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ABSTRACT Predictive maintenance (PdM) has become an important industrial feature. Existing methods
mainly focus on remaining useful life (RUL) regression or anomaly detection to achieve PAM in a given
application. Those approaches assume monotonic degradation processes leading to a single catastrophic
failure at the system’s end of lifetime. In contrast, much more complex degradation processes can be found
in real-world applications, which are characterized by effects like self-healing or noncatastrophic anomalies.
A important example of devices with complex degradation are electromechanical relays. As established
PdM solutions failed when applied to a real-world relays degradation data set, the maintenance algorithm
for unlabeled data (MAUD) is presented to detect signs of wear and enable a service in time. In detail,
MAUD is based on an artificial neural network (ANN), which is trained semisupervised. Experiments with
measurement data from 546 relays show that MAUD is superior to various existing methods: The static B10
threshold, which represents the state of the art in relay maintenance, is surpassed by a 17.07 p.p. increase in
utilization while reducing failures by 6.42 p.p. Methods based on machine learning, such as RUL estimation
and anomaly detection, achieved much lower utilization (up to 31.83 p.p.) compared with MAUD while
maintaining the same failure rate.

INDEX TERMS Electromechanical relay, artificial neural network (ANN), predictive maintenance (PdM),

failure risk, pseudolabeling.

I. INTRODUCTION

A. MOTIVATION

Predictive maintenance (PdM) is a key technology enabling
the achievement of economic and ecological goals at the same
time. Due to the increasing digitalization and major advances
in machine learning (ML), ML implementations of PdM gain
increasing attention.

In this article, a PAM approach for electromechanical relays
is presented. There is a high demand for relays as they are
used for electrical switching operations in a wide range of
applications, which is reflected in an annual market volume
for electromechanical relays of over 6 billion US dollars [1].
The failure of a single relay can lead to the failure of an entire
plant. This is why PdM is so important for relays.

But unfortunately, the current state of the art regarding PAM
is not applicable to relays, as they exhibit complex degrada-
tion mechanisms: In part, the degradation is reversible, which

is why the estimation of the monotonic remaining useful
lifetime (RUL) with supervised ML methods is not successful
here [2]. Furthermore, relays are very heterogeneous in their
characteristics, which causes anomaly detection with unsuper-
vised ML methods to fail [2].

Therefore, a semisupervised ML-based PdAM method for re-
lays is presented in this article. Specifically, a pseudolabeling
of the dataset is performed to distinguish between conspicu-
ous and inconspicuous operating states. In this way, a need for
maintenance can be indicated in time.

B. STATE OF THE ART: PDM

The approaches for PAM are strongly dependent on the
particular component to be analyzed and the associated (mea-
surement) data. Therefore, in the following, the state of the
art for PdM is differentiated into two groups: For one group,
monotonic wear is evident in the data, and therefore RUL can
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be estimated with this. In the other group, sudden changes can
be observed, which is why anomaly detection is applied here.
To estimate the RUL, a method of ML is typically used to
learn a mapping of the input data to the RUL. Consequently, it
is a supervised procedure that requires the RUL to be known.
The definition of the RUL is dependent on the component in
question, one possibility being the remaining operating time
to failure. In the context of relays, the remaining switching
cycles until failure would be used, since the degradation takes
place significantly in the switching process.

The NASA turbofan engine degradation simulation dataset
[3] is particularly commonly used for RUL estimation. It
contains simulated run-to-failure data from several hundred
turbofan engines. Furthermore, a lifetime is given so that the
RUL can be estimated. Various ML techniques have already
been applied for this purpose: An echo state network for RUL
prediction is used in [4]. Moreover, in [5], recurrent neural
networks were used to consider the history of parameters for
the prediction of RUL and to filter outliers. Another frequently
used dataset is the FEMTO bearing dataset [6], which consists
of 17 run-to-failure datasets of bearings. Different ML ap-
proaches are developed for this dataset, in [7] and [8] support
vector machines are used to estimate the RUL, in [9] a sum-
mation wavelet-extreme learning machine is used to perform
estimation/prediction tasks.

The estimation of RUL is not possible for all datasets.
Therefore, there is an area of research that deals with anomaly
detection assuming that a single catastrophic failure event can
be predicted by a prior operation anomaly [10]. Recently,
significant progress has been made in this area through the use
of autoencoders (AE). AE is an unsupervised ML approach in
which typically two convolutional neural networks (CNN) are
trained. One CNN is used to transform the input data into a
low-dimensional latent space and is therefore called the en-
coder. The other CNN has the opposite task of reconstructing
the input data from the encoder output data, hence the name
decoder. The AE learns to encode and decode the normal
operating states during training and is accordingly good at
it. Unknown states, i.e., anomalies, can thus be detected by
an unusually high reconstruction error. This approach allows
unsupervised learning, no labels are necessary.

An example of a successful anomaly detection with an AE
for PAM is given in [11], where a model was trained with
correct working machine data of production press machine.
Further information on PdM fundamentals and applications
can be found in survey papers, e.g., [12], [13], [14].

C. STATE OF THE ART: RELAY MAINTENANCE

Due to its practical relevance, the B10 value is presented
first. It is often used in connection with the safety of machin-
ery [15]. It provides a statistical value, indicating a lifetime,
which 90 % of the components achieve. Accordingly, 10 %
of the components fail before the B10 value is exceeded.
The lifetime is given in a different unit depending on the
component; for a relay, it is typically the amount of switching
cycles [15]. The B10 value is used as a threshold applied
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FIGURE 1. Histogram of relay lifetime from training dataset [16] with B10
value plotted.

equally to all components of one type. Thus, the individual
degradation of a single device is not considered.

The inadequacies of the B10 value can be illustrated by
Fig. 1. The histogram shows the lifetime of the relays from the
training dataset, i.e., a total of 266 relays (see Section II-C).
The B10 value is about 24 000 switching cycles, i.e., if this is
selected as the threshold value for maintenance, then 10 % of
the relays fail before maintenance; at the same time, 90 % have
a longer lifetime and only a fraction of the possible lifetime
(28 %) is used.

Due to the shortcomings of the B10 value, alternative
methods have already been developed to improve relay main-
tenance. Two approaches can be identified: first, a PdM
approach for relays was presented in [17], in which health
indicators are compared with a recorded dataset. Based on
similarity measures, the relays can thus be assigned to known
degradation states, which in turn can be used to predict re-
liability. Second, in [18], the RUL of relays was already
successfully estimated with an temporal convolution network
and the high potential for an ML-based PdM could be shown.
Both approaches consider only failures caused by continuous
degradation of the relays. Therefore, the above approaches are
not suitable for practical application, because studies show
that several error modes occur (cf., Section II-D). These can
essentially be divided into the following two groups.

First, relays fail due to continuous degradation; second,
they can fail spontaneously. Related to the state of the art
for PAM, problems arise: no continuous aging is observed
in the relays that fail spontaneously, so estimating monotonic
RUL is not possible. Furthermore, reversible processes, such
as the formation and release of deposits, complicate the ap-
plication of RUL estimation. Anomaly detection is also not
promising for relay data. Relays exhibit high heterogeneity
among themselves in the data: Data from a new relay may
strongly resemble a worn one, so anomalous data do not
always announce an impending failure. Furthermore, anoma-
lous but nonfaulty operating states are included in the dataset
to a considerable extent. This complicates the use of an AE
to learn how to reconstruct the anomalous operating states,
which actually lead to faults. Therefore, the use of anomaly
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FIGURE 2. Pseudolabeling training procedure.

detection techniques for early indication of impending failure
of arelay is not promising. A detailed analysis of this problem,
including exemplary implementations of procedures for RUL
estimation and anomaly detection, has already been published
in [2].

D. PSEUDOLABELING

A method for PAM of relays must indicate an impending
failure at an early stage so that, depending on the applica-
tion, appropriate countermeasures can be taken. Therefore,
it is desirable to develop a method with which a boundary
between conspicuous and inconspicuous operating states can
be learned in a semimonitored manner. So that it is possible to
react in case of conspicuous states. Pseudolabeling is suitable
for this purpose. It is a subset of ML that trains on data that
is both labeled and unlabeled. This allows the use of datasets
where not all labels are known. In terms of relay degradation
analysis, this approach is of particular interest since it requires
training with many millions of switching cycles and their
labels are unknown.

According to the taxonomy for semisupervised classifica-
tion by Van Egelen et al. [19] the so-called wrapper methods
are suitable for PdM of relays. In these, supervised ML meth-
ods are trained to use unlabeled data. The training process for
this is described below.

A three-step training process is shown in Fig. 2. First, the
training step is performed, which involves supervised ML
with inputs Xijapeleq € R/ and labels yipeled € RY, where
n € N7 is the number of features and € N7 is the number
of labeled switching cycles of a relay. Then, the trained model
is used for inference on the entire dataset X € R™*/** to
generate predictions § € R/*, where u € NT are the unla-
beled switching cycles of a relay. Based on these, the labels
y € R!** are modified. These new labels are also called pseu-
dolabels. Finally, the procedure is restarted and training is
performed with the labels and pseudolabels. The procedure
is continued until a termination criterion is reached. The ad-
vantage of this methodology is that practically all supervised
ML procedures can be used, since they are independent of the
pseudolabels.

A comprehensive overview of wrapper methods has been
published by Triguero et al. [20]. One successful application is
the approach presented by Yarowsky for disambiguating word
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sense in text documents, where the meaning of words is pre-
dicted based on their context [21]. Many other methods have
been proposed. For example, in [22] Lee presented a method
for selecting pseudolabels based on the largest assignment to
a class in each case by the trained artificial neural network
(ANN). Despite this rudimentary approach, the conventional
semisupervised methods were beaten in terms of performance
on the MNIST dataset. Arazo et al. [23] presented a similar
method, in which the pseudolabels are used along with the
normal labels for training, always ensuring that a minimum of
normal labels are included in the minibatches. A successful
PdM application is described in [24], where a semisupervised
learning method for error diagnostics of gearboxes with lim-
ited labeled samples was demonstrated.

E. CONTRIBUTION
The following contributions are made in this work.

1) Tllustrate the complexity of relay degeneration and the
resulting problems in applying the current state of PdAM
to relays.

2) Presentation of the MAUD approach, a pseudolabeling-
based method that enables PdM of relays.

3) Experimental evaluation of MAUD with evidence of
superiority over the current industrial state of the art
based on a comprehensive real-world dataset.

F. OUTLINE

The rest of this article is organized as follows. In Section II
general information about electromechanical relays and the
experimental setup is given. Based on this, an analysis of
the used dataset is performed. In Section III the pseudola-
beling approach is applied to the problem, the resulting
method maintenance algorithm for unlabeled data (MAUD)
is described in detail. The evaluation of MAUD is done in
Section IV. Finally, Section V concludes this article.

Il. ELECTROMECHANICAL RELAYS AND MEASUREMENTS
A. ELECTROMECHANICAL RELAY
In the following, a brief description of the experimental setup
and an analysis of the generated data is given. More details
regarding the test setup and data are published in [2].
Different types of relays have been developed depending on
the application. This study focuses on a monostable relay type
with three contacts, which is widely used in the automation in-
dustry for switching low-power actuators, such as lights, fans,
or valves. A simplified structure of such a relay is visualized in
Fig. 4. The relay has three contacts on the load side: normally
open (NO), common (COM), and normally closed (NC). For
this work, current flows through COM and NO, NC is not
used. Further information on the basics on relay design and
operation can be found in [25], which cannot be reproduced
here for the sake of a concise paper structure.
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FIGURE 4. Schematic structure of a relay.

Typically, many phenomena have an impact on the degra-
dation of electrical relay contacts, with some of them be-
ing listed [26]: contact bounce, mechanical structural fa-
tigue, contact stiction, frictional polymer formation, thermal-
mechanical damage, and electromigration. The mechanisms
leading to failure may overlap so that they are not always
traceable. Furthermore, the investigation of a failed relay is
difficult: e.g., welded contacts can be separated by vibrations.
Therefore, these mechanisms are not investigated in this work
and black box modeling is performed.

B. TEST SETUP

Fig. 3 shows a picture of one test setup developed and used
to collect the dataset. The core of the system consists of two
printed circuit boards (PCBs) with ten relay test locations
each, the PCBs are mounted side by side on a top-hat rail. For
each relay tested, an additional redundant relay is installed
to be able to disconnect the current path in the event of a
fault. Furthermore, an emergency stop system was installed
and a corresponding temperature monitoring system. Both
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are necessary to be able to use the test setup in continuous
operation.

The circuit layout developed for data generation is de-
scribed in Fig. 5 by providing a simplified overview: The
control circuit consists of the relay coil and a freewheel-
ing diode required to protect against induced overvoltages
through the coil. The coil current i.o; is measured by a shunt,
whose influence on the switching behavior of the relay is
negligible. The load circuit consists of load and relay contacts,
and the load is interchangeable so that the dataset can be
diversified. The contact voltage u is measured directly. Both
circuits are connected via the relay. The measured variables of
a switching cycle are shown as an example in Section III-A.

For testing the manufacturers, the loads, and the load cur-
rents are varied. Two manufacturers with the same technical
specifications are used, which are therefore interchangeable
in practice. For the loads, only components with resistive or
inductive characteristics are considered, since relays are not
suitable for switching the high inrush currents of capacitive
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Operating Conditions
Number Manufacturer Load  Current/A
1 A DC13 1.70
2 A DC13 1.25
3 A DCI13 1.00
4 A R 6.00
5 A R 4.00
6 B DC13 1.70
7 B DC13 1.25
8 B DC13 1.00
9 B R 6.00
10 B R 4.00

Manufacturer A Manufacturer B

, 20- L J
3 % 1 |
a 2 10 4 1
0 .
o
104 10° 10°
Lifetime / cylces Lifetime / cylces
Histograms of relay lifetime for different manufacturers and
loads.

loads. Therefore, the DC13 load, a coil with defined induc-
tance, is used, which has established itself as a test load with
various relay manufacturers [27]. Furthermore, resistive loads
(R) are used. In summary, a total of ten different operating
conditions are investigated, as given in Table 1.

According to the two operating states of a relay, there are
the following two failure patterns. On the one hand, a switched
on relay can carry no current and on the other hand, a switched
OFF relay can carry current. A relay might continue to work
successfully after a faulty switching cycle. One example of
this is hooked contacts. Operation can roughen the surfaces
of the contacts to such an extent that they become hooked
and do not open when switched OFF. Light vibrations, such
as switching ON again, can cause the contacts to become
detached from each other, so that the relay works again after
a faulty switching operation. For the purposes of this work, a
relay is considered as being defect if a failure has occurred at
least twice in a row.

C. DATASET ANALYSIS

As a basis for the following investigation, comprehensive
experimental measurements were catried out on 546 relays.
These have been published as an open dataset, which is avail-
able to the public [16]. The lifetime of the relays is strongly
related to the switched load and the manufacturer, as shown in
Fig. 6. The columns are assigned to the manufacturers and the
rows to the load, the abscissa is scaled logarithmically, since
early failures are much more frequent than late failures and
there are high variations in the lifetime depending on the load.
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Visualization of the time series during degradation for a relay
switching a DC13 load.

For manufacturer A, there are significant differences be-
tween the loads, for the DC13 load four segments can be
divided, which have an average life of about 100 000 switch-
ing cycles. In contrast, for the resistive load (R), segmentation
is not possible and the relays have an average life of about
500 000 switching cycles. The differences in lifetimes are not
as apparent for manufacturer B, but they are present here as
well; overall, the lifetimes are more evenly distributed over a
wider range. The same can be seen when comparing the loads.

Ultimately, different lifetimes can be expected depending
on the manufacturer and load. This can be attributed to design
differences and the physical properties of the loads. With the
DC13 load, for example, an arc is generated when the load
is switched OFF, which heats the contacts extremely at certain
points so that material is burned off.

D. VISUALIZATION OF DEGRADATION

The following shows an example of the data when two relays
are switched OFF over their entire lifetime; similar conclusions
can be drawn for the data when they are switched ON.

In Fig. 7, a continuously degenerated relay operated with
a DC13 load is shown. There are clear trends in the data, the
local maximum in the i.y; at switch-OFF occurs later and later,
and the time at which u at switch-OFF reaches 24 V again is
delayed with lifetime. This can be explained by the burning
of the contacts; with each switching cycle, some material of
the contact pills is burned. Consequently, the spring force with
which the contacts are separated decreases, so that the anchor
detaches from the coil later and more slowly.

There are no clear trends in Fig. 8 with increasing lifetime.
There are spontaneous changes, but they fade away, e.g., at 40
thousand cycles of switching OFF, a change is observed that
no longer exists at 50 thousand cycles of switching OFF. At
the end of life, a further, stronger change can be observed.
However, a clear trend over the lifetime cannot be seen. This
is a typical example of a relay with a spontaneous failure, as
this is only announced in the short term.
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Extracted features marked on exemplary measurements.

In the following paragraph, a new PdM method for relays is
presented. The individual failure risk of a relay is estimated
based on measured data. When operating a relay, maintenance
could be triggered based on this failure risk so that faults
can be prevented. Since the used dataset is not labeled, a
pseudolabeling is performed.

The data processing pipeline is shown in Fig. 10. First,
features are extracted from the time series of each switching
operation. These are used together with the time series in an
initialization phase to classify the manufacturer and load of
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the relays. The need for this comes from the previous statis-
tical study in Section III-A: manufacturer and load have an
impact on degeneration. The initialization phase takes place
during the first 2 h of operation (720 cycles) of each relay. In
addition to the classification, the initial values of the charac-
teristics of each relay are determined here. After initialization,
inference can begin and the risk of failure for each switching
operation can be estimated. For this purpose, the features are
first augmented and then used for prediction with an mul-
tilayer perceptron (MLP), a simple type of ANN consisting
of layers of neurons with activation functions. But before an
MLP can be used for prediction, it must be trained. In the
case of MAUD, pseudolabeling is performed using a wrapper
method. The following sections contain detailed information
on both the data processing pipeline and training.

A. FEATURE EXTRACTION

First, a number of 12 features v € R'? are extracted from
the voltage and current time series with the goal of reducing
complexity as much as possible. The extracted features are
marked in Fig. 9 and described below.

1) Start of the anchor movement: The local maximum in
the coil current is related to the start of the anchor
movement and can thus, among other things, allow con-
clusions to be drawn about the entire magnetic circuit,
such as the rest position of the anchor.

2) End of anchor movement: The end of the anchor move-
ment can be seen as a local minimum. If there is
contamination or debris between the anchor and the
coil core or between the contact pairs, the trajectory of
the anchor would be altered. An example of this is the
migration of contact material, which reduces the contact
gap to such an extent that the anchor can no longer strike
the coil core and, therefore, oscillates. This change is
reflected in the coil current.

3) First time contact: The time of the first contact is de-
tected by the first voltage drop. It allows conclusions to
be drawn about changes in the contact distance.

4) Last time no contact: This feature determines the dura-
tion of the bounce. For this reason, the time specified
here corresponds to the time difference to “First time
contact.” A high level of bouncing is a sign of wear.

5) Start of anchor movement: This feature provides infor-
mation on the release of the anchor from the coil and
thus allows conclusions to be drawn about the mechan-
ical tension of the contacts.

6) Maximum induction: The maximum induction depends
on the anchor movement and is therefore considered.

7) Last time contact: The time at which the contacts are
released when switched OFF is related to the mechanical
contact voltage.

8) First time no contact: This feature indicates how long
it takes for the contact voltage to rise above 24 V again
for the first time. The measured time here is the time
difference to “Last time contact.”
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FIGURE 11. Comprehension of time series for two different manufacturers.

For the four features based on the coil current i.., both
time and current are determined. However, for those four
based on the contact voltage uc, only the time is recorded.
This is because the contact voltage is an almost binary signal,
so the voltage does not contain any significant information.
Thus, a total of eight time points and four current values are
extracted from the measured variables of a switching opera-
tion.

In addition, the mean value of i . is marked in Fig. 9. It
is only used for data correction purposes and therefore not
listed as a feature. The mean value is important, because it de-
pends, among other things, on the supply voltage and the coil
temperature. Therefore, fluctuations of the two influencing
variables are corrected by dividing the values of the current
characteristics by the mean value.

B. INITIALIZATION

1) ESTIMATE MANUFACTURER

The relays are differentiated by manufacturer, in Fig. 11 the
time series for two new relays from both manufacturers are
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shown, for i..; different time series can be seen when switch-
ing ON and OFF. These are due to the geometries of the
magnetic circuits and the inductances of the coils. The spring
forces of the contacts also effect the movement of the anchor.
When switching on, u¢; shows that the relay from manufac-
turer B bounces more strongly, an observation that also applies
to the majority of the other relays. With u switched OFF, it
can be seen that the contacts separate at different time points.

All in all, it can be concluded that it seems possible to
distinguish relays by manufacturer, so the features described
in Section III-A are used for this classification task. As an
ML method, an MLP is trained with a hidden layer of 25
neurons and a rectified linear unit (ReLU) activation function
and one neuron as output with sigmoid activation function.
MAUD thus contains two MLPs, one for the pseudolabeling
and one for the manufacturer estimate. The latter achieves
99.99 % accuracy in the training dataset and 99.90 % accuracy
in the validation dataset. Since the manufacturer estimation is
part of the initialization of MAUD, a majority voting can be
performed during the first 720 cycles. In this way, 100 % of
the relays in the test dataset can be assigned to the correct
manufacturer.

2) ESTIMATE LOAD

Since different physical phenomena occur depending on the
switched load, different degradation are to be expected. There-
fore, the relays are differentiated by load. For differentiation,
uee was used when switching off, since for the DC13 inductive
loads, arcing always occurs, which is noticeable by noise, as
shown in Fig. 12. For the DC13 load the standard deviation is
3.25 V and for the resistive load 0.03 'V, in this way both loads
can be distinguished.

C. FEATURE AUGMENTATION

Based on v, a further processing takes place. Since the fea-
tures refer only to a single switching operation, the changes
between the switching operations do not emerge from it.
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TABLE 2. MLP Topology

Layer Type Neurons Activation = Dropout-rate
1 Dense 50 ReLU -

2 Dense 50 ReLU -

3 Dense 50 ReLU -

4 Dropout - - 0.25

5 Dense 1 sigmoid -

Besides, outliers are partly to be found out, which must be
corrected. Therefore, the history V, € R!12xlr of each relay
r € NT with lifetime /, € N7 is used to extend the dataset
for each cycle ¢, € N,

Three augmentations are made: the moving average of the
feature with a window width k € N, a measure of the mag-
nitude of change in the feature (as a mean gradient of m € N
cycles), and the deviation from the initial state (which is av-
eraged over the first s € N cycles). In this way, the dataset
contains a total of 3 x 12 features per switching cycle as input
data. These are finally normalized, with the mean and standard
deviation calculated for each feature over the entire training
set.

D. ANN TOPOLOGY

For the application of the method, the inference of the MLP
is of particular importance. The costs of the necessary periph-
ery for inference must be proportionally to the relay costs.
Therefore, the choice has fallen on a MLP whose hardware
requirements are so low that it can be executed on a micro-
controller.

The MLP topology is given by Table 2. A random search
was performed to optimize the hyperparameters of the MLP.
Within 20 random draws, the number of neurons per layer (5,
10, 25, 50, 75, and 100), the number of layers (1, 2, 3, 5,
and 10), the activation function (ReLU and sigmoid) and the
dropout rate (0.05, 0.10, 0.15, 0.20, and 0.25) were optimized.
A uniform distribution was used in each case. Accuracy for the
first iteration of MAUD was used as a metric for performance.

E. TRAINING

The failure risk is used as the target value, which is a binary
classification. It is used to identify signs of spontaneous fail-
ure. During the manual analysis of the dataset, anomalies can
be found in some places that should be recognized as part of
the classification. The assignment of the labels is demanding,
since a manual check of the extensive dataset with millions
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TABLE 3. Training Parameters

Name Value

Library TensorFlow / Keras
Optimizer Adam

Epochs 1000

Batch size 10 000

Data shuffling True

Early stopping True

Early stopping patience 20

Early stopping restore best weights  True

Error function Binary cross entropy

of switching cycles is not possible. Therefore, a semisuper-
vised approach is pursued, with which pseudolabels for the
switching cycles are assigned by the MLP itself. The training
procedure corresponds to the three steps from Fig. 2.

Two assumptions are made for the initialization: On the one
hand, it is assumed that the last cycles are conspicuous and
can be labeled as such. Therefore, A € N is used to (1) and
(2). On the other hand, it is assumed that most of the cycles
in the first half of the relay’s life are inconspicuous, which is
reflected in o. The initial target value y for the cycle ¢, is thus

0 (inconspicuous) ifc, <o
Ye, = § 1 (conspicuous) ife, > 1, — A (D)
not used else.

The MLP’s predictions y for the training or validation set
are used to update the labels

0 ifc, <eory, <o
)1 ifj,, >1—aandc, >0
Yer =1 ife, > 1, — A 2)
not used else

whereby the first € € NT cycles are labeled as inconspicuous
and the last A cycles are labeled as conspicuous. All cycles
in between are relabeled based on y. By this labeling it is
possible, e.g., to label the conspicuous cycles in Fig. 8 at
40 thousand accordingly and to permit at the same time that
following again an inconspicuous phase is run through, which
cycles are marked depends on the threshold o €]0, 0.5[. The
restriction that only ¢; > o can be labeled as conspicuous is
because otherwise many cycles in an early life phase would
also be labeled as conspicuous and thus little life of a relay
would be used. At the same time, cycles that were initially
incorrectly labeled as inconspicuous are removed from the
dataset in this way so that both labels can be better distin-
guished.

The training parameters used are listed in Table 3. For each
iteration, a new MLP is trained because it has been shown that
otherwise overfitting occurs quickly. Furthermore, equal num-
bers of conspicuous and inconspicuous labels are included in
the training and validation datasets, so that none of the labels
is overrepresented. The choice of the cycles used is random.

IV. EXPERIMENTAL RESULTS
In the following section, the results of the MAUD procedure
are presented. First, ablation studies for the choice of the
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TABLE 4. Number of relays in training, validation and test set by
manufacturer and load

Manufacturer & Load Training Validation  Test
A-DCI3 93 49 49
B-DCI13 87 46 46
A-R 38 20 21
B-R 48 24 25
Total 266 139 141

TABLE 5. Ablation Study of Parameter «

« Utilization / %  Failures / %
0.02 31.67 2.80
0.05 45.15 2.80
0.10 35.74 2.80
0.20 26.70 4.26

threshold value o and the feature augmentation are presented.
Thereupon, the training of MAUD is documented. Subse-
quently, the individual results are first considered qualitatively
and finally compared with the state of the art.

The following two metrics are used to compare the results.

1) Utilization: The proportion of the lifetime that the relay

has been operated before maintenance.

2) Failures: The proportion of relays that would not have

been maintained before their failure.

Both metrics are important: the greater the utilization, the
less maintenance and resource wasting. At the same time,
however, failures must be kept low, as these can lead to the
failure of the entire plant.

A. TRAINING SETUP

In Table 4, the numbers of relays that make up the training,
validation and test sets are given, the latter being assigned a
high proportion of relays (25 % each) to obtain higher evi-
dence of the results. The relays sorted by manufacturer and
load were randomly assigned to the sets.

The threshold « is of particular importance for label assign-
ment, so the effect of different threshold values is investigated.
In Table 5 the results of MAUD with different « are given.

It can be seen that for « = 0.05 there is the highest exploita-
tion of the utilization with 45.15 % and at the same time the
lowest undetected errors with 2.80 %. This can be explained
by the fact that if the « is too low, too few pseudolabels are
assigned and therefore a poorer distinction between conspicu-
ous and inconspicuous is learned. A too large o, on the other
hand, leads to a fast allocation of pseudolabels, which make
the labeling iterations unstable and ultimately lead to worse
results.

Furthermore, the features used have an influence on the
performance of MAUD. For this reason, different combina-
tions of features were used in advance for the training of
MAUD to investigate their influence on the performance (see
Section III-C).

The best performance is achieved by using all features,
which is why they are used in the following. The parameters
used for feature augmentation are listed in Table 7.
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TABLE 6. Ablation Study of Feature Augmentation

Augmentation Utilization/ %  Failures/ %
Rolling mean 32.15 3.55
Rolling mean and mean absolute 29.26 3.55
gradient
Rolling mean and difference to 34.92 3.55
initial
Rolling mean and mean absolute 45.15 2.80
gradient and difference to initial
TABLE 7. Used MAUD Parameter Values

Parameter  Description Value

n Number of features 12

k Window length moving average 120

m Window length average gradient 120

s Window length initial values 720

A Assumed conspicuous cycles 360

€ Assumed inconspicuous cycles 20

o Assumed normal operation phase lr/2

«@ Threshold for pseudolabels 0.05

Manufacturer A Manufacturer B

60

50 - 1
40 - 1
30 1
20 - 1

DC13
Percentage / %

10 A b
0 T T
60
50 1 b

40 1
30 1
20 1
o |

0 | mevhema™y | | !
0 20 40 0 20 40

Iteration Iteration

R
Percentage / %

Utilization Failures —e— Label changed

FIGURE 13. History of utilization, failures, and changed labels over
training iterations.

B. TRAINING

Fig. 13 shows the results of the training iterations, divided
by manufacturer and load. For each manufacturer and load
combination, MAUD is run independently, at the end of each
training phase three sizes are recorded for the validation set.
Label changed quantifies the percentage of cycles changed by
the predictions of the newly trained MLP for the next iteration.
Utilization quantifies the average percentage of relay lifetime
that is used, assuming that a relay is changed when it is classi-
fied as conspicuous. To accommodate real-world conditions, it
was specified that labeling as conspicuous must occur at least
1 h (360 cycles) before failure. Otherwise, a relay is evaluated
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as a failure, which is also specified relatively in Fig. 13. To
suppress outliers, the MLP predictions were smoothed with a
moving average with a window width of 120.

For manufacturer A, it can be seen that after five iterations
the changed labels converge to a small percentage, these can
be justified with the training of the MLP, since randomness
plays a large role here, e.g., the training data are randomly
selected. Consequently, the MAUD algorithm could be used to
separate the conspicuous and inconspicuous cycles. Thereby,
usage and failures for both loads change only slightly after
convergence of the changed labels, this is also a proof of the
safe differentiation of the classes.

The convergence of relabeled cycles can be seen on for
manufacturer B, but the relative proportion is significantly
larger, so the label distinction does not appear to be as stable.
This is supported by the utilization and the failures, for the
resistive load a high dispersion of the failures is observed and
for the DC13 load the utilization increases during the first
iterations. This behavior can be justified in two ways, first
the relays of manufacturer A have almost twice the lifetime
for DC13 loads and almost four times the lifetime for resis-
tive loads, the dataset is therefore larger, which may have a
positive impact on training. On the other hand, the histograms
from Fig. 6 show that the relays from manufacturer A turn out
to be more predictable (smaller dispersion in the histogram).

When comparing the validation and test sets, only a few
percent deviations can be seen for all manufacturers and load
combinations in terms of utilization, which indicates that there
is no overfitting, but that MAUD has actually learned a reliable
classification. A total of three more failures occur in the test
set; these relays, with live times of 5000—18 000 cycles, are
extreme early failures that do not occur in either the training
or test set.

C. INDIVIDUAL RESULTS

In the following, the predictions are visualized in combina-
tions with the data. For this purpose, two relays were selected,
which can be used to show how MAUD works. These are the
relays shown previously in Figs. 7 and 8, also the graphics
have the same structure, only this time the predictions are
visualized in color.

In the case of the continuously aged relay from Fig. 14,
it can be seen that it is successfully labeled as conspicuous
at the end of its lifetime, which is in line with expectations.
The same applies to the range between 400 and 450 thousand
cycles, which has some unlabeled cycles. What is striking
about this relay is that it is classified as dangerous right at
the start, i.e., before 50000 cycles. A closer look at the data
reveals strong changes in the measured variables in this range,
so the cycles are indeed conspicuous, but the relay has not
failed. This behavior can be observed many times, the relays
got conspicuous cycles, but only a fraction actually fails. This
has a very negative effect on the evaluation of the utilization,
but to achieve a low failure rate, the relays must be changed
correspondingly early, since some relays fail with exactly
these conspicuous cycles.
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FIGURE 14. Illustration of predictions for a relay switching a DC13 load.
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FIGURE 15. lllustration of predictions for a relay switching a DC13 load.

The phenomenon of early conspicuous cycles observed in
Fig. 14 is even more evident in Fig. 15, where many more
cycles were not labeled and the intervals where large changes
are seen are marked as conspicuous. The pseudolabeling with
MAUD is successful according to this qualitative sample, but
the utilization of the relays is limited in the quantitative eval-
uation, since it can be seen that conspicuous cycles can occur
long before the relays fail.

D. COMPARISON WITH STATE OF THE ART

In the following section, the performance of MAUD is com-
pared with the state of the art. For this purpose, three
alternative methods were implemented and evaluated with the
same augmented dataset described in Section III-A. First, the
B10 value, because this is used in practice to PdM the relays.
Second, the estimation of RUL, since this method is popular
and has been used for PdM of relays in [18]. Third, anomaly
detection, due to the popularity and the high complexity of the
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TABLE 8. Results

Method Utilization/ %  Failures/ %  Failures
Validation
MAUD (A-R) 53.81 5.26 1
MAUD (B-R) 3543 0.00 0
MAUD (A-DC13) 54.46 0.00 0
MAUD (B-DC13) 37.19 0.00 0
Test
MAUD (A-R) 51.34 0.00 0
MAUD (B-R) 33.04 0.00 0
MAUD (A-DC13) 56.88 6.52 3
MAUD (B-DC13) 37.02 2.22 1
TABLE 9. RUL Estimation Topology

Layer Type Neurons  Activation

1 Dense 50 ReLU

2 Dense 50 ReLU

3 Dense 50 ReLU

4 Dense 25 ReLU

5 Dense 12 ReLU

6 Dense 6 ReLU

7 Dense 1 ReLU

relay data. In the following, the methods are briefly presented
and then compared with MAUD.

1) RUL ESTIMATION

In RUL estimation, a ML method is trained to perform regres-
sion in a supervised manner. The augmented features are used
as input data and the remaining lifetime is used as outputs.
Since the service life of relays depends on the load, among
other factors, the RUL is defined relatively, i.e., scaled to the
interval from 100 % to 0 % individually for each relay. Thus,
each new relay has a RUL of 100 % and immediately before
failure a RUL of 0 %.

The ML method used here was an MLP whose topology
is listed in Table 9. Training is analogous to the modalities
in Table 3, except for the error function: mean squared error
is used for RUL estimation. To suppress outliers, the MLP
predictions were smoothed with a moving average with a
window width of 120.

If RUL estimation is used, a threshold value has to be
defined, at which the maintenance of the relays is triggered.
For comparison with MAUD, Fig. 16 shows the influence of
the threshold value on the metrics utilization and failures.

It can be observed that both metrics decrease with increas-
ing threshold value. This is to be expected: the higher the
threshold value, the earlier the relays are maintained and con-
sequently there are fewer failures, although utilization is also
low.

2) ANOMALY DETECTION

Anomaly detection is a method that involves an unsupervised
learning approach. An AE is trained with the first 5000 switch-
ing cycles of each relay from the training dataset, using the
augmented features from both input and output data. The
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FIGURE 16. Utilization and failures for the RUL estimation when different
RUL threshold values are selected.

TABLE 10. AE Topology

Layer Type Neurons  Activation

1 Dense 36 Exponential linear unit

2 Dense 18 Exponential linear unit

3 Dense 9 Exponential linear unit

4 Dense 18 Exponential linear unit

5 Dense 36 None
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FIGURE 17. Utilization and failures for anomaly detection when selecting
the error threshold value according to different error percentiles.

topology of the AE is given in Table 10, and training is
analogous to RUL estimation.

Anomalies are detected using the reconstruction error, i.e.,
from the difference between input and output data. If the
error is above a threshold value, then relay maintenance is
performed. For comparison with MAUD, the threshold values
were determined as percentiles of the reconstruction error of
the validation dataset: the 5 % percentile corresponds to the
boundary between the largest 5 % of errors and the remaining
95%. In Fig. 17, utilization and failures are given for the
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TABLE 11. Summarizing Results

Method Utilization/ %  Failures / %
B10 28.08 9.22
B10 (differentiated) 36.75 9.93
RUL estimation (45%) 35.56 10.64
Anomaly detection (50%) 26.13 9.22
RUL estimation (60%) 25.28 3.55
Anomaly detection (75%) 13.32 2.13
MAUD 45.15 2.80

different percentiles. To suppress outliers, the AE errors were
smoothed with a moving average with a window width of 120.

The graph shows that the higher the percentile, the lower
the utilization and failures. This is to be expected, since the
larger the percentile, the more values lie above the threshold
value, resulting in fewer failures and utilization.

3) B10 VALUE

Two B10 values were calculated based on the training set:
with and without differentiation of manufacturer and load.
Classically, the differentiation is not carried out in this way
for the B10 value. However, since it has been shown in this
publication that it is possible, it is also considered for the B10
value to increase its performance and, therefore, ensuring a
fair comparison.

4) COMPARISON

For each pseudolabeling iteration of MAUD, a trained MLPs
are available for each manufacturer and load combination.
Therefore, iteration selection must take place. For this, the
performance on the validation set is used, considering first the
minimum failures and second the maximum load, to select
the iteration and thus the MLP.

For the purpose of comparison, a threshold value must be
set for each of the RUL estimation and anomaly detection
methods. The choice is based on the results of MAUD and
the B10 value. Because the reduction of the failures is pre-
ferred, the threshold values are chosen so that the failures of
the methods are similar. For MAUD, this results in an RUL
threshold value of 60 % and the 75 % percentile for anomaly
detection. The thresholds for the B10 values are 45 % (RUL)
and 50 % (anomaly).

The results are given in Table 11. First, the B10 values are
considered: the statistical parameter implies that about 10 %
of failures occur for the test dataset. Consequently, both B10
values are as expected. However, they differ significantly in
utilization. This is due to the fact that higher B10 values are
calculated for the differentiated manufacturers and load com-
binations, which means that more lifetime is used on average.

Second, the methods RUL estimation and anomaly de-
tection are considered. Compared with the B10 values, the
comparison is made with the threshold values 45 % and
50 %, respectively, so that no significant differences can be
found with regard to the failures. At the same time, how-
ever, no improvement can be observed with respect to the
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utilization; the B10 values even have a slight advantage. The
effort required for the RUL estimation and anomaly detection
methods can therefore not be justified. One reason for the
lack of performance improvement may be the nature of the
relay degradation processes: RUL estimation assumes mono-
tonic degradation, which not all relays satisfy (cf., Fig. 8).
In anomaly detection, the fact that the relays have hetero-
geneous characteristics among themselves comes into play.
Thus, anomaly detection detects not only abnormal operating
states but also abnormal relays, thereby reducing utilization.
A more detailed analysis of the application of both methods
can be found in [2].

Finally, MAUD is considered: the comparison with both
B10 values is clear, MAUD can increase utilization by
17.07 p.p. (8.40 p.p for differentiated) and the failures are
reduced by 6.42 p.p (7.13 p.p. for differentiated). With regard
to both metrics, a significant increase was achieved through
MAUD. A similar picture emerges when comparing the RUL
estimation (60 %) and the anomaly detection (75 %) such that
their remaining failure rates is on eye level with MAUD,
i.e., making them more conservative. However, the utilization
of MAUD is 19.87 p.p. (RUL estimation) and 31.83 p.p.
(anomaly detection) higher. Thus, the performance of the ex-
isting PAM methods RUL estimation and anomaly detection
is much worse than that of MAUD for relays.

V. CONCLUSION
Existing approaches like RUL prediction or anomaly detec-
tion are not suitable for PAM of electromechanical relays.
This is mainly due to the complex degradation processes.
Therefore, a new target variable, failure risk, was introduced
to indicate impending failure. With pseudolabeling, a new
MAUD was introduced and evaluated. MAUD is superior to
the current state of the art in relay maintenance: Utilization
can be improved by 17.07 p.p., and furthermore, undetected
failures can be reduced by 6.42 p.p. In addition, MAUD is also
superior to existing PAM methods, achieving up to 38,83 p.p.
higher utilization for comparable failures.

Since real data was used in the context of this work, it can
be concluded that the practical application of MAUD enables
longer operation with fewer failures.
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