This n + 8-bit
data is sent via UART protocol to the external device.
The highly optimized hardware implementation ensures
a throughput which is almost the same as the constituent
seed maps (only fractionally lower due to an extra ad-
dition operation) while providing much better chaotic
properties as shown in the following section.

C. FPGA IMPLEMENTATION RESULT
Fig. 19 shows a comparison between MATLAB simulation
and FPGA implementation results of LT map for an initial
condition x0 = 0.75 and parameter values, CL = 0.90 and
CT = 0.25. The series diverges after 50 iterations. This is due
to our choice of a fixed-point number representation system
for FPGA implementation (see Section-VI-A), which is dif-
ferent from the 64-bit IEEE-754 floating-point representation
used in MATLAB simulation. We chose this representation
to achieve a higher resolution in the desired range and modi-
fied arithmetic modules for efficient implementation. The tiny
fluctuations resulting from this difference are amplified by
the high susceptibility of the chaotic system to the slightest
perturbation, which leads to the eventual divergence of these

FIGURE 19. Comparison between MATLAB and FPGA implementation
results for LT map (x0 = 0.75,CL = 0.90,CT = 0.25).

two sequences. This divergence is not significant since, theo-
retically speaking, neither of the two implementations is more
correct than the other one. In fact, our FPGA implementation
has higher resolution in the desired range as pointed out in
Section VI-A compared to MATLAB. The more important
question for practical application is whether chaotic entropy
values are similar in both implementations. To explore this,
we have created two sets of discrete-time sequences with each
sequence consisting of 14 000 steady-state values, one with
MATLAB simulation and the other one with FPGA. Each
set contains chaotic sequences for different parameter values.
We have calculated the LE, KE, and SE values from the
generated sequences for both cases, and this entire process
is repeated for four NLCS maps, namely, LT , LS , ST , and
(LT S). Fig. 20 clearly shows an almost identical match be-
tween results from MATLAB and FPGA, thereby validating
the potential of this efficient hardware implementation for
diverse security applications.

VII. COMPARISON WITH PRIOR WORKS
The first advantage of the proposed design is its much wider
chaotic region, i.e., increase in the quantity of chaotic de-
sign space. The second advantage is the almost uniform high
chaotic properties across the entire chaotic range, i.e., im-
provement of quality of chaotic operation. If a system has
p parameters and each parameter can have N distinct values,
then the EPS can be defined as EPS = N p [36]. A subset of
this space is chaotic, which we call chaotic parameter space
(CPS). We use a metric [36] named chaotic ratio (CR), which
is defined as the ratio of CPS to EPS

CR(%) = CPS

EPS
× 100. (26)

For quality assessment, we are averaging LE, SE, KE, and the
absolute value of CC across the chaotic region to come up
with a single global metric for each entropy measure. Higher
average LE (ALE), average KE (AKE), and average SE (ASE)
imply better entropic properties. Similarly, a lower average
CC magnitude (ACC) closer to zero implies more initial state
sensitivity, i.e., better chaotic quality. We also report the max-
imum value of LE, KE, and SE (MLE, MKE, and MSE) and
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FIGURE 20. Comparison of entropy metrics between MATLAB simulation and FPGA implementation. (a) LT . (b) LS. (c) ST . (d) LT S.

TABLE 1. Comparison of Chaotic Performance

the minimum absolute value of two types of CC (mCC). In
addition, the dynamic swing range of the steady-state output
inside the chaotic region should be as close to the highest
output range (R) as possible to ensure the maximum unpre-
dictability. For capturing this aspect of chaotic operation, we
use a metric [36] named average normalized dynamic range
(ANDR) defined as

ANDR(%) =
(

1

CPS

∑
i∈CPS

V i
max − V i

min

R

)
× 100. (27)

Table 1 compares our proposed design, CNLCS (in bold) with
the three basic seed maps as well as three previous works,
namely ZBC [7], dynamic parameter-control chaotic system
(DPCCS) [19], and exponential chaotic model (ECM) [15]
using the abovementioned metrics and it shows significant
improvement considering all aspects of the chaotic operation.

In addition, we have implemented the prior works along
with our proposed system in the Nexys A7 FPGA board and
compared the hardware implementation metrics, such as re-
sources, power consumption, and speed (clock cycle/iteration)

of our system against 6 prior works as shown in Table 2.
Tables 1 and 2 show that our proposed system provides signif-
icantly superior chaotic performance with moderate hardware
cost. For example, techniques, such as ECM [15], achieve
uniformly robust chaos using logarithms and exponentiation,
which are computationally much more expensive compared
to NLCS. In addition, unlike these prior works, two NLCM
maps can be easily combined without any additional hardware
to form a multiparameter 2-D robust, hyperchaotic system as
will be shown in Section VIII.

VIII. EXTENSION TO ROBUST AND HYPERCHAOTIC
2-D MAPS
A dynamical system is hyperchaotic when it has more than
one positive LE, i.e., its trajectories will diverge in several
directions. Since this dynamic behavior is more complex
than chaotic behavior, it has attracted the attention of re-
searchers in recent times [37], [38]. In this section, we propose
a simple cross-coupling technique to design a 2-D robust,
hyperchaotic system with uniformly excellently chaotic prop-
erties. As shown in Fig. 21, two NLCM maps, NLCM-I and
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TABLE 2. Comparison of Hardware Implementation Metrics in Artix 7 FPGA With 100 MHz Clock

FIGURE 21. Schematic of 2-D NLCS.

NLCM-II are cross-coupled where the state variable of one
map is connected to the second parameter of the other map.
The resulting 2-D map has two independent parameters and
two state variables xi and yi. The method is general and we
can choose any NLCM maps as map I and II. For example, a
2-D map LT -LS implies that LT and LS are used as NLCM-I
and NLCM-II, respectively (see Fig. 21).

Fig. 22 shows the LE values for three different 2-D maps,
namely LT -LS , LT -ST , and LS-ST , generated using the
abovementioned scheme. A 2-D maps has two LE values (λ1

and λ2) and as shown in Fig. 22, both LE values for our 2-D
NLCS systems are positive across the EPS with uniformly
high LE values exhibiting both robust and hyperchaotic be-
havior.

Similar to 1-D NLCS, the performance and parameter space
of this 2-D extension can also be improved via a simple
cascading scheme, as shown in Fig. 23. We have kept same
parameter for two maps in cascade to keep the analysis sim-
ple, but in general there can be four independent parameters
and the configuration space increases exponentially with the
number of parameters. The doubling of both LE values across
the EPS due to this cascading mechanism for all three 2-D
systems are shown in Fig. 24.

IX. NOVEL RECONFIGURABLE PRNG USING NLCS
PRNGs are used as critical security primitives in crypto-
graphic application and information security [39], [40]. The
defining properties of chaotic systems, namely deterministic
aperiodicity and acute susceptibility to any perturbation in
initial condition render them ideal candidates for building

TABLE 3. Six Different Parameter Configurations for the Proposed PRNG

PRNGs [3], [41], [42]. Here, we present a new reconfig-
urable multiparameter PRNG leveraging the robust chaotic
operation, uniformly high entropy, and availability of multiple
independent parameters in NLCS.

The schematic of the proposed PRNG is shown in Fig. 25.
We have two parallel chaotic oscillators, one using NLCS
and the other one using CNLCS. We are using the LT map
as the NLCS in the construction of this PRNG. At every
iteration, we extract 8 bits (13:30) from the 64-bit output and
XOR them to produce the final 8-bit output, i.e., a through-
put of 8 bits/iteration. NLCS provides two parameters (r1

and r2) whereas CNLCS provides four additional parameters
(r3, r4, r5, and r6). Due to the uniform chaotic properties
of NLCS and CNLCS, this PRNG is reconfigurable across
the entirety of its six-dimensional parameter space. To il-
lustrate the reconfigurability, we have chosen six different
parameter configurations, which are shown in Table 3 and for
each configuration, the excellent randomness of the proposed
PRNG has been verified using two statistical randomness
tests, namely National Institute of Standards and Technology
(NIST) and FIPS.

A. NIST SP 800-22
This test suite from the NIST offers 15 statistical subtests to
measure the randomness in a sequence [43]. For each one of
the six configurations, we ran the test with 100 bit-streams
generated from 100 different initial condition with each bit-
stream having a length of 1 million bits. The significance
level was set to 0.01. Hence, a sequence with 100 million
bits (containing 100 bit-streams) will pass a particular test
if at least 96 out of the 100 bit-streams generate a p-values
greater than 0.01. The test suite allocates each of the 100 gen-
erated p-values in 10 subintervals from 0 to 1 and evaluates
the uniformity in the distribution with χ2-test. The sequence
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FIGURE 22. LE plots of different 2D-NLCS systems. (a) LT –LS. (b) LT –ST . (c) LS–ST .

FIGURE 23. Cascaded 2DNLCS scheme.

under test can be considered uniform if the p-value generated
from the χ2-test (refers to p-valueT ) is greater than or equal
to 0.0001. Table 4 shows that the proposed reconfigurable
PRNG passes all requirements of 15 subtests for six different
parameter configurations.

B. FIPS PUB 140-2
The Federal Information Processing Standards Publications
FIPS PUB 140-2 test suite was developed by NIST [44]. FIPS
tests the randomness of a binary sequence by dividing the
sequence into 20 000-bit blocks. Hence, for a test sequence
with 100 million bits, there will be 5000 blocks in total. The

blocks are subjected to 4 subtests namely, Monobit, Poker,
Runs, and Long run. The Monobit test counts the number of 1s
in each 20 000-bit block. To pass the test, this number must be
within the range of [9725, 10 275]. The Poker test divides each
20 000-bit block into 5000 successive 4-bit segments. The
4-bit segment can have 16 possible values. The occurrences of
16 values are counted and stored. This subtest examines the
uniformity of the 4-bit segment. Runs test counts and stores
the maximum sequence of consecutive 1s or 0s in a 20 000-bit
block. A run of 26 or more of either 1s or 0s is defined as a
long run. The total number of long runs in a 20 000-bit block is
counted as the total failure. Table 5 shows the FIPS test result
for each one of the six configurations of the proposed PRNG.
The second column (from the left) of Table 5 shows the total
number of blocks passing the test out of the total 5000 blocks
and the last four columns show the number of failed blocks
under corresponding subtests. The results show close to 100%
success implying great randomness.

X. APPLICATIONS
We outline the following six application scenarios where the
particular attributes of the proposed NLCS system will be
useful.

1) Reconfigurable random number generator: Random
number generator are used in many applications in-
cluding but not limited to Monte Carlo simulations,
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FIGURE 24. LE plots of three different cascaded 2D-NLCS systems. (a) LT –LS. (b) LT –ST . (c) LS–ST .

TABLE 4. NIST Results (1 to 6 Are Six Different Configurations; *Shows Average of Multiple Tests)

test pattern generation, scientific experiments, cryptog-
raphy, and telecommunication systems [42], [45], [46],
[47], [48]. Due to their excellent ergodic properties,
chaotic maps have been extensively used in designing
PRNG [4], [30], [49] Many chaotic random number
generators are designed for a fixed parameter, i.e., for
the same seed, it always generates the same sequence,
which makes them vulnerable to adversarial attacks [3],
[6]. As shown in Section IX, NLCS can be used to build
reconfigurable PRNG with excellent randomness across

a very large design space. For a specific seed, a run-time
change in configuration by even a single bit of any of
the six control parameters will produce a completely
uncorrelated yet equally good random sequence, which
gives this design a significant immunity against adver-
sarial attacks [50]. Besides, the uniformly high chaotic
entropy across parameter space makes NLCS-based
PRNG immune against performance degradation due to
parameter disturbance. Moreover, the hardware imple-
mentation metrics of NLCS (see Table 2) along with
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FIGURE 25. Schematic of the proposed PRNG.

TABLE 5. FIPS Test Results

the simplicity of the proposed PRNG makes it suitable
for resource-constrained edge computing in Internet of
Things in contrast to some prior works requiring much
higher computational resources [30], [49].

2) Secure communication: During the last three decades,
many researchers have leveraged chaotic dynamics for
developing secure communication systems [15], [29],
[49], [51]. As shown in [15], a discrete-time chaotic
system with uniformly robust chaotic dynamics (ECM)
can be a perfect candidate for improving the system’s
immunity against channel noise. As shown in Tables 1
and 2, NLCS is superior to ECM both in terms of
chaotic performance and hardware cost and as such,
it will be an even better building block for developing
such secure communication systems.

3) Image encryption: Since digital image has a lot of in-
formation redundancy, tradiational stream/block cipher
based well-known encryption methods, such as digital
encryption standard [52], advanced encryption stan-
dard [53], etc., may not be the optimum choice for
such data. To circumvent this issue, there has been a
significant body of research on developing image en-
cryption algorithms based on choatic maps [30], [42],
[54]. Usually, a secure key is used as the initial condition
and/or parameter value of chaotic maps to generate a
long sequence of unpredictable values, which are then
used to encrypt the input image using a particular al-
gorithm [21], [25], [54], [55], [56]. The success of any
such algorithm depends on a large part on the entropic
quality of the chaotic map. Given the excellent entropic
properties of NLCS across the entire parameter range
with low hardware cost, it can be easily integrated with
any such algorithm for image encryption application.

4) Reconfigurable computing: Starting from the seminal
1998 paper [57], researchers have been exploring how

the chaotic dynamics can be utilized to build flexible
and reconfigurable computing blocks sometimes called
“chaogates” [11], [58]. The aperiodic iteration inside
chaotic region means that we can extract a large num-
ber of functions from a single chaotic system [59],
[60]. As shown in [36] and [61], the CPS plays a key
role in expanding the reconfigurability of such system.
This can be leveraged for logic locking [18] to prevent
integrated circuit (IC) counterfeiting, and reverse en-
gineering, which have become a serious threat in the
current IC supply chain. Since multiparameter robust
NLCS offers chaotic operation across a large parameter
space, it can be a perfect candidate for building chaos-
based reconfigurable computing platforms.

5) Side-channel attack mitigation: Starting with the sem-
inal work of Kocher [62], Side-channel attack has
emerged as a serious threat to computer security in
recent years where information leaked through side-
channels, such as power consumption, electromagnetic
emanation, timing information, keystroke behavior, etc.,
have been used by adversary to extract valuable se-
cret information [63], [64], [65], [66]. Obfuscation
via Chaos-based reconfigurable logic has been pro-
posed and explored as a mitigation technique in several
recent works [13], [67], [68]. However, for this mit-
igation technique to be successful, we need a wide
chaotic region with good entropic properties [13],
which makes NLCS a suitable candidate for such
applications.

6) multi-D and multiparameter hyperchaotic system: It
has been shown that 1-D choatic systems with their
relatively simpler orbit can be susceptible to signal
estimation attack [69] and dynamic degradation in a
digitized platform [70], [71]. This is a hindrance to-
ward their adoption in cryptographic applications where
high level of security is required [72]. The state space
of a chaotic system increases exponentially with the
number of dimensions and a multi-D chaotic sys-
tem becomes hyperchaotic when it has more than one
positive LE [49], [73], [74]. This gives rise to a sig-
nificantly more complex trajectory compared to 1-D
chaotic system [49], [56] and can find use in dif-
ferent applications [29], [30], [49], [75]. Oftentimes,
simpler 1-D maps are chosen instead of these hyper-
chaotic maps due to their prohibitively higher cost of
hardware implementation. As shown in Section VIII,
NLCS can be easily extended to a 2-D hyperchaotic
map with uniformly high and robust entropic proper-
ties across an exponentially larger parameter space and
state space at the same throughput while incurring only
twice the hardware cost of its 1-D counterpart. The
same design principle can be easily extended to build
even higher dimensional hyperchaotic NLCS systems.
These multi-D NLCS maps can a promising low-
cost robust hyperchaotic alternative for diverse security
applications [30], [49].
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XI. CONCLUSION
A general framework called NLCS for developing arbitrary
number of new multiparameter 1-D and 2-D chaotic system
from existing seed maps is presented in this work. The chaotic
performance is analyzed using stability analysis and bifur-
cation diagram along with four established metrics, namely,
Lyapunov exponent, KE, SE, and CC. Unlike the seed maps,
the entropy values in NLCS remain uniformly high across the
whole range and the value is always close to the maximum
achievable value from the constituent seed maps. The CPS and
ergodic properties are further enhanced by cascading multiple
maps. We have shown an efficient FPGA-based hardware im-
plementation. The comparison of performance and hardware
cost with seed maps and prior literature shows the superior
properties of NLCS. Moreover, we introduced a simple ex-
tension scheme to build 2-D maps with robust, hyperchaotic,
and uniformly excellent properties across the parameter space.
We presented a new reconfigurable multiparameter PRNG and
validated its excellent randomness property using two stan-
dard statistical tests, namely, NIST SP 800-22 and FIPS PUB
140-2. Finally, we outlined six application scenarios where the
particular attributes of the proposed system will be useful.
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